[1] M.A. Habib, A.M. Mobarak, M.A. Sallak, E.A. Abdel Hadi, R.I. Affify, Experimental investigation of heat transfer and flow over baffles of different heights, J. Heat Transfer. 116 (1994) 363–368. https://doi.org/10.1115/1.2911408
[2] H. Li, V. Kottke, Effect of baffle spacing on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement, Int. J. Heat Mass Transf. 41 (1998) 1303–1311. https://doi.org/10.1016/S0017-9310(97)00201-9
[3] L.C. Demartini, H.A. Vielmo, S. V. Möller, Numeric and experimental analysis of the turbulent flow through a channel with baffle plates, J. Brazilian Soc. Mech. Sci. Eng. 26 (2004) 153–159. https://doi.org/10.1590/S1678-58782004000200006
[4] H. Benzenine, R. Saim, S. Abboudi, O. Imine, Numerical simulation of the dynamic turbulent flow field through a channel provided with baffles: comparative study between two models of baffles: transverse plane and trapezoidal, Rev. Des Energies Renouvelables. 13 (2010) 639–651.
[5] R. Saim, H. Benzenine, H.F. Öztop, K. Al‐Salem, Turbulent flow and heat transfer enhancement of forced convection over heated baffles in a channel, Int. J. Numer. Methods Heat Fluid Flow. 23 (2013) 613–633. https://doi.org/10.1108/09615531311323773
[6] H. Bayram, G. Sevilgen, Numerical investigation of the effect of variable baffle spacing on the thermal performance of a shell and tube heat exchanger, Energies. 10 (2017). https://doi.org/10.3390/en10081156
[7] E.M.. El-Said, A.H. Elsheikh, H.R. El-Tahan, Effect of curved segmental baffle on a shell and tube heat exchanger thermohydraulic performance: Numerical investigation, Int. J. Therm. Sci. 165 (2021) 106922. https://doi.org/10.1016/j.ijthermalsci.2021.106922.
[8] N.M. Jasim, E.M. Fayyadh, M. Razoki Hasan, Numerical Analysis to Study the Effect of Foam Thickness on The Thermal-Hydraulic Performance of The Metal Foam Heat Exchanger, in: 2023: pp. 357–373. https://doi.org/10.1007/978-981-19-1939-8_29
[9] J.J. Hwang, Turbulent heat transfer and fluid flow in a porous-baffled channel, J. Thermophys. Heat Transf. 11 (1997) 429–436. https://doi.org/10.2514/2.6258
[10] Y.T. Yang, C.Z. Hwang, Calculation of turbulent flow and heat transfer in a porous-baffled channel, Int. J. Heat Mass Transf. 46 (2003) 771–780. https://doi.org/10.1016/S0017-9310(02)00360-5
[11] K.H. Ko, N.K. Anand, Use of porous baffles to enhance heat transfer in a rectangular channel, Int. J. Heat Mass Transf. 46 (2003) 4191–4199. https://doi.org/10.1016/S0017-9310(03)00251-5
[12] R. Karwa, B.K. Maheshwari, N. Karwa, Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles, Int. Commun. Heat Mass Transf. 32 (2005) 275–284. https://doi.org/10.1016/j.icheatmasstransfer.2004.10.002
[13] R. Karwa, B.K. Maheshwari, Heat transfer and friction in an asymmetrically heated rectangular duct with half and fully perforated baffles at different pitches, Int. Commun. Heat Mass Transf. 36 (2009) 264–268. https://doi.org/10.1016/j.icheatmasstransfer.2008.11.005
[14] S. Mahadevan, M. Ricklick, J.S. Kapat, Internal Cooling Using Porous Turbulators: Heat Transfer and Pressure Drop Measurements, J. Thermophys. Heat Transf. 27 (2013) 526–533. https://doi.org/10.2514/1.T3919
[15] A. Hamadouche, R. Nebbali, H. Benahmed, A. Kouidri, A. Bousri, Experimental investigation of convective heat transfer in an open-cell aluminum foams, Exp. Therm. Fluid Sci. 71 (2016) 86–94. https://doi.org/10.1016/j.expthermflusci.2015.10.009
[16] K. Bilen, S. Gok, A.B. Olcay, I. Solmus, Investigation of the effect of aluminum porous fins on heat transfer, Energy. 138 (2017) 1187–1198. https://doi.org/10.1016/j.energy.2017.08.015
[17] A. Hamadouche, A. Azzi, S. Abboudi, R. Nebbali, Enhancement of heat exchanger thermal hydraulic performance using aluminum foam, Exp. Therm. Fluid Sci. 92 (2018) 1–12. https://doi.org/10.1016/j.expthermflusci.2017.10.035
[18] F. Shikh Anuar, I. Ashtiani Abdi, M. Odabaee, K. Hooman, Experimental study of fluid flow behaviour and pressure drop in channels partially filled with metal foams, Exp. Therm. Fluid Sci. 99 (2018) 117–128. https://doi.org/10.1016/j.expthermflusci.2018.07.032
[19] T. Chen, G. Shu, H. Tian, T. Zhao, H. Zhang, Z. Zhang, Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery, Appl. Energy. 266 (2020). https://doi.org/10.1016/j.apenergy.2020.114875
[20] M.H. Mohammadi, H.R. Abbasi, A. Yavarinasab, H. Pourrahmani, Thermal optimization of shell and tube heat exchanger using porous baffles, Appl. Therm. Eng. 170 (2020) 115005. https://doi.org/10.1016/j.applthermaleng.2020.115005
[21] N.M. Jasim, E.M. Fayyadh, M.R. Hasan, Numerical Study on the Effect of Geometrical Parameter on the Thermal-Hydraulic Performance of the Metal Foam Heat Exchanger, IOP Conf. Ser. Mater. Sci. Eng. 1094 (2021) 012112. https://doi.org/10.1088/1757-899x/1094/1/012112
[22] H.W. Coleman, W.G. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, FOURTH, Wiley, New York, 2018. https://doi.org/10.1002/9781119417989
[23] H.Y.Jeong, K. Ha, Y.Kwon, W.P.Chang, & Y. Lee, A correlation for single phase turbulent mixing in square rod arrays under highly turbulent conditions , Nuclear Engineering and Technology, 38 (2006) 809-818.
[24] F.W. Dittus, L.M.K. Boelter, Heat Transfer to Water in Thin Rectangular Channels, J. Heat Transfer. 12 (1985) 3–22.