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Abstract 

In this paper, the semi discrete formulation of Galerkin and 

Galerkin-Conservation (G and G-C) finite element methods are used to 

approximate the solution of the coupled   Burgers' problem. The 

theoretical evidence proved that the property of the bilinear form 

𝐴(𝑢, 𝑣)  (v-elliptic and continuity) and the stability of both schemes, 

also we proved that the error estimate of these methods are of 𝑂(ℎ ). 

We used the artificial diffusion method to improve the analytics 

solution of the problem and the approximate solution when (∈< ℎ). 

Numerical example is tested to illustrate these schemes and the 

numerical results by using ODE 15s, ordinary differential equation, 

solvers matlab are compared with the exact solution.   
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1 – IInnttrroodduuccttiioonn  

      Burgers' equation is a 

fundamental partial differential 

equation from fluid mechanics. It 

occurs in various areas of applied 

mathematics, such as modeling 

of dynamics, heat conduction, 

and acoustic waves, [Abazari 

2010], [Alharbi and fahmy 2010]. 

Due to its wide range of 

applicability some researchers 

have been interested in studying 

its solution using various 

numerical techniques. Numerical 

techniques for the solution of 

Burgers' equation usually fall 

into the following classes: finite 

difference [Bahadir 2003], [liao 

2008] [Srivaslava et al. 2011]), 

finite element [Smith 1997], 

[Pugh, 1995], [Volkwein 2003], 

[Qing Yang 2013]) and 

Decompostion method  [ Zhu, et 

al. 2010], [Zhu 2010] ), [ 

Abbasbandy and Darvishi 2005] 

and references cited therein. 

    In [Pugh, 1995] used G and G-

C finite element methods in 

solving the homogeneous 

Burgers’ equation  in  one  

dimension  and noted  that the 

solution obtained  using 18 nodes  

was close to that obtained  using 

34 nodes, he compared  G and G-

C finite element methods  and 

found in some examples with 

taking 𝑅𝑒=120 and 240 however, 

the G solution grew 

exponentially in time despite the 

convergent behavior of  the G 

and G-C solutions and 

determined  that the G-C method 

was more accurate and computed 

more quickly than the G method 

for the Burgers’ equation with  

Neumann boundary conditions. 

[Burns and Balogy 1998] showed 

that this was true for any initial 

condition, provided that the 

steady-state limit exists.  [Smith 

1997] showed that  the G method 

produced solutions  with slightly 

less error, but the G-C method 

required  less time, and showed 

that both methods produced 

virtually identical results  except  

for one case where the G solution 
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grew exponentially in time 

despite the convergent behavior 

of the G- C solution, his results 

were similar to what  was  

obtained  by [Pugh 1995] and 

determined that  the  G– C 

method  to give  better  results for  

the one dimensional  Burgers’ 

equation  with  Robin’s boundary 

conditions and saw that sufficient 

accuracy is achieved at 18 nodes. 

In this paper, we present the 

semi discrete G & G-C finite 

element methods for the two 

dimensional Burgers’ equations to 

get system of ordinary differential 

equation. The theoretical evidence 

proved the property of the bilinear 

form 𝐴(𝑢, 𝑣) ( v-elliptic and 

continuity ) and  the  stability of 

both schemes are satisfied, also we 

proved that  the error estimate of 

these methods are of order 𝑂(ℎ ). 

We used the artificial diffusion 

method [Johnson(1987)] to improve 

the analytics solution of the problem 

and the approximate solution when ( 

∈< ℎ). Numerical example is tested 

to illustrate these schemes and the 

numerical results by using ODE 15s 

mat lab solver are compared with 

the exact solution for both cases 

(∈> ℎ 𝑎𝑛𝑑 ∈< ℎ). 

2-Definitions and  important lemma: 

        It is beneficial to mention the 

definitions of the vector space that 

we used during this study. The 

vector space 𝐿2(Ω) is the space of 

square-integrable functions on Ω ⊂

𝑅𝑛, [Johnson, 2010]  

          𝐿2(Ω) = {𝑣: Ω → 𝑅 𝑠. 𝑡.  ∫ 𝑣2 𝑑Ω ≤ ∞}, 

indeed 𝐿2(Ω) is Hilbert space with respect to the following inner product    




 dxxvxuvu )()(),(  and norm ‖𝑣‖𝐿2(Ω) = (∫ 𝑣2𝑑
Ω

Ω)

1

2
.  For p , )(L  

denotes the space of all functions which are bounded for almost all x :  

  xallalmostforxuuL )(:)( , 

   this space is equipped with the norm  
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‖𝑣‖𝐿∞(Ω) = {𝑒𝑠𝑠 sup {|𝑣(𝑥)|: 𝑥 ∈ 𝑅}. 

We introduce the Sobolev space                                

                           𝐻1(Ω) = {𝑣 ∈  𝐿2(Ω):
𝜕𝑣

𝜕𝑥𝑖
∈ 𝐿2(Ω), 𝑖 = 1,2 … … . 𝑑} ,                    

and the corresponding norm, 

‖𝑣‖𝐻1(Ω) = (∫ (v2 + (∇v)2)dΩ
Ω

)

1

2
, also   𝐻0

1(Ω) = {𝑣 ∈ 𝐻1(Ω) ∶ 𝑣 =

0 𝑜𝑛 𝜕Ω},                           

with the same scalar product and norm as 𝐻1(Ω) . 

We introduce the norm for both continuous time 𝑡 ∈ [0, 𝑇] and space Ω 

by: 

‖𝑣‖𝐿∞(𝐻𝑟(Ω))=max0≤𝑡≤𝑇‖𝑣‖𝑟
  and  ‖𝑣𝑡‖𝐿2(𝐿2(Ω) = (∫ ‖𝑣𝑡‖2𝑡

0
)

1

2
 . 

 

 

Lemma(2.1)[kashkool 2002]:  Let  𝑈 be the approximate solution and 𝑢 

be the exact solution. if║𝑈𝑛 − 𝑢𝑛║
0,2,𝛺

 ≤ 𝐶ℎ, (𝑛 =  1,2, … . , 𝑁𝜏), then 

║∇𝑈𝑛║
0,2,𝛺

 ≤ 𝐶, 

where  𝐶  is  constant independent on  ℎ  and  𝜏 . 

3-  Time- dependent  modeling  problems. 

     We consider time- dependent  nonlinear  two dimensional coupled Burgers’ 

problem. 
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𝑢𝑡 − 𝜖∆u+ 𝑢 𝑢𝑥 + 𝑣 𝑢𝑦  = 𝑓 ,  on  𝛺 ×  (0, 𝑇]                                                                 

(3.1.a)                                                                                                         

𝑣𝑡 − ϵ∆𝑣 + 𝑢𝑣𝑥+ v𝑣𝑦 = 𝑔,        on 𝛺 × (0, 𝑇]                                                                

(3.1.b)                                                                                                                                                                                                            

with boundary conditions 

𝑢 (𝑥 , 𝑦, 𝑡)  = 0       𝑜𝑛    𝜕𝛺 × (0, 𝑇], 𝑣 (𝑥 , 𝑦, 𝑡)  = 0        𝑜𝑛    𝜕𝛺 ×  (0, 𝑇], 

and initial conditions 𝑢 (𝑥 , 𝑦, 0)  = 𝑢0(𝑥, 𝑦)  and  𝑣 (𝑥 , 𝑦, 0) = 𝑣0(𝑥, 𝑦), 

where 𝜖 > 0 is a viscosity constant, 𝛺⊂R2  with boundary  𝜕𝛺,  the exact 

solutions 𝑢 = 𝑢 (𝑥 , 𝑦, 𝑡), 𝑣 (𝑥 , 𝑦, 𝑡),  and the source  terms 𝑓, 𝑔 ∈ 𝐿2(𝛺). 

    The  weak  formulation analogue of equation (3.1). Letting 𝑉 = 𝐻0
1(Ω), 

multiplying the equations (3.1a) and (3.1b) for a given 𝑡 by 𝜑 ∈ 𝑉, integrating 

over 𝛺 and  Green's formula, we get:   

(𝑢𝑡,𝜑)  +  𝑎(𝑢 , 𝜑)  + (𝑢 𝑢𝑥,φ)+(v𝑢𝑦,𝜑) =  (𝑓, 𝜑),     ∀ 𝜑 ∈ 𝐻0
1(𝛺)                        

(3.2a)                                                                                                         

(𝑣𝑡 , 𝜑)  +  𝑎(𝑣 , 𝜑)  +  (𝑢 𝑣𝑥,𝜑) + (𝑣 𝑣𝑦,𝜑) =  (𝑔, 𝜑), ∀ 𝜑 ∈ 𝐻0
1(𝛺),                      

(3.2b)                                  

(𝑢(𝑥, 𝑦 ,0), 𝜑) =  (𝑢0, 𝜑), (𝑣(𝑥, 𝑦 , 0), 𝜑) =  (𝑣0, 𝜑), 

where   𝑎(𝑢 , 𝜑)  =   (є 𝛻𝑢, 𝛻𝜑)  and    𝑎(𝑣 , 𝜑)  =   (є ∇𝑣 , ∇𝜑) . 

