Least Common Multiplier and Greatest Factorial Factorization for Gosper's Algorithm

Husam L. Saad Mohammed K. Abdullah
Department of Mathematics, College of Science, Basrah University, Basrah, Iraq. Hus6274@hotmail.com

Abstract

The objective of this paper is to give an approach of Gosper's algorithm that frequently used in proving combinatorial identities. We give an approach for Gosper's algorithm by using greatest factorial factorization (GFF) and least common multiplier (lcm) concepts. This approach can be easily extends to the q-analogues. To illustrate the applicability of our approach, example is presented.

Key word: Gosper's algorithm, hypergeometric solution, greatest factorial factorization, least common multiplier, rational solution, universal denominator.

1. Introduction

Sister Mary Celine is the first one who began the subject of computerized proofs of identities with her Ph.D. thesis [Frasenmyer, Sister Mary Celine, 1945] at the university of Michigan in 1945. After that in [Frasenmyer, Sister Mary Celine, 1947, Frasenmyer, Sister Mary Celine, 1949], she developed a method to find recurrence relations for hypergeometric polynomials directly from the series expansions of the polynomials. In many parts of mathematics and computer science some expressions like $s_{n}=\sum_{k=0}^{n-1} t_{k}$ (called indefinite hypergeometric summation), arise in a natural way, for instance in combinatorics or complexity analysis. Usually one is interested in finding a solution for such an expression as an expression in n, Gosper's algorithm is an automatic procedure for evaluating these kinds of sums of hypergeometric terms in the form of the difference of a hypergeometric term and a constant,
provided such an expression exists see for example [R.W. Jr. Gosper, 1978, R.L. Graham et al., 1994, W. Koepf, 1995, M. Petkovšek et al., 1996]. Since it often happens that during the analysis of a problem in combinatorial theory one encounters a large sum involving factorials and binomial coefficients, one would like to know whether or not that sum can be expressed in a simpler way. Gosper's algorithm is a procedure that discovers the answer systematically. Another aspect concerns the theoretical foundation of a q-analogue of Gosper's algorithm. Besides Karr's [M. Karr, 1981] approach which covers indefinite q-hypergeometric summation in the general frame of his theory of difference field extensions, up to now it had been a kind of a surprise that Gosper's algorithm can be carried over to the q-case almost word by word; Koornwinder [T.H. Koorrnwinder, 1993]. In [W. Koepf, 1995], Koepf considers the more general case and extended version of Gosper's algorithm
for indefinite summation. In [H.L. Saad, 2006 2] Saad gave a q-analogue of Koepf's algorithm, and generalize it to find solutions of recurrence equations. It turns out that the new algebraic concept of "greatest factorial factorization" introduced by Paule [P. Paule, 1995] provides an algebraic explanation not only of Gosper's algorithm, but also of its analogue for q-hypergeometric telescoping. In [H.L. Saad, 2006 1], Saad extended the greatest factorial factorization to the m greatest factorial factorization and presented an approach to the problem.

Let N be the set of natural numbers, k be the field of characteristic zero, $\mathrm{k}(n)$ be the field of rational functions of n over $\mathrm{k}, \mathrm{k}[n]$ be the ring of polynomials of n over k . If $p(n) \in \mathrm{k}[n]$ is a nonzero polynomial we will denote its leading coefficient by $l c(p(n)), \quad p(n) \in \mathrm{K}[n]$ is said to be monic if $l c(p(n))=1, \mathrm{E}$ be the shift operator on $K[n]$, i.e. $(E p)(n)=p(n+1) \quad$ for any $\quad p \in K[n]$,
$\operatorname{deg}(p)$ denotes the polynomial degree (in n) of any $p \in \mathrm{~K}[n], p \neq 0$. We define $\operatorname{deg}(0)=-1, \operatorname{gcd}(p, q)$ denotes the greatest common divisor for any polynomials $p, q \in \mathrm{k}[n]$. We assume that the gcd always takes a value as a monic polynomial, $\operatorname{lcm}(p, q)$ denotes the least common multiplier for any polynomials $p, q \in \mathrm{~K}_{[n]}$. The pair $\langle f, g\rangle f, g \in \mathrm{~K}[n]$ is called the reduced form of a rational function if $r=\frac{f}{g}, g$ monic and $\operatorname{gcd}(f, g)=1$, [H.L. Saad, 2005].

