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Abstract  
In this paper we shall use the Cubic spline method combined with shooting method for 

solving fractional boundary value problems. In this approach the fractional order differential 

equation will be transformed into a system of ordinary differential equations used for 

approximating the fractional term. Numerical comparisons between the solution using this new 

method and the methods introduced in [17, 29] are presented. The obtained numerical results 

show that the proposed method maintains a remarkable high accuracy. 
 

 الخلاصة

جُبا انى جُب يع   Cubic splineا انبحث َظايا جذٌذ نحم يسائم كسىر انقًٍت انحذٌت باسخخذاو طرٌقت ال هذَقذو فً 

انى َظاو يٍ انًعادلاث انخفاضهٍت انعادٌت نخقرٌب انحذ  . واسخخذيج ححىٌم انرحبت انكسرٌت shooting methodطرٌقت ال

نحم انًعادلاث   exactانكسري . واخٍرا عًم يقارَت بٍٍ انحهىل انعذدٌت انخً حصهُا عهٍها يع حهىل اسخخذاو طرق ال

 .وكاٌ هُاك َسبت خطأ قهٍهت جذا يًا ٌثبج دقت انطرٌقت انجذٌذة  [17,29]انخفاضٍهت انكسرٌت

 

Introduction    
Fractional calculus attracted the attention of many researchers because it has recently 

gained popularity in the investigation of dynamical systems. There are many applications of 

fractional derivative and fractional integration in several complex systems such as physics, 

chemistry, fluid mechanics, viscoelasticity, signal processing, mathematical biology, and 

bioengineering, and various applications in many branches of science and engineering [3]. 

One of the applications where the fractional differential equation appears is the 

equation describing the motion of fluids, which are encountered down hole during the 

process of oil well logging, through a device that has been designed to measure fluids 

viscosity. 

  

The fluid flow is governed by the Navies-Stokes equations: 

                                     (   )   
 

 
        ,                                       (1) 

                                                        , 

 

Where q denotes the fluid velocity, p denotes pressure, t denotes time, and ρ and   are the 

fluid density and kinematic viscosity, respectively. Then, it was found that the equation governing 

the motion of the fluid through the instrument is  
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                    ( )   √        ( )     ( )            ( )          ( )                (2) 

The above fractional deferential equation is well known as Bagley-Troika equation when 

    .Which appears in modeling the motion of a rigid plate immersed in a Newtonian fluid 

[12, 17] 

Several methods have been proposed to obtain the analytical solution of fractional deferential 

equations (FDEs) such as Laplace and Fourier transforms, eigenvector expansion, method based on 

Laguerre integral formula, direct solution based on Grunwald Letnikov approximation, truncated 

Taylor series expansion, and power series method [9,18-23]. There are also several methods have 

recently been proposed to solve FDEs numerically such as fractional Adams-Moulton methods, 

explicit Adams multistep methods, fractional deference method, decomposition method, variation 

iteration method, least squares finite element solution, extrapolation method, and the Kansa method 

which is mesh less, easy-to-use, and has been used to handle a broad range of partial differential 

equation models [24–31]. Also, I considered the numerical solution of the fractional boundary value 

problem method. 

  

(FBVP)       ( )   ( )   ( )           ,   -   with Dirichlet  boundary conditions 

using quadratic polynomial spline, [32]. 

The existence of at least one solution of fractional problems can be seen in  

[3, 11, 14, 16, 31].  

We consider the numerical solution of the following fractional boundary value 

Problem [FBVPs]: 

 

                                 ( )           ( )                 ,   -                  (3) 

Subject to boundary conditions: 

                                        

                                        ( )            ( )                                                                      (4)  

 

Where the function f(x) is continuous on the interval [a,b] and the operator    represents 

The Caputo fractional derivative. Where, the Caputo fractional derivative is [22] 

 

        ( )  
 

 (   )
∫ (   )      ( )( )                     
 

 
                      (5) 

      When    , (3) is reduced to the classical second order boundary value problem. 

 

2. Method of Solution 
  The following is a brief derivation of the algorithm used to solve problem (3)-(4). The method of 

solution presented in the following section is based on cubic spline approach combined with 

shooting method. 
 