      The conservation form of the equations (3.1a) and (3.1b)  were given by 

[Fletcher 1984]. Here  the  𝑢 𝑢𝑥 and 𝑣 𝑣𝑦terms are replaced by 
1

2
(𝑢2)𝑥 , 

1

2
(𝑣2)𝑦 

respectively, we get 

𝑢𝑡  − є ∆𝑢 + 
1

2
(𝑢2)𝑥+ 𝑣𝑢𝑦  = 𝑓 ,                                                                                          

(3.3a)                                 
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𝑣𝑡 − є ∆𝑣 +  𝑢𝑣𝑥+ 
1

2
(𝑣2)𝑦= 𝑔.                                                                                            

(3.3b)                               

      The  weak  formulation  of (3.3) is :  find  𝑢, 𝑣 ∈ 𝑉 = 𝐻0
1(Ω) such that: 

(𝑢𝑡 , 𝜑) + 𝑎(𝑢 , 𝜑)+( 
1

2
(𝑢2)𝑥, φ) +(𝑣 𝑢𝑦,𝜑)=  (𝑓 , 𝜑),  ∀ 𝜑 ∈ 𝐻0

1(Ω)           

            (3.4a)                               

 ( 𝑣𝑡, 𝜑)+𝑎(𝑣, 𝜑) +(𝑢 𝑣𝑥 , 𝜑) +(
1

2
(𝑣2)𝑦 , 𝜑)=(𝑔 , 𝜑),  ∀ 𝜑 ∈ 𝐻0

1(Ω)                                    

(3.4b) 

 

 

 

4 -  The semi-discrete 

approximation. 

        Let 𝑉ℎ be a finite-

dimensional subspace of 𝑉 with 

basis functions 

{𝜑1, 𝜑2, … … … . 𝜑𝑁}. For 

definiteness, we shall assume that 

Ω is polygonal convex domain 

and that 𝑉ℎ consists of piecewise 

linear functions on quasi-uniform 

triangulation of 𝛺 with mesh size 

ℎ and satisfying the minimum 

angle [Ciarlet 1978]. Replacing 𝑉 

by the finite – dimensional 

subspace 𝑉ℎ[Johnson 1987], we 

get the following semi-discrete 

analogue of the equations (3.2) 

and (3.4)  respectively: Find an 

approximate solution  𝑢ℎ, 

𝑣ℎ ∈ 𝑉ℎ such that :  

 (𝑢ℎ,𝑡 ,𝜑ℎ) + 𝑎(𝑢ℎ,𝜑ℎ) +(𝑢ℎ 𝑢ℎ,𝑥,𝜑ℎ)+( 𝑣ℎ𝑢ℎ,𝑦,𝜑ℎ) = (𝑓, 𝜑ℎ), ∀𝜑ℎ ∈ 𝑉ℎ,                       

(4.1a)                                                       

( 𝑣ℎ,𝑡,𝜑ℎ) + a(𝑣ℎ,𝜑ℎ) + (𝑢ℎ 𝑣ℎ,𝑥,𝜑ℎ)+( 𝑣ℎ𝑣ℎ,𝑦,𝜑ℎ)= (𝑔, 𝜑ℎ), ∀𝜑ℎ ∈ 𝑉ℎ,                        

(4.1b)                                                               

 (𝑢ℎ,𝑡 ,𝜑ℎ) + 𝑎(𝑢ℎ,𝜑ℎ) +(
1

2
(𝑢ℎ)𝑥

2 , 𝜑ℎ) + (𝑣ℎ 𝑢ℎ,𝑦 , 𝜑)=(𝑓, 𝜑ℎ), ∀𝜑ℎ ∈ 𝑉ℎ                        

(4.2a)                                                                                                          
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(𝑣ℎ,𝑡 , 𝜑ℎ) +  𝑎(𝑣ℎ , 𝜑ℎ) + (𝑢ℎ 𝑣ℎ,𝑥 , 𝜑) + (
1

2
(𝑣ℎ)𝑦

2 , 𝜑ℎ) =  (𝑔, 𝜑ℎ),      ∀𝜑ℎ ∈

𝑉ℎ,           (4.2b)                                  

5- Assumptions:  

1-We  can  write  Equation  (4.1)  in  the  form, 

 (𝑢ℎ,𝑡,𝜑ℎ) + (𝑢ℎ,𝜑ℎ) = (𝑓, 𝜑ℎ),  and    (𝑣ℎ,𝑡,𝜑ℎ) + A(𝑣ℎ,𝜑ℎ) =  (𝑔, 𝜑ℎ), ∀𝜑ℎ ∈

𝑉ℎ          (5.1)                                               

 where,                                                                                                                      

  A(𝑢ℎ,𝜑ℎ)  =  є(∇𝑢ℎ , ∇𝜑ℎ)+ (𝑢ℎ 𝑢ℎ,𝑥,𝜑ℎ)+( 𝑣ℎ𝑢ℎ,𝑦,𝜑ℎ) 

 A(𝑣ℎ,𝜑ℎ)  =  є(∇𝑣ℎ , ∇𝜑ℎ)+ (𝑢ℎ 𝑣ℎ,𝑥,𝜑ℎ)+( 𝑣ℎ𝑣ℎ,𝑦,𝜑ℎ) 

and Equation  (4.2)  in  the  form, 

(𝑢ℎ,𝑡,𝜑ℎ) + A(𝑢ℎ,𝜑ℎ) =  (f,𝜑ℎ)  and   (𝑣ℎ,𝑡,𝜑ℎ) + A(𝑣ℎ,𝜑ℎ) =  (𝑔, 𝜑ℎ), ∀𝜑ℎ ∈

𝑉ℎ,            (5.2)                                                           

where,                                                                                                                      

  A(𝑢ℎ,𝜑ℎ)  =  є(∇𝑢ℎ , ∇𝜑ℎ)+ ( 
1

2
(𝑢ℎ)𝑥

2,𝜑ℎ)+( 𝑣ℎ𝑢ℎ,𝑦,𝜑ℎ) 

  A(𝑣ℎ,𝜑ℎ)  =  є(∇𝑣ℎ , ∇𝜑ℎ)+ (𝑢ℎ 𝑣ℎ,𝑥,𝜑ℎ)+ ( 
1

2
(𝑢ℎ)𝑦

2 ,𝜑ℎ). 

2- In  the  following, we assume that  Equations (4.1) and (4.2) satisfies, 

     A1- There exists  a constant  α  such that :  ϵ ≥ α > 0. 

     A2- There exists  a constant  𝛽 such that : 𝛽1 ≤
1

2
.  

6- Properties of the bilinear form 𝑨(𝒖, 𝒗).  

        Let 𝑉 be Hilbert space with scalar product (∙,∙)𝑉 and corresponding norm 

‖𝑢‖𝐻0
1(Ω). suppose that 𝐴(𝑢, 𝑣) is bilinear form on 𝑉 × 𝑉. We prove some 

lemmas for the  continuous and v-elliptic. 
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Lemma 6.1 

A(𝑢ℎ,𝜑ℎ) and A(𝑣ℎ,𝜑ℎ) given by (5.1) are continuous and v-elliptic. 