A nonzero sequence t_{n} is called a hypergeometric term (or shortly hypergeometric) over k if there exists a rational function $r(n) \in \mathrm{K}(n)$ such that $\frac{t_{n+1}}{t_{n}}=r(n)$.

For any monic polynomial $p(n) \in \mathrm{K}[n]$, and $m \in \mathbb{N}$, the $m^{\text {th }}$ falling factorial $[p(n)]^{\underline{m}}$ of $p(n)$ is defined as [P. Paule, 1995]

$$
[p(n)]^{m}=\prod_{i=0}^{m-1} E^{-i} p(n)=p(n) p(n-1) \ldots p(n-m+1)
$$

Let $p_{1}, p_{2}, \ldots, p_{k}, \quad \mathrm{p} \in \mathrm{k}[n]$ then following conditions hold [P. Paule, $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$ is called a GFF-form of a 1995]:
monic polynomial $p(n) \in \mathrm{K}[n]$ if the
(GFF1) $p(n)=\left[p_{1}\right]^{1}\left[p_{2}\right]^{]^{2}} \ldots\left[p_{k}\right]^{\frac{k}{k}}$.
(GFF2) each $p_{i}(n)$ monic, and $k>0$ implies $\operatorname{deg}\left(p_{k}\right)>0$.
(GFF3) $i \leq j \Rightarrow \operatorname{gcd}\left(\left[p_{i}\right]^{i}, E p_{j}\right)=1=\operatorname{gcd}\left(\left[p_{i}\right]^{i}, E^{-j} p_{j}\right)$.

We can use the following lemma to compute the GFF.
Lemma 1.2.1. [P. Paule, 1995] Let $p(n) \in \mathrm{K}[n]$ be a monic polynomial with GFF-form $\left\langle p_{1}, p_{2}, p_{3}, \ldots, p_{k}\right\rangle$. Then
$\operatorname{GFF}(\operatorname{gcd}(p, E p))=\left\langle p_{2}, p_{3}, \ldots, p_{k}\right\rangle, \quad$ and $\quad p_{1}(n)=\frac{p(n)}{\left[p_{2}\right]^{2} \ldots\left[p_{k}\right]^{\frac{k}{x}}}$.

In 1978, Gosper [R.W. Jr. Gosper, 1978] developed algorithm for finding the sum $s_{n}=\sum_{k=0}^{n-1} t_{k}$ depends on finding at first the hypergeometric term z_{n} that satisfies

$$
\begin{equation*}
z_{n+1}-z_{n}=t_{n} . \tag{1.1}
\end{equation*}
$$

If we can find z_{n}, then we will express the above sum in the simple form of a single hypergeometric term plus a constant. Conversely any solution z_{n} of (1.1) will have the form

$$
z_{n}=z_{n-1}+t_{n-1}=z_{n-2}+t_{n-2}+t_{n-1}=\ldots=z_{0}+\sum_{k=0}^{n-1} t_{k}=s_{n}+z_{0}
$$

where z_{0} is a constant.
Gosper showed that any rational function can be written in the form

$$
\begin{equation*}
r(n)=\frac{a(n) c(n+1)}{b(n) c(n)}, \tag{1.2}
\end{equation*}
$$

where $a(n), b(n), c(n)$ are polynomials in n over K and

$$
\begin{equation*}
\operatorname{gcd}(a(n), b(n+h))=1, \text { for all nonnegative integer } h \tag{1.3}
\end{equation*}
$$

The representation in equation (1.2) such that equation (1.3) satisfied is called Gosper's representation. In [M. Petkovšek, 1992], Petkovšek proved that Gosper representation is unique
which is called Gosper-Petkovšek representation, or shortly GP representation, if the polynomials $b(n), c(n)$ are monic such that

$$
\operatorname{gcd}(a(n), c(n))=1,
$$

$$
\operatorname{gcd}(b(n), c(n+1))=1
$$

Petkovšek gave an algorithm to algorithm. In [W.Y.C. Chen et al., compute the GP representation. In [M. Petkovšek, 1994], Petkovšek generalized Gosper's algorithm for recurrences of arbitrary order. In [P. Paule, 1995], equipped with the Greatest Factorial Factorization, Paule presented a new approach to indefinite hypergeometric summation which leads to the same algorithm as Gosper's, but in a new setting. In [W.Y.C. Chen and H.L. Saad, 2005], Chen and Saad showed that the uniqueness of the Gosper-Petkovšek representation of rational functions can be utilized to 2008], Chen et al. found a convergence property of the gcd of the rising factorial and the falling factorial. Based on this property, they presented an approach to compute the universal denominators as given by Gosper's algorithm.

