Assessing the Antioxidant Potential of Ginger Aqueous Extract on H2O2 Induced Oxidative Stress in Local Rabbits: A Comprehensive Study of Hematological Parameters | ||
Kirkuk University Journal For Agricultural Sciences | ||
Volume 14, Issue 2, July 2023, Pages 67-73 PDF (967.07 K) | ||
Document Type: Research Paper | ||
DOI: 10.58928/ku23.14206 | ||
Authors | ||
Imad M. Al_jabari* 1; Sarmad A. Alsaadi2 | ||
1Nursing department, college of health and medical technology, sulaimani polytechnic university, sulaimani, iraq | ||
2Department of Animal Production | ||
Abstract | ||
This research, that was carried out at the Technical Institute in Bakraju/ Sulaimaniyah Technical University, the aim was to investigate the impact of administering 0.5% hydrogen peroxide via drinking water as an oxidative stress inducer, as well as the effect of an antioxidant in the form of an aqueous extract of ginger tubers (at a dosage of 200 mg/kg), on the physiological characteristics of male domestic rabbits. A total of 48 rabbits distributed into four groups, each group consisting of 12 rabbits. The study lasted for 42 days, the groups were: a control group, a group receiving only hydrogen peroxide (0.05%), a group receiving only the ginger extract (200 mg/kg), and a group receiving both hydrogen peroxide (0.05%) and the ginger extract (200 mg/kg). The second group resulted in negative effects on blood indicators, including a decrease in the total number of RBCs, hemoglobin concentration, PCV, and platelets compared to the other groups. These effects were significant at a level of P≤0.05. However, the third group (200 mg/kg) of aqueous ginger tubers extract had a positive effect, improving all the previously mentioned indicators and significantly surpassing the control and second groups at a probability level of P≤0.05. Additionally, the use of the aqueous extract of ginger tubers in conjunction with hydrogen peroxide in the fourth group prevented or minimized the negative effects of oxidative stress caused by hydrogen peroxide on most of the blood indicators mentioned in the study. | ||
Keywords | ||
Oxidative stress; Ginger Roots; Rabbits | ||
References | ||
[1] Skowron, M., Zalejska-Fiolka, J., Błaszczyk, U., Chwalińska, E., Owczarek, A., & Birkner, E. (2018). Antioxidant Enzyme Activities in Rabbits Under Oxidative Stress Induced By High Fat Diet. Journal of veterinary research, 62(2), 199–205. https://doi.org/10.2478/jvetres-2018-0019
[2] Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
[3] Ballester, P., Cerdá, B., Arcusa, R., Marhuenda, J., Yamedjeu, K., & Zafrilla, P. (2022). Effect of Ginger on Inflammatory Diseases. Molecules (Basel, Switzerland), 27(21), 7223. https://doi.org/10.3390/molecules27217223
[4] Ozkur, M., Benlier, N., Takan, I., Vasileiou, C., Georgakilas, A. G., Pavlopoulou, A., Cetin, Z., & Saygili, E. I. (2022). Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Oxidative medicine and cellular longevity, 2022, 4748447. https://doi.org/10.1155/2022/4748447
[5] Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today's scientific and technological studies. Journal of food science and technology, 56(11), 4757–4774. https://doi.org/10.1007/s13197-019-03952-
[6] Ghosh, A. K., Banerjee, S., Mullick, H. I., & Banerjee, J. (2011). Zingiber officinale: A natural gold. International Journal of Pharma and Bio Sciences, 2(1). Retrieved from www.ijpbs.net
[7] Huang, F. Y., Deng, T., Meng, L. X., & Ma, X. L. (2019). Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine, 98(13), e15054. https://doi.org/10.1097/MD.0000000000015054
[8] Poonam G. D., Brijesh S., Pundarikakshudu T., Noshir H. A. and Tannaz J. B. (2010). Antidiarrhoeal activity of Zingiber officinale (Rosc.). Current Science, 98:(2): 222-229
[9] Anh, N. H., Kim, S. J., Long, N. P., Min, J. E., Yoon, Y. C., Lee, E. G., Kim, M., Kim, T. J., Yang, Y. Y., Son, E. Y., Yoon, S. J., Diem, N. C., Kim, H. M., & Kwon, S. W. (2020). Ginger on Human Health: A Comprehensive Systematic Review of 109 Randomized Controlled Trials. Nutrients, 12(1), 157. https://doi.org/10.3390/nu12010157
[10] Zhang, S., Kou, X., Zhao, H., Mak, K. K., Balijepalli, M. K., & Pichika, M. R. (2022). Zingiber officinale var. rubrum: Red Ginger's Medicinal Uses. Molecules (Basel, Switzerland), 27(3), 775. https://doi.org/10.3390/molecules27030775.