Proof: 

1 − 𝐹𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦, 𝑤𝑒 ℎ𝑎𝑣𝑒 

|𝐴(𝑢ℎ , 𝜑ℎ)|≤| 𝜖(∇𝑢ℎ , ∇𝜑ℎ) |+|(𝑢ℎ 𝑢ℎ,𝑥,𝜑ℎ) |+| ( 𝑣ℎ𝑢ℎ,𝑦,𝜑ℎ)|  

|𝐴(𝑣ℎ, 𝜑ℎ)|≤| 𝜖(∇𝑣ℎ , ∇𝜑ℎ) |+|(𝑢ℎ 𝑣ℎ,𝑥,𝜑ℎ) |+| ( 𝑣ℎ𝑣ℎ,𝑦,𝜑ℎ)| 

|𝐴(𝑢ℎ , 𝜑ℎ)|≤|𝜖(∇𝑢ℎ , ∇𝜑ℎ) |+|(𝑢ℎ 𝑢ℎ,𝑥,𝜑ℎ) |+|(𝑢ℎ 𝑢ℎ,𝑦,𝜑ℎ)| + |(𝑣ℎ 𝑢ℎ,𝑥,𝜑ℎ) | + 

|(𝑣ℎ 𝑢ℎ,𝑦 , 𝜑ℎ)|  

|𝐴(𝑣ℎ, 𝜑ℎ)|≤ |𝜖(∇𝑣ℎ , ∇φ
h
) |+|(𝑢ℎ 𝑣ℎ,𝑥,𝜑ℎ) |+|(𝑢ℎ 𝑣ℎ,𝑦,𝜑ℎ) |+ | ( 𝑣ℎ𝑣ℎ,𝑥,𝜑ℎ) |+ 

|(𝑣ℎ 𝑣ℎ,𝑦,𝜑ℎ) | 

|𝐴(𝑢ℎ , 𝜑ℎ)|≤| 𝜖 (∇𝑢ℎ , ∇𝜑ℎ) |+|(𝑢ℎ∇𝑢ℎ,𝜑ℎ) |+|(𝑣ℎ∇𝑢ℎ,𝜑ℎ) |  

|𝐴(𝑣ℎ, 𝜑ℎ)|≤| 𝜖 (∇𝑣ℎ , ∇𝜑ℎ) |+|(𝑢ℎ∇𝑣ℎ,𝜑ℎ) |+| ( 𝑣ℎ∇𝑣ℎ , 𝜑ℎ)| 

Applying Cauchy-Schwartz inequality gives, 

|𝐴(𝑢ℎ , 𝜑ℎ)|≤│𝜖│𝐿∞║∇𝑢ℎ║║∇𝜑ℎ║+║𝑢ℎ║║∇uh║║𝜑ℎ║+║𝑣ℎ║║∇𝑢ℎ║║𝜑ℎ║ 

|𝐴(𝑣ℎ, 𝜑ℎ)|≤│𝜖│𝐿∞║∇𝑣ℎ║║∇𝜑ℎ║+║𝑢ℎ║║∇𝑣ℎ║║𝜑ℎ║+║𝑣ℎ║║∇𝑣ℎ║║𝜑ℎ║ 

From Poincare's inequalities, we have  

|𝐴(𝑢ℎ , 𝜑ℎ)|≤│є│𝐿∞║∇𝑢ℎ║║∇𝜑ℎ║+║𝑢ℎ║║∇uh║║𝜑ℎ║+

C║∇𝑣ℎ║║∇𝑢ℎ║║𝜑ℎ║ 

|𝐴(𝑣ℎ, 𝜑ℎ)|≤│є│𝐿∞║∇𝑣ℎ║║∇𝜑ℎ║+C║∇𝑢ℎ║║∇𝑣ℎ║║𝜑ℎ║+

║𝑣ℎ║║∇𝑣ℎ║║𝜑ℎ║ 
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From lemma(2.1) , gives 

𝐴(𝑢ℎ , 𝜑ℎ)|≤│є│𝐿∞║∇𝑢ℎ║║∇𝜑ℎ║+𝐶𝑚║𝑢ℎ║║𝜑ℎ║+𝐶𝑚║𝛻𝑢ℎ║║𝜑ℎ║ 

|𝐴(𝑣ℎ, 𝜑ℎ)|≤│є│𝐿∞║∇𝑣ℎ║║∇𝜑ℎ║+𝐶𝑚║∇𝑣ℎ║║𝜑ℎ║+𝐶𝑚║𝑣ℎ║║𝜑ℎ║ 

|𝐴(𝑢ℎ , 𝜑ℎ)| ≤  𝑁{║∇𝑢ℎ║║∇𝜑ℎ║ + ║𝑢ℎ║║𝜑ℎ║ + ║∇𝑢ℎ║║𝜑ℎ║} 

|𝐴(𝑣ℎ, 𝜑ℎ)| ≤   𝑁{║∇𝑣ℎ║║∇𝜑ℎ║ + ║∇𝑣ℎ║║𝜑ℎ║ + ║𝑣ℎ║║𝜑ℎ║} 

𝐴(𝑢ℎ , 𝜑ℎ)| ≤ 𝑁{(║∇𝑢ℎ║ , ║𝑢ℎ║, ║∇𝑢ℎ║). (║∇𝜑ℎ║ , ║𝜑ℎ║ , ║𝜑ℎ║)} 

𝐴(𝑢ℎ , 𝜑ℎ)|  ≤𝑁{(║∇𝑢ℎ║ , ║𝑢ℎ║, ║∇𝑢ℎ║). (║∇𝜑ℎ║ , ║𝜑ℎ║ , ║𝜑ℎ║)} 

𝐴(𝑢ℎ , 𝜑ℎ)| ≤   

𝑁√║∇𝑢ℎ║
2

+ ║𝑢ℎ║
2

+ ║∇𝑢ℎ║
2√║∇𝜑ℎ║

2
+ ║𝜑ℎ║

2
+ ║𝜑ℎ║

2
 

𝐴(𝑣ℎ , 𝜑ℎ)| ≤ 𝑁 √║∇𝑣ℎ║
2

+ ║∇𝑣ℎ║
2

+ ║𝑣ℎ║
2√║∇𝜑ℎ║

2
+ ║𝜑ℎ║

2
+ ║𝜑ℎ║

2
 

𝐴(𝑢ℎ , 𝜑ℎ)| ≤   𝑁√2║∇𝑢ℎ║
2

+ 2║𝑢ℎ║
2√2║∇𝜑ℎ║

2
+ 2║𝜑ℎ║

2
 

𝐴(𝑣ℎ , 𝜑ℎ)| ≤   𝑁√2║∇𝑣ℎ║
2

+ 2║𝑣ℎ║
2√2║∇𝜑ℎ║

2
+ 2║𝜑ℎ║

2
 

𝐴(𝑢ℎ , 𝜑ℎ)| ≤ 𝑁║𝑢ℎ║
𝐻0

1║𝜑ℎ║
𝐻0

1 and 𝐴(𝑣ℎ, 𝜑ℎ)| ≤ 𝑁1║𝑣ℎ║
𝐻0

1║𝜑ℎ║
𝐻0

1 

where 𝑁 = max{│є│𝐿∞  , 𝐶𝑚} 

                                                                                                                           ∎ 
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2- For v- elliptic, we have  

A(𝑢ℎ,𝑢ℎ) =  𝜖(∇𝑢ℎ , ∇𝑢ℎ)+ (𝑢ℎ 𝑢ℎ,𝑥,𝑢ℎ)+( 𝑣ℎ𝑢ℎ,𝑦,𝑢ℎ) 

A(𝑣ℎ,𝑣ℎ) =  𝜖(∇𝑣ℎ , ∇𝑣ℎ)+ (𝑢ℎ 𝑣ℎ,𝑥,𝑣ℎ)+( 𝑣ℎ𝑣ℎ,𝑦,𝑣ℎ) 

A(𝑢ℎ,𝑢ℎ) ≥  𝛼 (∇𝑢ℎ , 𝛻𝑢ℎ)+𝛽1 (𝑢ℎ 𝑢ℎ,𝑥,𝑢ℎ)+𝛽1( 𝑣ℎ𝑢ℎ,𝑦,𝑢ℎ) 

A(𝑣ℎ,𝑣ℎ) ≥  𝛼 (∇𝑣ℎ , ∇𝑣ℎ)+𝛽1 (𝑢𝑢 𝑣ℎ,𝑥,vh)+𝛽1( 𝑣ℎ𝑣ℎ,𝑦,𝑣ℎ) 