Many approaches, even ours, for Gosper's algorithm can be reduced to find rational solutions. So in this paper, we need to mention to the rational solutions $y(n)$ for the linear difference equation give a simpler version of Gosper's

$$
\begin{equation*}
p_{0}(n) y(n)+p_{1}(n) y(n+1)=p(n), \tag{1.4}
\end{equation*}
$$

where $p_{0}(n), p_{1}(n), p(n) \in \mathrm{K}[\mathrm{n}]$ are given polynomials such that $p_{0}(n)$ and $p_{1}(n) \neq 0$.

A polynomial $g(n) \in K[n]$ is called universal denominator for (1.4) if for every solution $y(n) \in K(n)$ for (1.4) there exists $f(n) \in K[n]$ such that $y(n)=f(n) / g(n)$.

2. The Fundamental lcm Lemma

The "gcd-shift", i.e. the gcd of a polynomial p and its shift $E p$ $(\operatorname{gcd}(p, E p))$ plays a basic role in hypergeometric summation. In [P. Paule, 1995], Paule gave the following fundamental lemma of "lcm -shift", which is fundamental in deriving Gosper's algorithm.
(1) $B_{0}=\frac{\operatorname{lcm}(B, E B)}{B}=E\left(p_{1} \cdot p_{2} \ldots p_{k}\right)$.
(2) $B_{1}=\frac{\operatorname{lcm}(B, E B)}{E B}=p_{1} \cdot E^{-1} p_{2} \cdot E^{-2} p_{3} \ldots E^{-k+1} p_{k}$.
(3) $\operatorname{gcd}\left(B_{0}, B_{1}\right)=1$.

Lemma 2.1. (Fundamental lcm Lemma [P. Paule, 1995]) Let $p(n) \in \mathrm{K}[n]$ be a monic polynomial with GFF-form $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$. Then the $\operatorname{lcm}(p, E p)$ has GFF-form $\left\langle 1, E p_{1}, E p_{2}, \ldots, E p_{k}\right\rangle$.

The "lcm-shift", i.e. the lcm of a polynomial p and its shift $E p$ $(\operatorname{lcm}(p, E p))$ plays a basic role in hypergeometric summation. The following lemma is very important in our approach to derive Gosper's algorithm.

Lemma 2.2. Let $B \in \mathrm{~K}_{[n]}$ be a monic polynomial with GFF-form $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$. Then

Proof .

From Lemma 2.1., we get
(1) $B_{0}=\frac{\operatorname{lcm}(B, E B)}{B}=\frac{\left[E p_{1}\right]^{2}\left[E p_{2}\right]^{3} \ldots\left[E p_{k}\right]^{k+1}}{\left[p_{1}\right]^{1}\left[p_{2}\right]^{2} \ldots\left[p_{k}\right]^{k}}$

$$
\begin{aligned}
& =\frac{p_{1}(n+1) p_{1}(n) p_{2}(n+1) p_{2}(n) p_{2}(n-1) \ldots p_{k}(n+1) p_{k}(n) \ldots p_{k}(n-k+1)}{p_{1}(n) p_{2}(n) p_{2}(n-1) \ldots p_{k}(n) \ldots p_{k}(n-k+1)} \\
& =E\left(p_{1}(n) \cdot p_{2}(n) \ldots p_{k}(n)\right)
\end{aligned}
$$

(2) $B_{1}=\frac{\operatorname{lcm}(B, E B)}{E B}=\frac{\left[E p_{1}\right]^{2}\left[E p_{2}\right]^{3} \ldots\left[E p_{k}\right]^{k+1}}{E\left(\left[p_{1}\right]^{1}\left[p_{2}\right]^{2} \ldots\left[p_{k}\right]^{k}\right)}$

$$
\begin{aligned}
& =\frac{p_{1}(n+1) p_{1}(n) p_{2}(n+1) p_{2}(n) p_{2}(n-1) \ldots p_{k}(n+1) p_{k}(n) \ldots p_{k}(n-k+1)}{p_{1}(n+1) p_{2}(n+1) p_{2}(n) \ldots p_{k}(n+1) \ldots p_{k}(n-k+2)} \\
& =p_{1}(n) \cdot E^{-1} p_{2}(n) \cdot E^{-2} P_{3}(n) \ldots E^{-k+1} p_{k}(n) .
\end{aligned}
$$

