The cyclic decomposition of the group $D_{2^n} \times C_3$

 $D_{2^n} \times C_3$ التجزئة الدائرية للزمرة

Intissar Abd AL- Hur Kadum

AL-Kufa university \ College of Education for Girls\ Department of Mathematics Email: <u>intesara.kadhim@uokufa.edu.iq</u>

Abstract

The group of all Z-valued characters of a finite group G over the group of induced unit characters from all cyclic subgroups of G forms a finite a belian group, called *Artin Cokernel of G*, denoted by AC(G). The problem of finding the cyclic decomposition of Artin cokernel $D_{2^n} \times C_3$ has been considered in this paper, the cyclic decomposition of $D_{2^n} \times C_3$ is :

$$\operatorname{AC}(\operatorname{D}_{2^{n}} \times \operatorname{C}_{3}) = \bigoplus_{i=1}^{2n} \operatorname{C}_{2}.$$

Also we give the general form of rational character and Artin's characters tables of $D_{2^n} \times C_3 \, group.$

المستخلص :
إن زمرة كل الشواخص العمومية ذات القيم الصحيحة للزمرة المنتهية G على زمرة الشواخص المحتثة من الشواخص
الأحادية للزمر الجزئية الدائرية من الزمرة G تكون زمرة ابيلية منتهية و تسمى النواة المشارك – آرتن للزمرة G ويرمز لها
بالرمز ((AC(G)).
إن مسألة إيجاد التجزئة الدائرية لزمرة القسمة (G)AC قد اعتبرت في هذه الرسالة للزمرة
$$D_{2^n} \times C_3$$
 ،حيث وجدنا إن
التجزئة الدائرية للزمرة $D_{2^n} \times C_3$:
 $D_{2^n} \times C_3 = \bigoplus^{2n} C_3$

$$i=1$$
 $i=1$ $i=1$.
اللزمرة وكذلك وجدنا الصيغة العامة لجدول الشواخص النسبية وجدول شواخص ارتن D $_{2^n} imes {
m C}_3$

Introduction:

The problem of determining the cyclic decomposition of AC(G) seem to be untouched. we use the concepts of invariant matrix in linear algebra to find the cyclic decomposition of AC(G), G is considered to be the group $D_{2^n} \times C_3$. In 1968 T.Y Lam [8] defined AC(G) and he studied AC(G), when G is a cyclic group.

In 2000 H.R .Yassin [4] studied the cyclic decomposition of AC(G) when G is an elementary abelian group . In 2006 A.S. Abed [2] found $Ar(C_n)$ when C_n is the cyclic group of order n .

In this paper ,we find the rational valued character table and the artin's characters table of the direct product group $D_{2^n} \times C_3$, where D_{2^n} is the dihedral group of order 2^{n+1} and C_3 is the cyclic group of order 3, we also find the cyclic decomposition of the factor group $AC(D_{2^n} \times C_3)$.

<u>1. Some Basic Concepts:</u>

In this section, we give basic concepts, notations and theorems about matrix representation, characters and Artin characters.

Definition (1.1) [3]

The general linear group GL(n,F) is a multiplicative group of all non-singular $n \times n$ matrices over the field F.

Definition (1.2) [3]

A matrix representation of the group G is a homomorphism of G into GL(n,F), n is the degree of matrix representation T. In particular, T is called a unit representation (principal) if T(g) = 1, for all $g \in G$.

Definition (1.3) [3]

The trace of an $n \times n$ matrices A is the sum of the main diagonal elements, denoted by tr(A). **Definition (1.4)** [3]

Let T be a matrix representation of degree n of a finite group G over the field F. The character χ of degree n of T is the mapping $\chi:G \rightarrow F$ defined by $\chi(g)=tr(T(g))$ for all $g \in G$. In particular ,the character of the principal representation if ($\chi(g)=1$, for all $g \in G$) is called the principal character. **Definition** (1.5) [3]

Two elements g and h in a group G are said to be conjugate if $h = xgx^{-1}$ for some $x \in G$. The relation of conjugacy is an equivalence relation on G. The equivalence classes determined by this relation are referred to be as the conjugate classes, denoted by CL_g,

 $g \in G$ is the conjugate class of the element g.

Definition (1.6) [3]

The centralizer of x in G is the subgroup $C_G(x) = \{a \in G: a \times a^{-1} = x\}$.