A(𝑢ℎ,𝑢ℎ) ≥ 𝛼 ║∇𝑢ℎ║
2
+ 𝛽1║𝑢ℎ║

2
 ║𝑢ℎ,𝑥║+ 𝛽1║𝑣ℎ║║𝑢ℎ,𝑦║║𝑢ℎ║ 

A(𝑣ℎ,𝑣ℎ) ≥ 𝛼 ║∇𝑣ℎ║
2
+ 𝛽1║𝑢ℎ║ ║𝑣ℎ,𝑥║║𝑣ℎ║ +𝛽1║𝑣ℎ║

2
 ║𝑣ℎ,𝑦║ 

Since  ║𝑣ℎ║≥ 0 , ║𝑢ℎ║≥ 0, we get 

A(𝑢ℎ,𝑢ℎ) ≥ α ║∇𝑢ℎ║
2
+𝛽1║𝑢ℎ║

2
 ║𝑢ℎ,𝑥║+𝛽1║𝑢ℎ,𝑦║║𝑢ℎ║ 

A(𝑣ℎ,𝑣ℎ) ≥ α ║∇𝑣ℎ║
2
+ 𝛽1║𝑣ℎ,𝑥║║𝑣ℎ║ + 𝛽1║𝑣ℎ║

2
 ║𝑣ℎ,𝑦║ 

From  Poincare's inequalities, we get 

 A(𝑢ℎ,𝑢ℎ) ≥ α ║∇𝑢ℎ║
2
+ β1║uh║

2
║uh,x║ + 

β1

C
║uh║

2
 

A(𝑣ℎ,𝑣ℎ) ≥ α ║∇𝑣ℎ║
2
+ 

𝛽1

𝐶
║𝑣ℎ║

2
 +𝛽1║𝑣ℎ║

2
║𝑣ℎ,𝑦║ 

By using lemma (2.1), we get, 

A(𝑢ℎ,𝑢ℎ) ≥ α ║∇𝑢ℎ║
2
+𝛽1𝐶𝑚║𝑢ℎ║

2
 + 

𝛽1

𝐶
║𝑢ℎ║

2
 

A(𝑣ℎ,𝑣ℎ) ≥ α ║∇𝑣ℎ║
2
+ 

𝛽1

𝐶
║𝑣ℎ║

2
 + 𝛽1𝐶𝑚║𝑣ℎ║

2
 

A(𝑢ℎ,𝑢ℎ) ≥  𝑀 {║∇𝑢ℎ║
2

+ ║𝑢ℎ║
2

 +  ║𝑢ℎ║
2

} 
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A(𝑣ℎ,𝑣ℎ) ≥  𝑀 {║∇𝑣ℎ║
2

+  ║𝑣ℎ║
2

 +  ║𝑣ℎ║
2

} 

A(𝑢ℎ,𝑢ℎ) ≥ 𝑀 {║∇𝑢ℎ║
2

+  2║𝑢ℎ║
2

} = 𝑀1║𝑢ℎ║
𝐻0

1

2
 

A(𝑣ℎ,𝑣ℎ) ≥  𝑀 {║∇𝑣ℎ║
2

+  2 ║𝑣ℎ║
2

} =𝑀1║𝑣ℎ║
𝐻0

1

2
 

where  𝑀 = min {𝛼 , 𝛽1𝐶𝑚 ,
𝛽1

𝐶
}   and   𝑀1= min {𝑀 ,2M} . 

                                                                                                               ∎ 

Lemma (6.2). 

A(𝑢ℎ,𝜑ℎ) and A(𝑣ℎ,𝜑ℎ) given by (4.2) are continuous and v-elliptic. 

Proof: Similarly as the proof of  lemma (6.1)  

7-Stability. 

Lemma (7.1): Let 𝑢ℎ, 𝑣ℎ are the solutions of equations (4.1), there exist a 

constant C˃0  such that, 

║𝑢ℎ(𝑇)║
2
≤ 𝑒−2𝐶𝑇║𝑢ℎ

0║
2
+

1

2𝐶
║𝑓║

2

(𝐶1:(0,𝑇))
 

║𝑣ℎ(𝑇)║
2
≤  𝑒−2𝐶𝑇║𝑣ℎ

0║
2
+

1

2𝐶
║𝑔║

2

(𝐶1:(0,𝑇))
 

Proof: Choosing 𝜑ℎ=𝑢ℎ in (4.1a) and 𝜑ℎ=𝑣ℎ in (4.1b) gives,  

 (𝑢ℎ,𝑡 , 𝑢ℎ)+𝑎 (𝑢ℎ , 𝑢ℎ) +(𝑢ℎ 𝑢ℎ,𝑥, 𝜑ℎ) + ( 𝑣ℎ𝑢ℎ,𝑦 , 𝜑ℎ)  = (𝑓, uh)  

(𝑣ℎ,𝑡 , 𝑣ℎ) + 𝑎 (𝑣ℎ , 𝜑ℎ) + (𝑢ℎ 𝑣ℎ,𝑥, 𝜑ℎ)+( 𝑣ℎ𝑣ℎ,𝑦 , 𝜑ℎ)= (𝑔, 𝑣ℎ)           

 (𝑢ℎ,𝑡,𝑢ℎ)=
1

 2
∫

Ω

𝑑

𝑑𝑡
𝑢ℎ

2  𝑑𝑥,  = 
1

2

𝑑

𝑑𝑡
║𝑢ℎ║

2
 and (𝑣ℎ,𝑡,𝑣ℎ) =

1

2
∫

Ω

𝑑

𝑑𝑡
𝑣ℎ

2 𝑑𝑥𝑑𝑦 = 

1

2

𝑑

𝑑𝑡
║𝑣ℎ║

2
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 from [Abazari and Borhanifar, 2010],  a(𝑢ℎ,𝑢ℎ) ≥ α ║𝑢ℎ║
2
 and a(𝑣ℎ,𝑣ℎ) ≥ α 