2.1. Cubic Spline Solution for FDEs 
In order to develop cubic spline approximation for the fractional differential equation (3)-(4), 

we would discuss the solution of (3) as initial value problem of the form: 
   

                              ( )           ( )               ,   -                (6) 

 

                             ( )                    
 ( )    

 
                                                  (7) 

 

Let 

                                         
(   )

 
                         (8) 

 

Be a partition of [a ,b] which divides the interval into n-equal parts. 
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Cubic spline approximation will be built in each subinterval ,       (   ) -  to 

Approximate the solution of (6)-(7). Starting with the first interval [a, a + h], consider that the 

cubic polynomial spline segment   ( ) has the form: 
                       

                 ( )       (   )  
  

 
(   )  

  

 
(   )                                      (9) 

 

where                  are constants to be determined. It is straightforward to check: 
 

  ( )            
 ( )       

     
  ( )        ( )   ( )                                                                                                                                                                                                                                                                                                                  

(10) 
 

By construction, (4) satisfies (6) for    . Then, for complete determination of the spline 

In the first interval, we have to find   .From (9), we have 
 

                             
  ( )       (   )                                                                     (11) 

 

We will impose that the spline be a solution of the problem (6) at the point                                 

hence, we obtain 

                        
  (   )     (   )   (   )    (   )      (   )     (12)         

From (11), (12) and using (9) we obtain: 
                    

 .  
   

 
/    (   )   (     

   
  

 
   ( ))     ( )                

                                                                                                                                              (13) 

 

Then the spline is fully determined in the first subinterval. In the next subinterval  

   [a+h, a+2h] the cubic spline segment   ( ) has the form: 

 

  ( )  

  (   )    
 (   )(  (   ))  

  
  (   )

 
(  (   ))  

                                                                                                             
  

 
(  (   ))                   (14)  

 

From which we get 

                                    
  ( )    

  (   )    (  (   ))                                          (15) 

 

Taking into consideration that this cubic spline is of class   (,     -  ,        -)   
and again all of the coefficients of   ( ) are determined with exception of   .It is easy to 

check that the spline   ( ) be a solution of the problem (6) at the point  x = a + h, then for 

determining    we will impose that the spline be a solution of the problem (6) at the point x = a + 

2h . Hence, by repeating the previous procedure we obtain 

                    

      
  (    )     (    )   (    )    (    )                                         

(16) 

Substituting by          into (15) and equating the result by (16), we get   

    .  
   

 
/                                                                                                                                                      

   (    )   (  (   )     
 (   )  

  

 
  
  (   ))    

  (   )       

                                                                                                                                 (17)   
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By this way the spline is totally determined in the subinterval ,        - .Iterating this 

process, let us consider that the cubic spline is constructed until the subinterval,  (   )    
  -, then we can define it in the next the subinterval ,       (   ) - as: 

                             ( )     
  

 
(  (    ))                                                          (18) 

Where 

                     ∑
 

  
(    )

( )(    )(  (    ))  
                                            (19) 

 

Then the cubic spline S(x)     (⋃ ,      (   )-) 
    and easy to check that (18) verifies 

the differential equation (6) at the point       . The constant    can be determined by imposing 

that the spline be a solution of the problem (6) at the point     (   )   Hence, we obtain 

 .  
   

 
/    (  (   ) )     (  (   ) )    

  (  (   ) )       

                                                   at     (   )                                                             (20) 

 

From (19)-(20), the spline approximation for the solutions of (3) and (6) at        , i= 

1,2,...,n can be written in the following form: 

 

              (    )  ∑
 

  
   

       
( )(    )  

  

 
                             (21)                                                                                                                                                                                                                                                             

where         
 

 
[   

 (  (   )  ]     
   (    )-             

 

Lemma 2.1. Let     ,   -then the error bound associated with (21) is | ( )|   (  ) 

Proof. For each subinterval [a + ih,a +(i + 1)h], the error terms are 
     

                             (    )    (    )                                             (22) 

   

Using, Taylor expansion for  (    ) ,in the general form of Taylor we get, 

  (  (   ) )   (    )     (    )  
  

 
   (    )  

  

 
    (    )   (  ) 

                                                                                                                                                    (23) 

Then (21) & (23) led to 

                       (    )    (    )       

        .
  

 
/    

  .
  

 
/     

   (  )                                                  (24) 

 

For the subinterval ,     -  

                              (   )    (   )  
  [    ( )   ]

 
  (  )   (  )  

                                (   )    
 (   )   (  )                                               (25)                 

                                  (   )     
 (   )   ( )    

Then, for       in (24) we get:                                                                             

      (    )    (    )          .
  

 
/    

  .
  

 
/     

   (  )           

                                                                                                                                        (26)    

        (  )   (  )                         
 

In general, it can be written as          (  ) . Then, it can be proved that 

             | ( )|     (  )   (  )  
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2.2. Numerical Approximation of Fractional Term 
 

The algorithm used for solving fractional differential equation is based on transforming 

the fractional derivative into a system of ordinary differential equation. Firstly, the Caputo 

fractional derivative for y(x) can be written as: 

 

   ( )  
      

 (   )
∫ .  

 

 
/
      

 
 ( )( )                                                                                                                                                                                                                                                            

 

We now use the binomial formula [9]: 

      (   )  ∑ . 
 