Definition (1.7) [3]

Let H be a subgroup of G and ϕ be a character of H, the induced character on G is given by

$$\phi \uparrow^G (g) = \frac{1}{|H|} \sum_{x \in G} \phi^{\circ}(xgx^{-1}) \text{ where } g \in G \text{ and } \phi^{\circ} \text{ is defined by } \phi^{\circ}(h) = \begin{cases} \phi(h) \text{ if } h \in H \\ 0 \text{ if } h \notin H \end{cases}$$

Theorem (1.8) [4]

Theorem (1.8) [4]

Let H be a cyclic subgroup of G and $h_{1,h_{2,h_{3},...,h_{m}}}$ are chosen representatives for the m-conjugate classes of H in CL g ,g \in G ,then

$$\phi \uparrow^G (g) = \frac{\left|C_G(g)\right|}{\left|C_H(g)\right|} \sum_{i=1}^m \varphi(h_i) \quad if \quad h_i \in H \cap CL(g)$$

 $\phi \uparrow^G (g) = 0$ if $H \cap CL(g) = \phi$

Definition (1.9) [4]

Let G be a finite group ,any character induced from the principal character of a cyclic subgroup of G is called Artin character of G.

Definition (1.10) [5]

Two elements of G are said to be Γ -conjugate if the cyclic subgroups they generate are conjugate in G, this defines an equivalence relation on G. Its classes are called Γ -classes.

Proposition (1.11): [8]

The number of all distinct Artin valued characters of a finite group G equal to the number of all distinct Γ -classes on G.

Definition (1.12): [2]

The complete information about Artin valued characters of a finite group G is displayed in a table called the Artin characters table of G.denoted by Ar(G) which is $l \times l$ matrix whose columns are Γ -classes and rows are the values of all Artin characters of G, where l is the number of Γ -classes.

<u>Definition (1.1</u>3): [3]

A rational valued character θ of G is a character whose values are in Z, that is $\theta(g)\in Z,$ for all $g\in G$.

Proposition (1.14): [6]

The number of all distinct rational valued characters of a finite group G is equal to the number of all distinct Γ -classes on G.

Definition (1.15): [6]

The complete information about rational valued characters of a finite group G is displayed in a table called the rational valued characters table of G.denoted it by $\equiv^*(G)$ which is $l \times l$ matrix whose columns are Γ -classes and rows are the values of all rational valued characters of G, where l is the number of Γ -classes.

<u>Theorem [Artin] (1.16): [5]</u>

Every rational valued character of G can be written as a linear combination of Artin characters with coefficient rational numbers .

<u>Theorem (1.17)</u>:[5]

Let $T_1: G_1 \rightarrow GL(n, K)$ and $T_1: G_2 \rightarrow GL(m, K)$ are two irreducible representations of the group G_1 and G_2 with characters χ_1 and χ_2 respectively, then $T_1 \otimes T_2$ is irreducible representation of the group $G_1 \times G_2$ with the character $\chi_1 \chi_2$.

<u>Proposition (1.18):[6]</u>

The rational valued characters $\theta_i = \sum_{\substack{\sigma \in Gal \quad (Q \ (\chi_i) \ /Q \)}} \sigma(\chi_i)$ form basis for $\overline{R}(G)$,

where χ_i are the irreducible characters of G and their numbers are equal to the number of all distinct Γ - classes of G.

2.The factor Group AC(G):-

The definition of the group AC(G) was introduced by T.Y Lam [8] in 1967. The applications of the factor group AC(G) not only in the mathematics but also in physics and chemistry .In this section we shall study AC(G), dihedral group D_n and $\equiv^*(D_n)$.

<u>Definition (2.1)</u>: [8]

Let $\overline{R}(G)$ be the group of Z-valued generalized characters of G under the operation pointwise addition and T(G) is the normal subgroup of $\overline{R}(G)$ generated by Artin characters. The abelian $\overline{R}(G)$ (T(G) is called Artin coherent of G denoted by AC(G))

group R(G)/T(G) is called *Artin cokernel of G*, denoted by AC(G).

<u>Definition (2.2)</u>: [6]

Let M be a matrix with entries in a principal ideal domain R. A k – *minor of M* is the determinant of k×k sub matrix preserving row and column order.

<u>Definition (2.3)</u>: [6]

A k-th determinant divisor of M is the greatest common divisor (g.c.d) of all the k-minors of M, this is denoted by $D_k(M)$.