║𝑣ℎ║
2
, 

since  |, 𝐵(𝑢, 𝑣, 𝑤)|≤ β ‖u‖‖v‖ ‖w‖ and by using Young's inequality, we get, 

 (f, 𝑢ℎ)≤║f ║ ║𝑢ℎ║≤
1

4𝐶
║𝑓║

2
+ C║𝑢ℎ║

2
and (g,uh)≤║𝑔 ║ ║𝑣ℎ║≤

1

4𝐶
║𝑔║

2
+ 

C║𝑣ℎ║
2
 

 (𝑢𝑢𝑥,𝑢ℎ)  ≤ β║𝑢ℎ║
2
 ║𝑢ℎ║≤

𝛽

4𝑐1
║𝑢ℎ║

4
+β𝑐1║𝑢ℎ║

2
 

(𝑢𝑢𝑦,𝑢ℎ)≤ β║𝑢ℎ║
2
 ║𝑣ℎ║≤

𝛽

4𝑐1
║𝑢ℎ║

4
+β𝑐1║𝑣ℎ║

2
 

(𝑣𝑣𝑥,𝑣ℎ) ≤ β║𝑣ℎ║
2
 ║𝑢ℎ║≤

𝛽

4𝑐1
║𝑣ℎ║

4
+β𝑐1║𝑢ℎ║

2
 

(𝑣𝑣𝑦,𝑣ℎ)≤ β║𝑣ℎ║
2
 ║𝑣ℎ║≤

𝛽

4𝑐1
║𝑣ℎ║

4
+β𝑐1║𝑣ℎ║

2
 

Then, 

1

2

𝑑

𝑑𝑡
║𝑢ℎ║

2
+𝑎 ║𝑢ℎ║

2
+

𝛽

2𝑐1
║𝑢ℎ║

4
+β𝑐1(║𝑢ℎ║

2
+║𝑣ℎ║

2
)≤

1

4𝐶
║𝑓║

2
+C║𝑢ℎ║

2
 

1

2

𝑑

𝑑𝑡
║𝑣ℎ║

2
+𝑎 ║𝑣ℎ║

2
+

𝛽

2𝑐1
║𝑣ℎ║

4
+β𝑐1(║𝑢ℎ║

2
+║𝑣ℎ║

2
)≤

1

4𝐶
║𝑔║

2
+C║𝑢ℎ║

2
 

Putting  𝛼= β𝑐1= C 𝑎we get, 

𝑑

𝑑𝑡
║𝑢ℎ║

2
+ 2𝐶║𝑢ℎ║

2
+2C║𝑣ℎ║

2
+

𝛽2

𝐶
║𝑢ℎ║

4
≤

1

2𝐶
║𝑓║

2
 

𝑑

𝑑𝑡
║𝑣ℎ║

2
+ 2𝐶║𝑢ℎ║

2
+2C║𝑣ℎ║

2
+

𝛽2

𝐶
║𝑣ℎ║

4
≤

1

2𝐶
║𝑔║

2
 

Since, 2𝐶║𝑢ℎ║
2
and  2C║𝑣ℎ║

2
are non-negative ,  we have  

𝑑

𝑑𝑡
║𝑢ℎ║

2
+ 2𝐶║𝑢ℎ║

2
+

𝛽2

𝐶
║𝑢ℎ║

4
≤

1

2𝐶
║𝑓║

2
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𝑑

𝑑𝑡
║𝑣ℎ║

2
+2C║𝑣ℎ║

2
+

𝛽2

𝐶
║𝑣ℎ║

4
≤

1

2𝐶
║𝑔║

2
 

 Multiplying by the integrating factor e2Ctand integrating from 𝑡 = 0 𝑡𝑜 𝑡 = 𝑇  

gives,  

𝑒2𝐶𝑇║𝑢ℎ(𝑇)║
2
+

𝛽2

2𝐶
∫ 𝑒2𝐶𝑡𝑇

0
║𝑢ℎ║

4
𝑑𝑡 ≤ 

1

2𝐶
∫ 𝑒2𝐶𝑡𝑇

0
║𝑓║

2
𝑑𝑡+║𝑢ℎ

0║
2
 

𝑒2𝐶𝑇║𝑣ℎ(𝑇)║
2
+

𝛽2

2𝐶
∫ 𝑒2𝐶𝑡𝑇

0
║𝑣ℎ║

4
𝑑𝑡 ≤ 

1

2𝐶
∫ 𝑒2𝐶𝑡𝑇

0
║𝑔║

2
𝑑𝑡+║𝑣ℎ

0║
2
 

Since ,the second  terms are non-negative , we get 

║𝑢ℎ(𝑇)║
2
≤  

1

2𝐶
∫ 𝑒2𝐶(𝑡−𝑇)𝑇

0
║𝑓║

2
𝑑𝑡 +𝑒−2𝐶𝑇║𝑢ℎ

0║
2
 

║𝑣ℎ(𝑇)║
2
≤   

1

2𝐶
∫ 𝑒2𝐶(𝑡−𝑇)𝑇

0
║𝑔║

2
𝑑𝑡 +𝑒−2𝐶𝑇║𝑣ℎ

0║
2
 

║𝑢ℎ(𝑇)║
2
≤ 𝑒−2𝐶𝑇║𝑢ℎ

0║
2
+

1

2𝐶
║𝑓║

2

(𝐶1:(0,𝑇))
 

║𝑣ℎ(𝑇)║
2
≤  𝑒−2𝐶𝑇║𝑣ℎ

0║
2
+

1

2𝐶
║𝑔║

2

(𝐶1:(0,𝑇))
                                         ∎                                                                                                                                  

Lemma(7.2): Let 𝑢ℎ, 𝑣ℎ are the solutions of equations (4.2), there exist a 

constant C ˃0 such that, 

║𝑢ℎ(𝑇)║
2
≤ 𝑒−2𝐶𝑇║𝑢ℎ

0║
2
+

1

2𝐶
║𝑓║

2

(𝐶1:(0,𝑇))
. 

║𝑣ℎ(𝑇)║
2
≤  𝑒−2𝐶𝑇║𝑣ℎ

0║
2
+

1

2𝐶
║𝑔║

2

(𝐶1:(0,𝑇))
 . 

Proof :  Similarly as the proof of  lemma (7.1) 

8- The error estimate 

Theorem (8.1):Let 𝑢, 𝑣,𝑢ℎ and 𝑣ℎbe the solutions of (3.2) and  (4.1) respectively 

, then   there  exists  constants  𝐶1 ,𝐶2  independent   of   ℎ  such as, 

║𝑢 − 𝑢ℎ║
𝐿∞(𝐿2)  ≤ ║𝑢ℎ

0- 𝑢0║+𝐶1h{║𝑢0║ + ║𝑢║
𝐿∞(𝐻0

1)
+ ║𝑢𝑡║

𝐿2(𝐻1
0)

}  ,  
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║𝑣 − 𝑣ℎ║
𝐿∞(𝐿2)≤  ║𝑣ℎ

0- 𝑣0║+𝐶2h{║𝑣0║ + ║𝑣║
𝐿∞(𝐻0

1)
+ ║𝑣𝑡║

𝐿2(𝐻1
0)

}. 

 

Proof . We  write the  errors in terms of  elliptic projection 𝑝𝑢 and 𝑝𝑣 which 

satisfy 

 𝑎(  𝑝𝑢 , 𝜑ℎ) = 𝑎(𝑢 , 𝜑ℎ) and 𝑎(  𝑝𝑣 , 𝜑ℎ) = 𝑎(𝑣 , 𝜑ℎ) .                                                 

(8.1)                        

𝑢  ̶  𝑢ℎ  =  (𝑢 − 𝑝𝑢)  ̶  (𝑢ℎ − 𝑝𝑢)  =  𝜌1 – 𝜃1 

𝑣  ̶  𝑣ℎ  =  (𝑣 − 𝑝𝑣)  ̶  (𝑣ℎ − 𝑝𝑣)  =  𝜌2 – 𝜃2 

then ,  

║𝑢 − 𝑢ℎ║
𝐿∞(𝐿2) ≤ ║𝜌1║

𝐿∞(𝐿2) + ║𝜃1║
𝐿∞(𝐿2) 

║𝑣 − 𝑣ℎ║
𝐿∞(𝐿2) ≤ ║𝜌2║

𝐿∞(𝐿2) + ║𝜃2║
𝐿∞(𝐿2) 

From [ Johnson1981]  , we have, 

║𝜌1║
𝐿∞(𝐿2)

≤ Ch║𝑢║
𝐿∞(𝐻0

1)
 and   ║𝜌2║

𝐿∞(𝐿2) ≤ Ch║𝑣║
𝐿∞(𝐻0

1)
                                  

(8.2)                                                                           

To  estimate   𝜃1
𝑛 and   𝜃2

𝑛  , note that, 

(𝜌1,𝑡  ̶  𝜃1,𝑡 ,𝜑ℎ)+𝑎(𝜌1  ̶ 𝜃1, 𝜑ℎ)+(𝑢𝑢𝑥 − 𝑢ℎ𝑢ℎ,𝑥 ,φh)+(𝑣𝑢𝑦 − 𝑣ℎ𝑢ℎ,𝑦 ,φh)= 0 

(𝜌2,𝑡  ̶  𝜃2,𝑡 ,𝜑ℎ)+𝑎 (𝜌2  ̶ 𝜃2, 𝜑ℎ)+(𝑢𝑣𝑥−𝑢ℎ𝑣ℎ,𝑥 ,𝜑ℎ)+(𝑣 𝑣𝑦−𝑣ℎ𝑣ℎ,𝑦 ,𝜑ℎ) = 0 

From property of elliptic projection(8.1), we have 

( 𝜃1,𝑡 ,𝜑ℎ)+𝑎( 𝜃1, 𝜑ℎ)−(𝑢𝑢𝑥 − 𝑢ℎ𝑢ℎ,𝑥 ,𝜑ℎ)−(𝑣𝑢𝑦 − 𝑣ℎ𝑢ℎ,𝑦,𝜑ℎ) =(𝜌1,𝑡 ,𝜑ℎ)                 

(8.3a)            

( 𝜃2,𝑡 ,𝜑ℎ)+ 𝑎(𝜃2, 𝜑ℎ)−(𝑢𝑣𝑥 − 𝑢ℎ𝑣ℎ,𝑥,𝜑ℎ)−(𝑣𝑣𝑦 − 𝑣ℎ𝑣ℎ,𝑦 ,𝜑ℎ) = (𝜌2,𝑡 ,𝜑ℎ)                 

(8.3b)             

choosing 𝜑ℎ=  𝜃1,  and  𝜑ℎ=  𝜃2  in (8.3a) and (8.3b)  respectively gives , 
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( 𝜃1,𝑡 ,𝜃1)+ 𝑎 ( 𝜃1, 𝜃1)−(𝑢𝑢𝑥 − 𝑢ℎ𝑢ℎ,𝑥 ,𝜃1)−(𝑣𝑢𝑦 − 𝑣ℎ𝑢ℎ,𝑦 ,𝜃1) = (𝜌1,𝑡 ,𝜃1), 

( 𝜃2,𝑡 ,𝜃2)+ 𝑎 ( 𝜃2, 𝜃2)−(𝑢𝑣𝑥 − 𝑢ℎ𝑣ℎ,𝑥 ,𝜃1)−(𝑣𝑣𝑦 − 𝑣ℎ𝑣ℎ,𝑦 ,𝜃1) = (𝜌2,𝑡 ,𝜃2). 