(3) From (1) and (2), we get
$\operatorname{gcd}\left(B_{0}, B_{1}\right)=\operatorname{gcd}\left(E\left(p_{1} p_{2} \ldots p_{k}\right), p_{1} E^{-1} p_{2} \ldots E^{-k+1} p_{k}\right)$.
If $i \leq j$ we get

$$
\operatorname{gcd}\left(E p_{i}, E^{-j+1} p_{j}\right)=E \operatorname{gcd}\left(p_{i}, E^{-j} p_{j}\right) \mid E \operatorname{gcd}\left(\left[p_{i}\right]^{i}, E^{-j} p_{j}\right)=1 .
$$

Then
$\operatorname{gcd}\left(E p_{i}, E^{-j+1} p_{j}\right)=1$.
If $i>j$ we get
$\operatorname{gcd}\left(E p_{i}, E^{-j+1} p_{j}\right) \mid \operatorname{gcd}\left(E p_{i},\left[p_{j}\right]^{j}\right)=1$.
Then
$\operatorname{gcd}\left(E p_{i}, E^{-j+1} p_{j}\right)=1$.
Hence

$$
\operatorname{gcd}\left(B_{0}, B_{1}\right)=1 .
$$

3. An Approach for Gosper's

Algorithm

In this section, we present an approach for Gosper's algorithm. Our approach depends on finding the universal denominator for the firstorder linear recurrence relation (3.1) (below) by using the least common divisor and the greatest factorial factorization. Once a universal denominator is found, then it is easy to find the rational solutions of the linear recurrence relation (3.1) by finding the

$$
\begin{equation*}
r(n) y(n+1)-y(n)=1 . \tag{3.1}
\end{equation*}
$$

Thus, we have reduced the problem of finding hypergeometric solution of equation (1.1) to the problem of finding
polynomial solutions of the resulting equation. Equipped with GFF and lcm concepts we present an algebraically motivated approach to the problem. Given a hypergeometric term t_{n} and suppose that there exists a hypergeometric term z_{n} satisfying equation (1.1). Let $r(n)=\frac{t_{n+1}}{t_{n}} \quad$ and $y(n)=\frac{z_{n}}{t_{n}}$. Then equation (1.1) can be written as rational solutions of equation (3.1). Let

$$
\begin{equation*}
a(n) \frac{f(n+1)}{g(n+1)}-b(n) \frac{f(n)}{g(n)}=b(n) . \tag{3.2}
\end{equation*}
$$

Let $h(n)=\operatorname{lcm}(g(n), g(n+1)$. Multiplying equation (3.2) by $h(n)$, we get

$$
\begin{equation*}
a(n) \frac{h(n)}{g(n+1)} f(n+1)-b(n) \frac{h(n)}{g(n)} f(n)=b(n) h(n) . \tag{3.3}
\end{equation*}
$$

Let $h_{i}(n)=\frac{h(n)}{E^{i} g(n)}, i \in\{0,1\}$. Since $g(n) \mid h(n)$ and $g(n+1) \mid h(n)$, then both $h_{0}(n)$ and $h_{1}(n)$ are polynomials. Thus equation (3.3) can be written as;

$$
\begin{equation*}
a(n) \cdot h_{1}(n) \cdot f(n+1)-b(n) \cdot h_{0}(n) \cdot f(n)=b(n) \cdot h(n) . \tag{3.4}
\end{equation*}
$$

Now, if $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$ is the GFF-form of $g(n)$, it follows from $\operatorname{gcd}\left(h_{0}, h_{1}\right)=1=\operatorname{gcd}(f, g)$ that
$h_{0}(n) \mid a(n) \quad$ and $\quad h_{1}(n) \mid b(n)$.
From Lemma 2.2., we get

$$
h_{0}(n)=E\left(p_{1} \cdot p_{2} \ldots p_{k}\right) \mid a(n),
$$

and

$$
h_{1}(n)=p_{1} \cdot E^{-1} p_{2} \cdot E^{-2} p_{3} \ldots E^{-k+1} p_{k} \mid b(n) .
$$

