[1] R.N. Iyer, H.W. Pickering, Mechanism and kinetics of electrochemical hydrogen entry and degradation of metallic systems. Annu Rev Mater Sci. 20 (1990) 299-338. https://doi.org/10.1146/annurev.ms.20.080190.001503
[2] R.P. Gangloff, Critical issues in hydrogen assisted cracking of structural alloys, Oxford Elsevier Science. 1 (2008) 141-165.https://doi.org/10.1016/B978-008044635-6.50015-7
[3] M. M. Mirza, E. Rasu, A. Desilva, Influence of Nano additives on Protective Coatings for Oil Pipe Lines of Oman, Int. J. Chem. Eng. Appl. 7 (2016) 221-224. https://doi: 10.18178/ijcea.2016.7.4.577
[4] M. J. Kadhim, K. A. Sukkar, Investigation Nano coating for Corrosion Protection of Petroleum Pipeline Steel Type A106 Grade B. Theoretical and Practical Study in Iraqi Petroleum Sector, Eng. Technol. J. 35 (2017) 1042- 3413.
[5] Q. J. Sulaiman, A. Al – Taie, D.M. Hassan, Evaluation of Sodium Chloride and Acidity Effect on Corrosion of Buried Carbon Steel Pipeline in Iraqi Soil, Iraqi J. Chem. Pet. Eng. 15 (2014) 1-8.https://doi.org/10.31699/IJCPE
[6] C. Matteo, Current and Future Nanotech Applications in the Oil Industry, Am. J. Appl. Sci., 9 (2012) 784-793. https://doi.org/10.3844/ajassp.2012.784.793
[7] T. Michler, J. Naumann, Influence of high-pressure hydrogen on the tensile and fatigue properties of a high strength Cu–Al–Ni–Fe alloy”, Int. J. Hydrogen Energy 35 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.093
[8] G. Balakrishnan, Effect of substrate temperature on microstructure and properties of nano crystalline titania thin films prepared by pulsed laser deposition nano systems, physics, chemistry, mathematics, 7 (2016) 621–623. http://dx.doi.org/10.17586/2220-8054-2016-7-4-621-623
[9] H.J. Cialone and J.H. Holbrook. Sensitivity of Steels to Degradation in Gaseous Hydrogen, In: Hydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond (Ed.), , pp. 134-152, 1988. https://doi.10.1520/STP45297S
[10] A. Barnoush,H.Vehoff, Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation. Acta Mater, 58 (2010) 5274-5285. https://doi.org/10.1016/j.actamat.2010.05.057
[11] J. Song, W.A. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater. 12 (2013) 145–151 . https://doi.org/10.1038/nmat3479
[12] H.K. Birnbaum, Hydrogen effects on deformation and fracture, science and sociology. MRS Bull. 28 (2003) 479-485. https://doi.org/10.1557/mrs2003.143
[13] M. Dadfarnia, P. Novak, D. C. Ahn, J. B. Liu, P. Sofronis, D. D. Johnson at all. Recent advancesin the study of structural materials compatibility with hydrogen. Adv Mater, 22 (2010) 1128-1135. https://doi.org/10.1002/adma.200904354
[14] Y. Katz, N. Tymiak, W.W. Gerberich, Nanomechanical probes as new approaches to hydrogen/deformation interaction studies. Engng Fract Mech, 68 (2001) 619-646.https://doi.org/10.1016/S0013-7944(00)00119-3
[15] Gerberich WW, Marsh PG, Hoehn JW. Hydrogen induced cracking mechanisms. In: Moody NR, Hoehn JW, editors. Hydrogen effects in materials. Warrendale, PA: TMS, 1996.
[16] H. M. Jedy, R.A. Anaee, Characterization of Nb2O5-Ni Coating Prepared by DC Sputtering, Eng. Technol. J. 39 (2021) 565-572. https://doi.org/10.30684/etj.v39i4A.1902
[17] A. Shanaghi, A. S.Rouhaghdam, M. Aliofkhazraei, Study of TiO2 nanoparticle coatings by the SOL-GEL methods for corrosion protection, Mater. Sci. 44 (2008) 233-246. https://doi.10.1007/s11003-008-9070-6
[18] M.A. Deyab, S.T. Keer, Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating. Materials Chemistry and Physics journal homepage: Elsevier, 146 (2014) 406-411. https://doi.org/10.1016/j.matchemphys.2014.03.045
[19] T.Eguchi, M.Tamura, Nanostructured thin films for hydrogen-permeation barrier, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,33 (2015)041503. https://doi.org/10.1116/1.4919736
[20] X. Li ,L.Chen, H. Liu,C. Shi, D. Wang ,Z. Mi and L.Qiao, Prevention of Hydrogen Damage Using MoS2 Coating on Iron Surface, Nanomaterials 9 (2019) 1-10. https://doi.org/10.3390/nano9030382
[21] M.Wasim, M. B. Djukic, Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels. Int. J. Hydrog. Energy. 45 (2020) 2145-2156.https://doi.org/10.1016/j.ijhydene.2019.11.070
[22] Autoren, C. Wegst, M. Wegst, "Key to steel",part 1, 2004.
[23] ASTM E8-04 " Standard Test Methods for Tension Testing of Metallic Materials". American Association State. 2010.
[24] D. L. Liu, J. Martin, and N. A. Burnham, Optimal roughness for minimal adhesion, Appl. Phys. Lett. 91 (2007) 043107.https://doi.org/10.1063/1.2763981
[25] S. Ayadi, Y. Charles, M. Gaspérini, I. C.Lemaire, T. D. S. Botelho, Effect of loading mode on blistering in iron submitted to plastic prestrain before hydrogen cathodic charging, Int. J. Hydrog. Energy.42 (2017) 10555-10567 https://doi.org/10.1016/j.ijhydene.2017.02.048