 ( 𝜃1,𝑡 ,𝜃1)=  ∫
Ω

𝜃1,𝑡𝜃1𝑑𝑥𝑑  = 
1

2

𝑑

𝑑𝑡
∫

Ω
𝜃1

2𝑑𝑥𝑑𝑦  =  
1

2

𝑑

𝑑𝑡
║𝜃1║

2
, 

 (𝜃2,𝑡 ,𝜃2)=  ∫
Ω

𝜃2,𝑡𝜃2𝑑𝑥𝑑𝑦 = 
1

2

𝑑

𝑑𝑡
∫

Ω
𝜃2

2𝑑𝑥𝑑𝑦 =  
1

2

𝑑

𝑑𝑡
║𝜃2║

2
, 

and by using Cauchy-Schwartz inequality, applying  Young's inequality and  

from[Boules 1990] ,  

𝑎(u ,u) ≥ 𝛼‖𝑢‖2, we have  

1

2

𝑑

𝑑𝑡
║𝜃1║

2
+𝛼1║𝜃1║

2
+

1

2𝑎1
║𝑢 𝑢𝑥 − 𝑢ℎ𝑢ℎ,𝑥║

2
+

𝑎1

2
║𝜃1║

2
+

1

2𝑎2
║𝑣 𝑢𝑦 −

𝑣ℎ𝑢ℎ,𝑦║
2
+ 

𝑎2

2
║𝜃1║

2
 

                                  ≤ 
1

8𝑐1
║𝜌1,𝑡║

2
+2𝑐1║𝜃1║

2
 

 

1

2

𝑑

𝑑𝑡
║𝜃2║

2
+ 𝛼2║𝜃2║

2
+

1

2𝑎3
║𝑢 𝑣𝑥  − 𝑢ℎ𝑣ℎ,𝑥║

2
+

𝑎3

2
║𝜃2║

2
+

1

2𝑎4
║𝑣 𝑣𝑦  −

𝑣ℎ𝑣ℎ,𝑦║
2
+

𝑎4

2
║𝜃2║

2
 

                                 ≤  
1

8𝑐2
║𝜌2,𝑡║

2
+2𝑐2║𝜃2║

2
 

since║𝑢 𝑢𝑥 − 𝑢ℎ𝑢ℎ,𝑥║
2
,║𝑣 𝑢𝑦 − 𝑣ℎ𝑢ℎ,𝑦║

2
,║𝑢 𝑣𝑥  − 𝑢ℎ𝑣ℎ,𝑥║

2
and ║𝑣 𝑣𝑦  −

𝑣ℎ𝑣ℎ,𝑦║
2
are nonnegative terms and by Putting α1=a1 = a2 = c1 = c2 

  and  α2=𝑎3 = 𝑎4 = c3 = c4, we get , 

       
𝑑

𝑑𝑡
║𝜃1║

2
≤ 

1

4𝑐1
║𝜌1,𝑡║

2
 and   

𝑑

𝑑𝑡
║𝜃2║

2
≤ 

1

4𝑐2
║𝜌2,𝑡║

2
,                                                

(8.4)                                                                                                                                    

 note that, there exist  0≤ 𝑡∗≤ T   such that , 

 ║𝜃1(𝑡∗)║ =  𝑚𝑎𝑥0≤𝑡≤𝑇 ║𝜃1║= ║𝜃1║
L∞(L2)

,                                                                    

║𝜃2(𝑡∗)║ = 𝑚𝑎𝑥0≤𝑡≤𝑇 ║𝜃2║= ║𝜃2║
𝐿∞(𝐿2)

,                                                         
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Integrating  equation (8.4) from   𝑡 = 0  to  𝑡 =  𝑡∗ gives , 

║𝜃1(𝑡∗)║
2
≤ ║𝜃1(0)║

2
+

1

4𝑐1
∫ ║𝜌1,𝑡║

2𝑡∗

0
𝑑𝑡 ≤ ║𝜃1(0)║

2
+

1

4𝑐1
∫ ║𝜌1,𝑡║

2𝑇

0
𝑑𝑡 

║𝜃2(𝑡∗)║
2
≤ ║𝜃2(0)║

2
+

1

4𝑐2
∫ ║𝜌2,𝑡║

2𝑡∗

0
𝑑𝑡  ≤ ║𝜃2(0)║

2
+

1

4𝑐2
∫ ║𝜌2,𝑡║

2𝑇

0
𝑑𝑡 

then, 

║𝜃1║
𝐿∞(𝐿2)

2
≤ ║𝜃1(0)║

2
+

1

4𝑐1
∫ ║𝜌1,𝑡║

2𝑇

0
𝑑𝑡  and  ║𝜃2║

𝐿∞(𝐿2)

2
≤ 

║𝜃2(0)║
2
+

1

4𝑐2
∫ ║𝜌2,𝑡║

2𝑇

0
𝑑𝑡 

this  implies that,  

║𝜃1║
𝐿∞(𝐿2)

≤║𝜃1(0)║+(
1

4𝑐1
∫ ║𝜌1,𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2
 

║𝜃2║
𝐿∞(𝐿2)

≤║𝜃2(0)║+(
1

4𝑐2
∫ ║𝜌2,𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2
 

The  first  terms on right hand sides  give, 

║𝜃1(0)║ ≤ ║𝑢ℎ
0-p𝑢0║ ≤ ║𝑢ℎ

0- 𝑢0║+║𝑢0- p𝑢0║ ≤ ║𝑢ℎ
0- 𝑢0║+ 𝐶ℎ║𝑢0║                    

(8.5a) 

                                       

║𝜃2(0)║ ≤ ║𝑣ℎ
0-p𝑣0║ ≤ ║𝑣ℎ

0- 𝑣0║+║𝑣0- p𝑣0║ ≤ ║𝑣ℎ
0- 𝑣0║+ 𝐶ℎ ║𝑣0                   

(8.5b) 

for  the second terms, we have                                                                                                

(
1

4𝑐1
∫ ║𝜌1,𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2
 ≤  (

1

4𝑐1
∫ ║𝑢𝑡 − 𝑝𝑢𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2

≤ (𝐶1ℎ2 ∫ ║𝑢𝑡║
2

 𝑑𝑡
𝑇

0
)

1
2
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                               ≤ 𝐶1ℎ (∫ ║𝑢𝑡║
2

 𝑑𝑡
𝑇

0
)

1
2
≤ 𝐶1ℎ║𝑢𝑡║

𝐿2(𝐻1
0)

                                         

(8.6a) 

(
1

4𝑐1
∫ ║𝜌2,𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2
 ≤  (

1

4𝑐2
∫ ║𝑣𝑡 − 𝑝𝑣𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2

≤ (𝐶2ℎ2 ∫ ║𝑣𝑡║
2

 𝑑𝑡
𝑇

0
)

1
2
 

                               ≤ 𝐶2ℎ (∫ ║𝑣𝑡║
2

 𝑑𝑡
𝑇

0
)

1
2
 ≤𝐶2ℎ ║𝑣𝑡║

𝐿2(𝐻1
0)

                                

(8.6b)                           

then , 

║𝜃1║
𝐿∞(𝐿2)

 ≤ ║𝑢ℎ
0- 𝑢0║+𝐶1ℎ {║𝑢0║ + ║𝑢𝑡║

𝐿2(𝐻1
0)

}, 

║𝜃2║
𝐿∞(𝐿2)

 ≤ ║𝑣ℎ
0- 𝑣0║+𝐶2ℎ {║𝑣0║ + ║𝑣𝑡║

𝐿2(𝐻1
0)

}. 

with equation (8.2) and these results the proof  is complete.                              ∎ 

Theorem 8.2. Let 𝑢, 𝑣, 𝑢ℎ and 𝑣ℎbe the solutions of (3.3) and  (4.2) respectively 

, then   there  exists  constants  𝐶1 ,𝐶2  independent   of   ℎ  such as, 

║𝑢 − 𝑢ℎ║
𝐿∞(𝐿2)  ≤ ║𝑢ℎ

0- 𝑢0║+𝐶1h{║𝑢0║ + ║𝑢║
𝐿∞(𝐻0

1)
+ ║𝑢𝑡║

𝐿2(𝐻1
0)

}  ,  

║𝑣 − 𝑣ℎ║
𝐿∞(𝐿2)≤  ║𝑣ℎ

0- 𝑣0║+𝐶2h{║𝑣0║ + ║𝑣║
𝐿∞(𝐻0

1)
+ ║𝑣𝑡║

𝐿2(𝐻1
0)

}. 