<u>Theorem (2.4)</u>: [6]

Let M be an $\,k\!\times\!k$ matrix with entries in a principal ideal domain R , then there exits matrices P and W such that :

1 - P and W are invertible .

2 - P M W = D .

3 - D is a diagonal matrix .

4 -If we denote D_{ij} by d_i then there exists a natural number m; $0 \le m \le k$

such that j > m implies $d_j = 0$ and $j \le m$ implies $d_j \ne 0$ and $1 \le j \le m$ implies d_j / d_{j-1}

Definition (2.5): [6]

Let M be matrix with entries in a principal ideal domain R, equivalent to matrix D = diag

 $\{d_1, d_2, \dots, d_m, 0, 0, \dots, 0\}$ such that d_j / d_{j-1} for $1 \le j < m$, we call D *the invariant*

factor matrix of M and d_1, d_2, \dots, d_m the invariant factors of M.

Remark(2.6) :

According to the Artin theorem (1.16) there exists an invertible matrix $M^{-1}(G)$ with entries in the set of rational numbers such that : $\stackrel{*}{\equiv}(G) = M^{-1}(G)$. Ar (G)

and this implies, M(G) = Ar(G). (=(G))by theorem (2.4) there exist two matrices P(G), W(G) such that P(G).M(G).W(G)=

diag $\{d_1, d_2, \dots, d_l\} = D(G)$, where $d_j = -D_j (M(G)) | D_{j_{-1}}(M(G))$ and l is the number of Γ - classes. <u>Theorem (2.7)</u>: [4]

$$AC(G) = \bigoplus_{j=1}^{l} C_{dj} \text{ where } d_j = \pm D_j(M(G)) \setminus D_{j+1}(M(G))$$

Definition(2.8)[9]

The group of all symmetries of the regular polygon with n sides , including both rotations and reflections , is called *dihedral group* and denoted by D_n .

The set of rotations generated by r - counterclockwise rotation with angle $2\pi/n$ of order n, and the set of reflections are of order 2 and every element s^{j} generates $\{1, s^{j}\}$, where 1 is the identity element in D_{n} .

In general we can write D_n as: $D_n = \{ s^j r^k : 0 \le k \le n-1, 0 \le j \le 1 \}$ Where $r^n = 1, s^2 = 1, sr^k s = r^{-k}$.

The element r generates the group C_n which is a cyclic subgroup of D_n . **Theorem(2.9)** :[16]

The cyclic decomposition of $AC(D_{2^n})$ is: $AC(D_{2^n}) = \bigoplus_{i=1}^{n-1} C_2$

<u>Remark (2.10):[5]</u>

In this work we consider the direct product group $D_{2^n} \times C_3$, where C_3 is a cyclic group of the order 3 consisting of elements $\{1, r', r'^2\}$ with $(r')^3=1$. The order of the group $| D_{2^n} \times C_3 | = | D_{2^n} | \cdot | C_3 | = 2.2^n \cdot .3 = 3.2^{n+1}$

<u>Proposition (2.11)</u>: [6]

The rational valued characters table of the cyclic group $(\equiv^* C_p)$, where p is a prime number can be given as follows :

(≡*	C_p)	=
-----	-------	---	---

Γ-classes	[1]	[<i>r</i>]
$\boldsymbol{\theta}_1$	p-1	-1
θ_2	1	1

<u>Proposition (2.12)</u>: [6] The rational valued characters table of the cyclic group C_{2^n} of the rank n +1 which is denoted by $(\equiv^*(C_2^n))$, is given as follows:

Γ-classes	[1]	$[r^{2^{n-1}}]$	$[r^{2^{n-2}}]$		$[r^2]$	[r]
		[,]				
θ_1	2^{n-1}	-2^{n-1}	0		0	0
θ_2	2^{n-2}	2^{n-2}	- 2 ^{<i>n</i>-2}		0	0
θ_3	2^{n-3}	2^{n-3}	2^{n-3}		0	0
-	1	-	-	·	-	ł
θ_{n-1}	1	1	1		-2	0
θ_n	1	1	1		1	-1
θ_{n+1}	1	1	1		1	1

<u>Theorem(2.13)</u>:[4]

The rational valued character table of the dihedral group D_{2^n} is equal to $\equiv^* (D_{2^n}) =$

	Γ -classes of C_2^n	[<i>s</i>]	[sr]
θ_1		0	0
θ_2	$=^{*}(C,^{n})$	0	0
•••	$=(C_2)$:	
θ_n		-1	1
θ_{n+1}		1	1
	1 1 … 1		
θ_{n+2}	1 1 … 1	-1	-1
θ_{n+3}		1	-1

where *n* is the number of Γ -classes of the group C_2^n , $\theta_{n+3}(r^k)=1$ if k is an even number and $\theta_{n+3}(r^k) = -1$ if k is an odd number.