/ 

      ∑
(  )   (   )

 (  )  
 
   ( )  | |                          (27) 

 

With (27) the expression for    ( ) can be written as follows with             
      

          ( )  
  

 (   )
∫  ( )( )
 

 
0∑

 (   )

 (  )  
.
 

 
/
 

 
   1    ,                                                                                                                                                                                                                                                                                                 

(28) 

The integral: 

                                      

                                    ∫    

 
 ( )( )   ,                                            (29) 

are solutions to the following system of differential equations: 

         
     ( )( )         ( )                                                            (30) 

 

According to (28) – (30) the expression for    y(x)  can be rewritten as: 

 

      ( )  
      

 (   )
∑ .

 (       )

 (      )    
  /

 
    ,                     (31) 

with    satisfying (30), (31) will represent the fundamental relation used in numerical 

representation of the fractional term in fractional differential equations. In application, we 

will use finite number of terms N suitably chosen, so (31) will be 
 

       ( )  
      

 (   )
∑ .

 (       )

 (      )    
  /

 
    ,             

  

3. Convergence Analysis 
 Let   

  be the space of cubic splines with respect to Δ and with smoothness   ,   -. Also, let us 

denote by   ( ) the cubic spline approximation to y(x). This implies that 

       
   which can be written as       ( ) ,                     . 

Without loss of generality, we will consider problem (1.3) with homogeneous Dirichlet 

boundary conditions [33]: 

                                               ( )       ( )                                                     (32) 
 

It will be assumed that y and   satisfy these boundary conditions. 
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 if we assume that the BVP    ( )     along with boundary conditions (32) has a unique solution 

then there is a Green’s function  (   ) for the problems 
                                     

                                                                                                                          (33) Where 

                                     ( )  ∫  (   ) ( )     ( )
 

 
                                              (34)        

   ( )  ∫  (   )  ( )      ( )
 

 
                                         (35) 

Where  

                        

                      (   )  {
(   )   

(   )(   )

(   )
             

 
(   )(   )

(   )
                             

}                                   (36) 

 

G is a compact operator, since  (   ) is continuous in ,   -    ,   - ,  -  
 

Lemma 3.1. Consider the  following: 
                       

                ( )    ∫  (   ) ( )   
 

 
∫ (   (   )) ( )   
 

 
    ( )   (37) 

 

Proof. From the Caputo fractional derivative    ( ) , we get 
 

       ( )    ∫  (   ) ( )  
   

   
 

                  

                   
 

 (   )
∫ (   )     .

  

   
0∫  (   ) ( )  

   

   
1/   

   

   
                 (38) 

 
 

Using the principle of differentiation under the integral sign, for the function g(x) with the 

form:   

                    ( )  ∫  (   )  
  ( )

  ( )
                                                                       (39) 

 We have that 

                   
  ( )

  
 ∫

 

  

  ( )

  ( )
  (   )    (    )

   

  
  (    )

   

  
                 (40)  

where the functions  (   ) and (    ) (   ) are both continuous in both   and   in some region 

of the (   ) plane, including             and            , then we can deduce that   

                     
  

   
0∫  (   ) ( )  

 

 
1  ∫

  

   
 (   ) ( )  

 

 
                                  (41) 

Then we have 

          ( )  
 

 (   )
∫ (   )     0∫

  

   
 (   ) ( )  

   

   
1   

   

   
                   (42)  

Changing the order of integration leads to 

                ( )  
 

 (   )
∫ 0∫ (   )       

   
 (   ) ( )  

   

   
1   

   

   
 

                ( )  ∫ 0
 

 (   )
∫ (   )       

   
 (   )  

   

   
1  ( )  

   

   
             (43) 

                ( )  ∫ (   (   ))
 

 
 ( )       ( ) 

and this the proof of lemma. 

            Substituting from (33) – (35) and (37) into (3) leads to 

                             ( )       ( )     ( )   ( )                                            (44) 

We will introduce the operator   ( ) defined by: 

     ( )   ∫ (   (   ))
 

 
 ( )    ∫  (   ) ( )  

 

 
                                     (45) 
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which maps   ,   - to  ,   - . We also introduce a linear projection    that maps   ,   -  to   
   

piecewise linear interpolation at the grid points *  + 
 . Then (44) can be rewritten as: 

                              ( )    ( )   ( ) ,                                                               (46) 

 

and we have also: 

                               ( )     ( )   ( )                                                             (47) 

 
 

By the definition of    [33], ‖     ‖  converges to zero as h approaches zero for 

continuous function  ( ). This in turn implies that ‖     ‖  converges to zero as h 

approaches zero. 