Hence
$p_{1} \operatorname{gcd}\left(p_{2} p_{3} \ldots p_{k}, E^{-1} p_{2} E^{-2} p_{3} \ldots E^{-k+1} p_{k}\right) \mid \operatorname{gcd}(a(n-1), b(n))$.
and then, we get
$p_{1} \mid \operatorname{gcd}(a(n-1), b(n))$.
by the same way we can get

$$
\begin{equation*}
p_{i} \mid \operatorname{gcd}\left(a(n-1), E^{i-1} b(n)\right), \text { for } i=1,2, \ldots, k \tag{3.5}
\end{equation*}
$$

This observation gives rise to a simple extract iteratively p_{i}-multiples P_{i} such and straightforward algorithm for that $E P_{i} \mid a$ and $E^{-i+1} P_{i} \mid b$. Hence, we computing a multiple obtained the same algorithm obtained $V=\left[P_{1}\right]^{1}\left[P_{2}\right]^{2} \ldots\left[P_{m}\right]^{m}$ of g. For instance, by Paule [P. Paule, 1995] which can be if $\quad P_{1}=\operatorname{gcd}\left(E^{-1} a, b\right)$ then obviously stated as follows: $p_{1} \mid P_{1}$. Indeed, we shall see below that by exploiting GFF-properties one can

Algorithm 3.1. VMULT. [P. Paule ,1995, p. 253]
INPUT : The reduced form $\langle a, b\rangle$ of $r \in \mathbf{k}(n)$
OUTPUT : Polynomials $\left\langle P_{1}, P_{2}, \ldots, P_{m}\right\rangle$ such that $V=\left[P_{1}\right]^{1}\left[P_{2}\right]^{\underline{\underline{m}}} \ldots\left[P_{m}\right]^{m}$ is a multiple of the reduced denominator g of $y \in \mathbf{K}(n)$.
(i) Compute $m=\min \left\{j \in \mathbb{N} \mid \operatorname{gcd}\left(E^{-1} a, E^{k-1} b\right)=1\right.$ for all integers $\left.k>j\right\}$.
(ii) Set $a_{0}=a, b_{0}=b$, and compute for i from 1 to m :
$P_{i}=\operatorname{gcd}\left(E^{-1} a_{i-1}, E^{i-1} b_{i-1}\right)$,

$$
\begin{array}{r}
a_{i}=a_{i-1} / E P_{i}, \\
b_{i}=b_{i-1} / E^{-i+1} P_{i} .
\end{array}
$$

From equation (3.2), we get

$$
\begin{equation*}
a(n) g(n) f(n+1)-b(n) g(n+1) f(n)=b(n) g(n) g(n+1) \tag{3.6}
\end{equation*}
$$

The next step is to set
$g(n)=V(n)$
in equation (3.5). If equation (3.5) can be solved for $f(n) \in \mathrm{K}[n]$, then

$$
\begin{equation*}
z_{n}=\frac{f(n)}{g(n)} \cdot t_{n}, \tag{3.7}
\end{equation*}
$$

is a hypergeometric solution of (1.1), otherwise no hypergeometric solution of (1.1) exists.

Example 3.1. Evaluate the following sum $\sum_{k=1}^{n-1} \frac{k^{2}-2 k-1}{k^{2}(k+1)^{2}} 2^{k}$
Solution. Let
$t_{n}=\frac{\left(n^{2}-2 n-1\right)}{n^{2}(n+1)^{2}} 2^{n}$,
then
$r(n)=\frac{t_{n+1}}{t_{n}}=\frac{2 n^{2}\left(n^{2}-2\right)}{(n+2)^{2}\left(n^{2}-2 n-1\right)}$.
Hence $a(n)=2 n^{2}\left(n^{2}-2\right), \quad b(n)=(n+2)^{2}\left(n^{2}-2 n-1\right)$, where $\langle a(n), b(n)\rangle$ is the reduced form of the rational function $r(n)$. Let $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$ be the GFF-form of $g(n)$. Then
$\left.h_{0}(n)=\frac{\operatorname{lcm}(g, E g)}{g(n)}=E\left(p_{1} \cdot p_{2} \ldots p_{k}\right) \right\rvert\, 2 n^{2}\left(n^{2}-2\right)$,
$\left.h_{1}(n)=\frac{\operatorname{lcm}(g, E g)}{E g(n)}=p_{1} \cdot E^{-1} p_{2} \cdot E^{-2} p_{3} \ldots E^{-k+1} p_{k} \right\rvert\,(n+2)^{2}\left(n^{2}-2 n-1\right)$,
and from the algorithm VMULT, we get
$P_{1}(n)=\left(n^{2}-2 n-1\right)$,
and