<u>Theorem (2.14)</u>: [2] [3]

The general form of Artin character of C_2^{n} is given by table:

Г- classes	[1]	$\left[r^{2^{n-1}}\right]$	$\left[r^{2^{n-2}}\right]$	[r]
φ_1	2^n	0	0	0
$\varphi_{_2}$	2^{n-1}	2^{n-1}	0	0
φ_{3}	2^{n-2}	2^{n-2}	2^{n-2}	0
ł				·.
φ_n	n	n	n	0
φ_{n+1}	1	1	1	1

 $Ar(C_2^n) =$

And the general form of Artin characters table of C_p when p is a prime number is given by:

Γ- classes	[1]	$\begin{bmatrix} r \end{bmatrix}$
$ CL_{\alpha} $	1	1
$C_{C_5}(CL_{\alpha})$	Р	Р
$arphi_1'$	Р	0
φ_2'	1	1

Proposition (2.15): [7]

 $Ar(C_p) =$

 $W(C_{2^n}) = I_{n+1}$ where I_{n+1} is an identity matrix and $D(C_{2^n}) = \{1, 1, \dots, 1\}$

Remark :(2.16) :

We can write $M(C_{2^n})$ as the following :

 $\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$

which is $(n+1) \times (n+1)$ square matrix.

<u>Theorem(217.):[1]</u>

The Artin's character table of the dihedral group D_2^n when n is an even number is given as follows :

		[1]	$\left[r^{\frac{n}{2}}\right]$	Γ – Classes of C_n		[s]	[sr]
	$ CL_{\alpha} $	1	1	2 2	2	2 ⁿ / 2	2 ⁿ / 2
	$\left C_{D_n}(CL_{\alpha})\right $	2^{n+1}	2^{n+1}	$2^n \ 2^n \ \dots$	2 ^{<i>n</i>}	2^{2}	2^2
$Ar(D_2^n) =$	Φ_1					0	0
	:			$2.\operatorname{Ar}(\operatorname{C_2}^n)$		•	÷
	Φ_l						0
	Φ_{l+1}	2^n	0		0	0	2
	Φ_{l+2}	2^n	0		0	2	0

Where *l* is the number of Γ -classes of C_2^n and $\Phi_j, 1 \le j \le l+2$ are the Artin's characters of the group D_2^n .

$\underline{Proposition (2.18):[1]} \\ M(D_{2^n}) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2M(C_{2^n}) & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 1 & 1 \end{bmatrix} n \text{ times} \\ 0 & 0 & \cdots & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & \cdots & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & \cdots & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & \cdots & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$

Which is $(n+3) \times (n+3)$ square matrix.

<u>Proposition (2.19)</u>:[1]

The matrices $P(D_{2^n})$ and $W(D_{2^n})$ are taking the forms :

Where I_n is an identity matrix of the order n, $P(D_{2^n})$ and $W(D_{2^n})$ are $(n+3) \times (n+3)$ square matrices.

3.The Main Results

In this section we give the general forms of rational valued character table , Artin's characters table and the cyclic decomposition of the factor group of the group $D_{2^n} \times C_3$.

<u>Theorem(1.3)</u>:-

The rational valued character table of the group $D_{2^n} \times C_3$ is equal to the tensor product of the rational valued characters table of D_2^n and the rational valued characters table of C_3 that is $\equiv^*(D_{2^n} \times C_3) \equiv \equiv^*(D_{2^n}) \otimes \equiv^*(C_3)$ <u>Proof</u>:-

We denote by χ_i to the irreducible characters of D_{2^n} and θ_i , 1 < i < n+3 to the rational valued characters of D_{2^n} ,