 

Theorem 3.2 (see [34]). If there is    large enough, then *(       )       + 
exists and consists of a sequence of bounded linear operators. Which means, for  

a constant   independent of    and    ,   -              

         

                                            ‖(       )   ‖   ‖ ‖ 
 

Theorem 3.3. Assuming that                                                                              

        (H1) the BVP (3) along with boundary conditions (32) has a unique solution in 

                   ,   -  
        (H2) the BVP    ( )     along with boundary conditions (32) has a unique 

                 Solution, then, for some         one has   

                                       

                     ‖   
 
‖
 

   ‖ 
(   )‖  

        ,   -        

                                                                                                                               (48) 

                   ‖   
 
‖
 

    (     )       ,   -   

 

Where    is a constant and independent of y, h and  (     ) and y(x) be the solution of (3)-

(4). Then, operating on both sides of (46) by the linear projection operator    gives 

                                                 ( )      ( )     ( )                                  (49)  

 

Adding z(x) to both sides of (3.18) and subtracting (3.16) from the results lead to 

         

       (     )( ( )    ( ))   ( )     ( )                                                 (50) 

 

Operating on both sides of (50) by (     )   leads to 

       

                       ( )    ( )  (     )  ( ( )     ( ))                               (51) 

 

Operating on both sides of (51) by the operator G and using (33)–(35), we get 

 

               ( )    ( )   (     )  (   ( )       ( ))                               (52) 
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Since the operator G is bounded and from Theorem 3.2 the operator (     )   

is also bounded, then 

                   ‖ ( )    ( )‖  ‖ ‖‖(     )  ‖‖   ( )     
  ( )‖            (53) 

 

From [33], we have that    ‖   ( )     
  ( )‖    ‖ 

(   )‖          ,   - 
                                  Where                                                                       (54) 

 

‖    ‖     (     )         ,   -                                                           (55) 

 

Where ,  (     )      *|   (    )     |          ,   -     +       
 

4. Numerical Examples 
We will consider some numerical examples illustrating the solution using cubic spline 

methods. and we used implicit Adams-Bashforth three-step method in approximating the 

fractional term. 
 

Example 4.1. Consider the initial value problem: 

                            

            ( )   √        ( )   ( )             ( )                ( )          (56) 

 

    The analytical solution of (56), as found in [17] , has the following form: 

  

         ( )    ∑ ∑
(  ) (  √ )

 
(   )          

    (       ⁄ ) (        ⁄ ) 
 
   

 
                                      (57) 

 

Then by using MathCAD program we get the following numerical results   

 

Table 1 : Numerical results of Example 4.1. 
 

                      K=1                                k=1/5                            k=0.005                                                       

X      Analytical        Approx         Analytical     Approx        Analytical      Approx     

           solution           solution        solution        solution         solution        solution 

0                        1                     1                     1                   1                    1                    1 

0.125          0.99437          0.993126        0.992747         0.992391  0.992212     0.992212 

0.250          0.979919        0.974802        0.971922         0.970148        0.968995     0.968983 

0.375          0.958424        0.944545        0.938558         0.933609        0.930733     0.930674 

0.500          0.930957        0.904813        0.893615         0.883958        0.878038     0.877899 

0.625          0.898335        0.857938     0.838087     0.822499        0.811743     0.811497 

0.750          0.861241        0.805442        0.773025         0.750552        0.732892     0.732514 

0.875          0.820277        0.748795        0.699540         0.669584        0.642719     0.642193 

1                 0.775989        0.688838        0.618798         0.580978        0.542633     0.541945 

 

 

                     

Substituting from Theorem 3.2 and (54) into (53) completes the proof. 
 

Note that the difference between the two solution is very small and this error shows that the method 

is accurate   
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Example 4.2. Consider the initial value problem: 

    

                    ( )         ( )   ( )             ( )    ( )                        (58) 

     
Table 2 : Numerical results of Example 4.2. 

 

       X 

Fractional diff. 

method [29] 

                     

      Our method 

0 

 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

 

0.039473 

0.157703 

0.352402 

0.622083 

0.957963 

1.360551 

1.823267 

2.340749 

2.907324 

3.517013 

0 

 

0.039933 

0.158981 

0.353996 

0.619900 

0.950455 

1.348551 

1.796370 

2.899808 

2.295551 

3.499200 
 

This example had been solved for many methods. Table 2 shows a comparison between the solution 

of (58) by our method and fractional differential method. 

 

5. Conclusion 
     New scheme for solving class of fractional boundary value problem is presented using cubic 

spline method combined with shooting method. Transforming the fractional derivative into a system 

of ordinary differential equations is used for approximating the fractional term. Convergence 

analysis of the method is considered and is shown to be second order. Numerical comparisons 

between the solution using this new method and the methods introduced in [17, 29] are presented. 

The obtained numerical results show that the proposed method maintains a remarkable high 

accuracy which makes it encouraging for dealing with the solution of two-point boundary value 

problem of fractional order. 
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