$$
P_{2}(n)=P_{3}(n)=\ldots=P_{k}(n)=1 .
$$

Hence

$$
g(n)=V(n)=P_{1}(n)=n^{2}-2 n-1,
$$

then from equation (3.6), we get
$2 n^{2} \cdot f(n+1)-(n+2)^{2} \cdot f(n)=(n+2)^{2}\left(n^{2}-2 n-1\right)$
Case 1 [M. Petkovšek et al., 1996] yields
$\operatorname{deg}(f(n))=4-2=2$.
The polynomial $\quad f(n)=n^{2}+2 n+1=(n+1)^{2}$ is a solution to the above equation. By (3.7), we have
$z_{n}=\frac{f(n)}{g(n)} t_{n}=\frac{2^{n}}{n^{2}}$.
Hence
$\sum_{k=1}^{n-1} \frac{k^{2}-2 k-1}{k^{2}(k+1)^{2}} 2^{k}=\frac{2^{n}}{n^{2}}-2$.

Conclusions

(1) The 1 cm is equivalent to the gcd in deriving Gosper's algorithm.
(2) Our approaches for Gosper's algorithm are easily extended to the q-case.

References

W.Y.C. Chen, P. Paule and H.L. Saad, (2008) Converging to Gosper's algorithm, Advance in Applied Mathematics, 41 ,351-364.
W.Y.C. Chen and H.L. Saad, (2005)

On Gosper Petkovšk representation of rational functions, J. Symbolic computation, 40 ,955-963.

Fasenmyer, Sister Mary Celine,

 (1945). Some generalization hypergeometric polynomials, Ph.D. dissertation, University of Michigan, November.Fasenmyer, Sister Mary Celine, (1947) Some generalization hypergeometric polynomials, Bull. Amer. Math. Soc., 53 ,806-812.

Fasenmyer, Sister Mary Celine, (1949) Ante on pure recurrence relations, Bull. Amer. Math. Soc., 56 ,14-17.
R.W, Jr. Gosper, (1978) Decision procedure for infinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75 ,40-42.
R.L. Graham, D. E. Knuth and O. Patashnik,(1994)Concrete Mathematics - A Foundation for Computer Science, $2^{\text {nd }}$ ed., Reading: AdisionWeseley.
M. Kaar(1981), Summation in finite terms, J. ACM, 28 ,305-350.
W. Koepf, (1995) Algorithms for m fold hypergeometric summation, J. Symbolic Computation, 20,399-417.
T.H. Koornwinder, (1993) On Zeilberger's algorithm and its $q-$ analogue. J. Symbolic Computation, 48 91-111.
P. Paule, (1995) Greatest factorial factorization and symbolic summation, J. Symbolic computation, 20,235-268.
M. Petkovšek, (1992) Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Computation, 14 ,243-264.
M. Petkovšek, (1994) A generalization of Gosper's algorithm, Discrete Math., 134,125-131.
M. Petkovšek, H.S. Wilf and D. Zeilberger,(1996). $A=B$, A.K. Peters.
H.L. Saad,(2005) Hypergeometric and Rational Solutions with Polynomial Coefficients, Ph.D. thesis., Nankai University, Tianjin, P.R. China.
H.L. Saad, (2006) m-Hypergeometric solution of anti-difference and q-antidifference equations, Basrah Journal of Science (A), 24 ,21-34.
H.L. Saad, (2006) m-Hypergeometric solution of linear recurrence and q recurrence equations, Basrah J. Science (A), $24,76-81$.

اللضاعف المشترك الأصغر والتحليل للعامل الأعظم لخوارزمية كَوسبر
 حسام لوتي سعد
 قسم الرياضيات/كلية العوم/جامعة البصرة

الخلاصة:

الهدف في هذا البحث هو إعطاء أسلوب خو ارزمية كَسبر التي تستخدم بكثرة في بر هان المنطابقات التو افقية . نعطي أسلوب خوارزمية كَوسبر باستخدام مفهومي التحليل للعامل الأعظم (GFF) والمضـاعف المشترك الأصغر (lem) . هذا الأسلوب يمكن نوسيعه للأسلوب المطابق -q .نقام مثال لتوضيح تطبيق أسلوبنا.