Proof:  As  the proof of  theorem (8.1)  we have , 

1

2

𝑑

𝑑𝑡
║𝜃1║

2
+𝛼1║𝜃1║

2
+

1

2𝑎1
║

1

2
(𝑢)𝑥

2   ̶ 
1

2
(𝑢ℎ)𝑥

2║
2
+

𝑎1

2
║𝜃1║

2
+

1

2𝑎2
║𝑣 𝑢𝑦 −

𝑣ℎ𝑢ℎ,𝑦║
2
+

𝑎2

2
║𝜃1║

2
    ≤ 

1

8𝑐1
║𝜌1,𝑡║

2
+2𝑐1║𝜃1║

2
 

1

2

𝑑

𝑑𝑡
║𝜃2║

2
+ 

𝛼2║𝜃2║
2
+

1

2𝑎3
║𝑢 𝑣𝑥  ̶ 𝑢ℎ𝑣ℎ,𝑥║

2
+

𝑎3

2
║𝜃2║

2
+

1

2𝑎4
║

1

2
(𝑣)𝑦

2   ̶ 
1

2
(𝑢ℎ)𝑦

2 ║
2
+

𝑎4

2
║𝜃2║

2
 

≤  
1

8𝑐2
║𝜌2,𝑡║

2
+2𝑐2║𝜃2║

2
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since 

║
1

2
(𝑢)𝑥

2   ̶ 
1

2
(𝑢ℎ)𝑥

2║
2

, ║𝑣 𝑢𝑦 − 𝑣ℎ𝑢ℎ,𝑦║
2
,║𝑢 𝑣𝑥 −

𝑢ℎ𝑣ℎ,𝑥║ 2and║
1

2
(𝑣)𝑦

2   ̶ 
1

2
(𝑢ℎ)𝑦

2 ║
2
  

are nonnegative terms and by Putting α1=a1 = a2 = c1 = c2and α2=a3 = a4 =

c3 = c4  ,we get,  

𝑑

𝑑𝑡
║𝜃1║

2
≤ 

1

4𝑐1
║𝜌1,𝑡║

2
, and 

𝑑

𝑑𝑡
║𝜃2║

2
≤ 

1

4𝑐2
║𝜌2,𝑡║

2
 , these imply 

║𝜃1║
𝐿∞(𝐿2)

≤║𝜃1(0)║+(
1

4𝑐1
∫ ║𝜌1,𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2
,                                    

(8.7a)         

║𝜃2║
𝐿∞(𝐿2)

≤║𝜃2(0)║+(
1

4𝑐2
∫ ║𝜌2,𝑡║

2
 𝑑𝑡

𝑇

0
)

1
2
,                                 

(8.7b)          

applying   the bounds given by (8.5)  and  (8.6)  to the first and second terms on 

the right hand sides respectively, to (8.7) gives,  

║𝜃1║
𝐿∞(𝐿2)

 ≤ ║𝑢ℎ
0- 𝑢0║+𝐶1ℎ {║𝑢0║ + ║𝑢𝑡║

𝐿2(𝐻1
0)

}, 

║𝜃2║
𝐿∞(𝐿2)

 ≤ ║𝑣ℎ
0- 𝑣0║+𝐶2ℎ {║𝑣0║ + ║𝑣𝑡║

𝐿2(𝐻1
0)

}. 

With these results the proof  is complete.                                                    ∎ 

9- Improvement of G and G- C finite 

element method  

     The G and G-C finite element 

method  (4.1) and (4.2) may 

produce an oscillating solutions if 

𝜖 < ℎ. To handle the difficulties 

connected with the G and G-C 

with 𝜖 < ℎ  is to avoid these 

situations completely. This can be 

done either by decreasing ℎ until 

𝜖 > ℎ, which may impractical if 𝜖 

is very small or simply by 

solving, instead of the original 

problem (3.1) and (3.3) with 

diffusion terms −𝜖∆𝑢 and −𝜖∆𝑣  

a modified problems with 
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diffusions term −ℎ∆𝑢  and −ℎ∆𝑣 

obtained by adding the terms 

−𝛿∆𝑢 and   −𝛿∆𝑣 to the 

problems (3.1) and (3.3) 

respectively, where   𝛿 = ℎ − 𝜖 

this the idea of the classical 

artificial diffusion method 

[Johnson (1987)], this method for 

solving Equations (3.1) and (3.3) 

reads: Find uh, vh ∈ Vh such that, 

  (𝑢ℎ,𝑡 ,𝜑ℎ) + ℎ(∇𝑢ℎ,∇𝜑ℎ)+ (𝑢 𝑢𝑥, 𝜑) + (𝑣 𝑢𝑦 , 𝜑)= (𝑓, 𝜑ℎ),                                               

(9.1a)                                           

  (𝑣 ,𝜑ℎ) + ℎ(∇𝑣ℎ,∇𝜑ℎ) + (𝑢  𝑣𝑥, 𝜑) + (𝑣  𝑣𝑦 , 𝜑)= (𝑔, 𝜑ℎ)                                                  

(9.1b)                                                   

  (𝑢ℎ,𝑡 ,𝜑ℎ) + ℎ(∇𝑢ℎ,∇𝜑ℎ) +(
1

2
(𝑢ℎ)𝑥

2 , 𝜑ℎ)+(𝑣ℎ 𝑢ℎ,𝑦 , 𝜑)= (𝑓, 𝜑ℎ)                        

(9.2a)                                                              (𝑣ℎ,𝑡 , 𝜑ℎ) +  ℎ(𝛻𝑣ℎ , 𝛻𝜑ℎ)  +

(𝑢ℎ 𝑣ℎ,𝑥, 𝜑) + (
1

2
(𝑣ℎ)𝑦

2 , 𝜑ℎ)  =  (𝑔, 𝜑ℎ)             (9..2b)                                          

10. The  numerical solution. 

        In  this section  we  

introduce  the  two dimensional 

approximation  schemes. The first  

is the G-finite element  method  

to the coupled Burgers’ problem 

(3.1) . The approximate solution  

is written as an expansion of  the 

basis functions.  In particular, we 

assume that, 

𝑢ℎ = ∑ 𝑑𝑗(𝑡)𝜑𝑗(𝑥, 𝑦)𝑁
𝑗=1   and 𝑣ℎ= ∑ ℎ𝑗(𝑡)𝜑𝑗(𝑥, 𝑦)𝑁

𝑗=1  

The second  is the G-C finite element  method  to the coupled Burgers’ problem 

(3.3), we introduce the following approximate solution for 𝑢ℎ
2(𝑥, 𝑦, 𝑡)  and 

𝑣ℎ
2(𝑥, 𝑦, 𝑡): 

𝑢ℎ
2 = ∑ 𝑑𝑗

2𝑁
𝑗=1 (t) 𝜑𝑗(𝑥, 𝑦) ,𝑣ℎ

2= ∑ ℎ𝑗
2𝑁

𝑗=1 (t) 𝜑j(𝑥, 𝑦), 

where each  𝑑𝑗(𝑡), ℎ𝑗(𝑡)  are nodal unknowns and  𝜑𝑗(𝑥, 𝑦) is the 𝑗𝑡ℎ linear basis 

function defined on 𝛺 . Substitute the approximate solution 𝑢ℎ for 𝑢,𝑣ℎ for 𝑣, 𝑢ℎ
2 
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for 𝑢2, 𝑣ℎ
2 for 𝑣2and replace  𝜑 by  𝜑𝑖 in (4.1a) ,(4.1b) , (4.2a) and (4.2b) 

respectively to get a system of ordinary differential equation,  

[
𝑀 0
0 𝑀

] [
D′

H′] +(є [
𝐺 0
0 𝐺

] + [
𝐽1 0
0 0

] + [
0 𝐽2

0 0
] + [

0 0
𝐽3 0

] + [
0 0
0 𝐽4

]) [
𝐷
𝐻

] =

  [�̌�
�̌�

], 

[
𝑀 0
0 𝑀

] [
D′

H′] +(є [
𝐺 0
0 𝐺

] + [
𝐵1 0
0 0

] + [
0 𝐽2

0 0
] + [

0 0
𝐽3 0

] + [
0 0
0 𝐵2

]) [
𝐷
𝐻

] =

  [�̌�
�̌�

], 

where, 

D=[
𝑑1(𝑡)

⋮
𝑑𝑁(𝑡)

] ,  H=[
ℎ1(𝑡)

⋮
ℎ𝑁(𝑡)

], 𝐷′=[
𝑑1

′ (𝑡)
⋮

𝑑𝑁
′ (𝑡)