[11] Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods (Basel, Switzerland), 8(6), 185. https://doi.org/10.3390/foods8060185
[12] Zhang, G. F. ; Z. B. Yang ; Y. Wang ; W. R. Yang ; S. Z. Jiang and G. S. Gai (2009). Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult. Sci.88(10): 2159-66.
[13] Hayajneh, F (2019) . Natural feed additives for broiler chickens. S. Afr. J. Anim. Sci. 49, 869–875. [CrossRef]
[14] Levy, G., Zilberg, D., Paladini, G., and Fridman, S.)2015(. Efficacy of ginger-based treatments against infection with Gyrodactylus turnbulli in the guppy (Poecilia reticulate (Peters)). VeterinaryParasitology,209, 235-241. DOI: org/10.1016/j.vetpar.2015.03.002.
[15] Nan, F.H., Agus Putra, A.S., Margie, B. and Lee, M.C.)2015(. The effects of Curcuma zedoaria and Zingiber zerumbet on non-specific immune responses of grouper Epinephelus coioides. Journal of Fisheries Sciences, 14(3), 598-611.
[16] Massányi, M., Kohút, L., Argente, M. J., Halo, M., Kováčik, A., Kováčiková, E., Ondruška, Ľ., Formicki, G., & Massányi, P. (2020). The effect of different sample collection methods on rabbit blood parameters. Saudi journal of biological sciences, 27(11), 3157–3160. https://doi.org/10.1016/j.sjbs.2020.07.016
[17] Owain F. S. (2018). Effect of Branched Chain Amino Acids in some Physiological and Production parameters of oxidative stressed rabbits. PhD thesis / Faculty of Agriculture/ Tikrit University.
[18] Ransy, C., Vaz, C., Lombès, A., & Bouillaud, F. (2020). Use of H2O2 to Cause Oxidative Stress, the Catalase Issue. International journal of molecular sciences, 21(23), 9149. https://doi.org/10.3390/ijms21239149
[19] Ilavenil, S., Kaleeswaran, B., Sumitha, P., Tamilvendan, D., & Ravikumar, S. (2011). Protection of human erythrocyte using Crinum asiaticum extract and lycorine from oxidative damage induced by 2-amidinopropane. Saudi journal of biological sciences, 18(2), 181–187. https://doi.org/10.1016/j.sjbs.2010.11.001
[20] Rafieian-Kopaei, M. and Nasri, H. (2014). Re: Erythropoietin ameliorates oxidative stress and tissue injury following renal ischemia/reperfusion in rat kidney and lung. Medical Principles and Practice, 23(1), 95-95.
[21] Revin, V. V., Gromova, N. V., Revina, E. S., Samonova, A. Y., Tychkov, A. Y., Bochkareva, S. S., Moskovkin, A. A., & Kuzmenko, T. P. (2019). The Influence of Oxidative Stress and Natural Antioxidants on Morphometric Parameters of Red Blood Cells, the Hemoglobin Oxygen Binding Capacity, and the Activity of Antioxidant Enzymes. BioMed research international, 2019, 2109269. https://doi.org/10.1155/2019/2109269
[22] Ali, A. M. A., El-Nour, M. E. M., & Yagi, S. M. (2018). Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. Journal, genetic engineering & biotechnology, 16(2), 677–682. https://doi.org/10.1016/j.jgeb.2018.03.003
[23] Belewu, M. A. ; O. A. Olatunde and T. A. Giwa (2009). Underutilized medicinal plants and spices: Chemical composition and phytochemical properties . J. Med. Plants Res. 3(12): 1099-1103. | ||
Statistics Article View: 43 PDF Download: 92 |