], 𝐻′=[
ℎ1

′ (𝑡)
⋮

ℎ𝑁
′ (𝑡)

], 𝑀(𝑚𝑖𝑗)=∫
Ω

𝜑𝑗𝜑𝑖  𝑑𝑥𝑑𝑦,        

𝐺(𝑔𝑖𝑗)=∫
Ω

∇𝜑𝑗  ∇𝜑𝑖𝑑𝑥𝑑𝑦,𝐽1=(𝐽𝑖𝑘𝑗)=∫
Ω

𝑑𝑘(𝑡)𝜑𝑗
𝜕𝜑𝑘

𝜕𝑥
𝜑𝑖𝑑𝑥 𝑑𝑦,  

𝐽2=(𝐽𝑖𝑘𝑗)=∫
Ω

𝑑𝑘(𝑡)𝜑𝑗
𝜕𝜑𝑘

𝜕𝑦
𝜑𝑖𝑑𝑥  𝑑𝑦,  𝐽3=(𝐽𝑖𝑘𝑗)= ∫

Ω
ℎ𝑘(𝑡)𝜑𝑗

𝜕𝜑𝑘

𝜕𝑥
𝜑𝑖𝑑𝑥 𝑑𝑦, 

𝐽4=(J𝑖𝑘𝑗)=∫
Ω

ℎ𝑘(𝑡)𝜑𝑗
𝜕𝜑𝑘

𝜕𝑦
𝜑𝑖  𝑑𝑥  𝑑𝑦, 𝐵1 = (𝑏𝑖𝑗)= 

1

2
∫

Ω
𝑑𝑗(𝑡)

𝜕𝜑𝑗

𝜕𝑥
𝜑𝑖𝑑𝑥𝑑𝑦, 

 𝐵2=( 𝑏𝑖𝑗)= 
1

2
∫

Ω
ℎ𝑗(𝑡)

𝜕𝜑𝑗

𝜕𝑦
𝜑𝑖𝑑𝑥𝑑𝑦, �̌�=(𝑓𝑘)= ∫

Ω
𝑓𝜑𝑖𝑑𝑥𝑑𝑦, and �̌�=(𝑔𝑘)= 

∫
Ω

𝑔𝜑𝑖𝑑𝑥𝑑𝑦, 

   for   𝑖, 𝑗=1,2,…,N . 

10.1  Test  problem 

        In this subsection, we 

present  the test problem  to 

illustrate  the different behaviors 

of  Euler–Galerkin and  Galerkin-

Conservation  methods  time  

dependent   coupled Burgers’.The 

exact solutions of Burgers’ 

equations (3.1.a) ,(3.1.b), (3.3.a) 

and (3.3.b) can be generated by 

using the Hopf–Cole  transfor-

mation (see [Heitmann 2002] 

which are : 
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𝑢( 𝑥 , 𝑦 , 𝑡 ) = 
3

4
−

1

4[1+𝑒
(−4 𝑥+4 𝑦− 𝑡)

32 𝜖 ]

 ,      𝑣( 𝑥 , 𝑦 , 𝑡 ) = 
3

4
+

1

4[1+𝑒
(−4 𝑥+4 𝑦− 𝑡)

32 𝜖 ]

 . 

The initial conditions are 

obtained from  the  exact solution 

with  𝑡=0. In this problem  

𝜖, 𝑡 , 𝑘 can be take on various 

values and 𝑓 = 𝑔 = 0. The 

domain  𝛺. We use  a uniform 

mesh of  𝑁 × 𝑁 nodal  points 

with  2(𝑁 − 1)2 same size 

triangles, for some integer 𝑁 > 1 

with  mesh width  parameter 

ℎ =
1

𝑁−1
  , we  take  𝑁 =18 and �̅� 

= [0,1] × [0,1]. 

 10.2  Numerical Results. 

Numerical example is 

tested to illustrate these schemes 

and the numerical results by 

using ODE 15s, ordinary 

differential equation, solvers 

matlab. We discuss  two cases.  

Case1(𝜖 > ℎ): t In this case the problem 

was run with 𝜖= 1.14, ℎ = 0 ∙ 05, we 

compared  our results obtained from the 

two  methods G and  G-C methods on 

the bases of accuracy and speed 

(computational execution time) and  

found  that  the  two methods  both  

produced  solutions that  converged to 

the exact solution at better  than the 

expected (
1

𝑁
)

1

2
rate  [Fletcher 1984] {see 

Figure (3.1),(3.2) ,(3.3) }. 
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Figure 3.1 :Solution of G method at 𝑁 =18, t=0.5 , 𝜖 = 1.14, and ℎ = 0 ∙ 05 

 

 

Figure3.2 :Solution of G -C method at  𝑁=18, 𝑡=0.5, 𝜖= 1.14and ℎ = 0 ∙ 05 
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Figure3.3 :Exact solution  at  𝑁=18, 𝑡=0.5, 𝜖= 1.14, ℎ = 0 ∙ 05 

 

Case 2(ϵ < ℎ): In this case  we 

take 𝜖 =0.004, ℎ = 0.0588 and 

𝑡 = 0.5. we see that the  exact 

solution, G and G-C finite 

element method got oscillation   

as  shown in  figures (3.4), (3.5) 

and (3.6) but when we use the 

artificial diffusion method we 

remove the oscillation and 

improve the result that are shown 

in figures (3.7), (3.8) and (3.9).
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Figure 3.4:Solution of G method at  𝑡 = 0.5, 𝜖 =0.004 and ℎ = 0.0588 

 

Figure 3.5 :Solution of G-C method at  𝑡 = 0.5, 𝜖 =0.004 and ℎ = 0.0588  

 

0

0.5

1

0

0.5

1

0.4

0.5

0.6

0.7

0.8

X

Numerical solution of  u

Y

U
 n

0

0.5

1

0

0.5

1

0.7

0.8

0.9

1

1.1

1.2

X

Numerical solution of   v

Y

V
 n

0

0.5

1

0

0.5

1

0.4

0.5

0.6

0.7

0.8

X

Numerical solution of  u

Y

U
 n

0

0.5

1

0

0.5

1

0.7

0.8

0.9

1

1.1

1.2

X

Numerical solution of   v

Y

V
 n



Basrah Journal of Science (A)                                                               Vol.33(1),96-125, 2015 

120 

 

Figure 3.6 :Exact solution at  𝑡=.5, 𝑡 =.5, 𝜖 =0.004 and ℎ = 0.0588 

 

Figure 3.7 : Solution of  G method of 𝑢 and 𝑣 with classical artificial viscosity 

at  𝑡=.5, 𝑡 =.5, 𝜖 =0.004 and ℎ = 0.0588 
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      Figure 3.8: Solution of G-C method of 𝑢 and 𝑣 with classical artificial 

viscosity at  𝑡=.5, 𝑡 =.5, 𝜖 =0.004 and ℎ = 0.0588 

 

Figure 3.9 : Exact solution at  𝑡=.5, 𝑡 =.5, 𝜖 =0.004 and ℎ = 0.0588 
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11- Conclusions 

From the theoretical analysis and  the 

numerical results, we can conclude that 

the following.  

1-Theoretical  analysis  shows 

that  the G  and G –C finite 

element methods  are convergent  

with error 𝑂(ℎ )  

2-The numerical results for G and 

G –C finite element methods are  

convergent to the exact  solutions 

when(𝜖 > ℎ),  see figs (3.1, 3.2, 

3.3), but the G.–C. finite elements 

method required less CPU time.   

3-A special attention is paid 

particularly to problems with 

convection dominating over 

diffusion. The problem may arise 

from the weakness of the 

diffusion term. Such case makes 

the exact solution, G  and G –C 

finite element methods lose 

stability and produce an 

oscillating solutions see figs (3-4, 

3-5, 3-6). One way to overcome 

these difficulties is adding a 

classical artificial diffusion to the 

problem.  

4-The classical artificial diffusion method 

removed all oscillations occur on the  

analytics solution, see fig (3-9) and 

removed all oscillations occur on G and 

G –C finite element methods, see figs (3-

7, 3-8) 

5- The classical artificial diffusion 

method produces non-oscillating but has 

the  drawback of introducing a 

considerable amount of extra diffusion. 

Also we can modified these methods by 

using the streamline  method [Johnson 

1987] with less crosswind diffusion than 

the classical diffusion method but still 

corresponds to an 𝑂(ℎ)-perturbation of 

the solution of the original problem  . 

This is left to interested readers for future 

research. 
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