Since the character table of C_3 is equal to

	CL _α	$[g'_1]$	$[g'_{2}]$	$[g'_{3}]$
≡ C. =]		
- 03 -	χ'_1	1	1	1
	χ'_2	1	ω	ω^2
	χ'_3	1	ω^2	ω

 $\omega = e^{2\pi i \ln i}$; i = 1, 2, 3 and by proposition(2.11), the rational valued character table of C₃ is equal to

	Γ- Clases	$[g'_1]$	$[g'_2]$
≡*(C3)=	$ heta_1'$	2	-1
	$ heta_2'$	1	1

From definition of $D_{2^n} \times C_3$ and by theorem (1.17) we have each element g_{hk} in $D_{2^n} \times C_3$ can be written as follows $g_{hk} = g_{h} \cdot g'_{k}$ where $g_{h} \in D_{2^n}$, h=1,2,3,...,n+1 and $g'_{k} \in C_3$, k=1,2 and each irreducible character χ_{ij} of $D_{2^n} \times C_3$ can be written as follows

 $\chi_{ij} = \chi_i \cdot \chi'_j$

where χ_i is an irreducible character of D_{2^n} , i = 1, 2, ..., n+3 and χ'_j is the irreducible character of C_3 , j=1,2.

then

$$\chi_{ij}(g_{hk}) = \begin{cases} 2\chi_i(g_h) & \text{if} \quad j=1 \text{ and } k=1\\ -\chi_i(g_h) & \text{if} \quad j=2 \text{ and } k=1\\ \chi_i(g_h) & \text{if} \quad j=1,2 \text{ and } k=2 \end{cases}$$

denote by θ_{ii} to the rational valued characters of $D_{2^n} \times C_3$.

From Proposition (2.18)

$$[I] \ \theta_{i1} = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i2})/\mathcal{Q})} \sigma(\chi_{i2})$$

then $\ \theta_{i1}(g_{hk}) = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i2}(g_{hk}))/\mathcal{Q})} \sigma(\chi_{i2}(g_{hk}))$
(a) If $k=1$.
 $\ \theta_{i1}(g_{hk}) = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(g_{h}))/\mathcal{Q})} \sigma(2\chi_{i}(g_{h})) = 2\theta_{i}(g_{h}) = \theta_{i}(g_{h}) \cdot 2 = \theta_{i}(g_{h}) \cdot \theta_{1}'(g_{k}')$
(b) $k=2$
 $\ \theta_{i1}(g_{hk}) = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(g_{h}))/\mathcal{Q})} \sigma(\chi_{i}(g_{h})) = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(g_{h}))/\mathcal{Q})} \sigma(\chi_{i}(g_{h})) \cdot (1) = \theta_{i}(g_{h}) \cdot \theta_{1}'(g_{k}') \cdot (g_{h}')$
[II] $\ \theta_{i2} = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(g_{h}))/\mathcal{Q})} \sigma(\chi_{i}(g_{h})) \cdot (1) = \theta_{i}(g_{h}) \cdot \theta_{1}'(g_{k}') \cdot (g_{h}') \cdot (g_$

Then $\equiv^* (D_{2^n} \times C_3) = \equiv^* (D_{2^n}) \otimes \equiv^* (C_3).$

Example(3.2):

By theorem (1.3) we get $\equiv^* (D_{2^3} \times C_3) = \equiv^* (D_{2^3}) \otimes \equiv^* (C_3)$

	Γ	8	-8	0	0	0	0	-4	4	0	0	0	0
		4	4	-4	0	0	0	-2	-2	2	0	0	0
		2	2	2	-2	-2	2	-1	-1	-1	1	1	-1
		2	2	2	2	2	2	-1	-1	-1	-1	-1	-1
		2	2	2	2	-2	-2	-1	-1	-1	-1	1	1
_		2	2	2	-2	2	-2	-1	-1	-1	1	-1	1
-		4	-4	0	0	0	0	4	-4	0	0	0	0
		2	2	-2	0	0	0	2	2	-2	0	0	0
		1	1	1	-1	-1	1	1	1	1	-1	-1	1
		1	1	1	1	1	1	1	1	1	1	1	1
		1	1	1	1	-1	-1	1	1	1	1	-1	-1
		1	1	1	-1	1	-1	1	1	1	-1	1	-1_

<u>Theorem(3.3)</u>:

 $\equiv C_3$

The artin character table of the group $D_{2^n} \times C_3$ is equal to the tensor product of the artin characters table of D_{2^n} and the artin characters table of C_3 that is $Ar(D_{2^n} \times C_3) = Ar(D_{2^n}) \otimes Ar(C_3)$ *Proof :-*

We denote by χ_i to the irreducible characters of D_{2^n} and θ_i , 1 < i < n+3 to the rational valued characters of D_{2^n} , Since the character table of C_3 equal to

	CL_{α}	$[g'_1]$	$[g'_{2}]$	$[g'_{3}]$
=	ϕ_1'	1	1	1
	ϕ_2'	1	ω	ω^2
	ϕ_2'	1	ω^2	ω

 $\omega = e^{2\pi i \ln i}$; i = 1, 2, 3 and by proposition(2.14), the artin character table of C₃ is equal to

	Γ- Clases	$[g'_1]$	$[g'_{2}]$
$Ar(C_3) =$	$ heta_1'$	3	0
	$ heta_2'$	1	1

From definition of $D_{2^n} \times C_3$ and by theorem (1.17) we have each element g_{hk} in $D_{2^n} \times C_3$ can be written as follows $g_{hk} = g_{h} \cdot g'_k$ where $g_h \in D_{2^n}$, h = 1, 2, 3, ..., n + 3 and $g'_k \in C_3$, k = 1, 2and each irreducible character ϕ_{ij} of $D_{2^n} \times C_3$ can be written as follows

 $\phi_{ij} = \phi_i . \phi'_j$

where ϕ_i is an irreducible character of D_2^n , i = 1, 2, ..., n+3 and ϕ'_j is the irreducible character of C_3 , j=1,2.

then

$$(g_{hk}) = \begin{cases} 3\phi_i(g_h) & if \quad j=1 \quad and \quad k=1 \\ 0 & if \quad j=2 \quad and \quad k=1 \\ \phi_i(g_h) & if \quad j=1,2 \quad and \quad k=2 \end{cases}$$

denote by $\Phi_{(i,j)}$ to the artin characters of $D_{2^n} \times C_3$.

 ϕ_{ij}

If H is a cyclic subgroup of the group $D_{2^n} \times C_3$, we use theorem(1.8) to find each

$$\Phi_{(i,j)}(g_{hk}) = \frac{\left| \begin{array}{c} C_{D_{2^n} \times C_3}(g_{hk}) \right|}{\left| \begin{array}{c} C_H(g_{hk}) \right|} \\ \sum_{t=1}^m \phi(x_t) \text{ if } H \cap CL(g) = \emptyset \end{array}$$
and
$$\Phi_{D_{2^n}}(g_{hk}) = 0 \text{ if } H \cap CL(g) = \phi \text{ where } 1 \le i \le l, 1 \le i \le 2$$

and $\Phi_{(i,j)}(g) = 0$ if $H \cap CL(g) = \phi$ where $1 \le i \le l, 1 \le j \le 2$ $\begin{vmatrix} C_{D_{2^n} \times C_3}(g_{hk}) \\ m \end{vmatrix}$

$$[I] \Phi_{(i,2)}(g_{hk}) = \frac{|-2^{n}|^{-2^{n}} \sum_{t=1}^{n-1} \phi_{ij}(x_{t}) \text{ then}}{|C_{H}(g_{hk})|} = \frac{|C_{D_{2^{n}}}| \cdot |C_{3}|}{|C_{H}(g_{h})| \cdot |C_{H}(g_{k}')|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \sum_{t=1}^{m_{2}} \phi_{2}'(x_{t})$$
(a) If $k=1$ then $\Phi_{i}(g_{h})=0$ (since $H \cap CL(g)=\phi$)

(a) If
$$k=1$$
 then $\Phi_{(i,j)}(g) = 0$ (since $H \cap CL(g) = \phi$)

$$\Phi_{(i,2)}(g_{hk}) = \frac{\left|C_{D_{2^{n}}}\right| \cdot \left|C_{3}\right|}{\left|C_{H}(g_{h})\right| \cdot \left|C_{H}(g_{1}')\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \sum_{t=1}^{m_{2}} \phi_{2}'(x_{t}) = \frac{\left|C_{D_{2^{n}}}\right|}{\left|C_{H}(g_{h})\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \left(\frac{3}{3} \quad 0\right)$$

$$= \Phi_i (g_h) . 0 = \Phi_i (g_h) . \Phi_2 (g'_1)$$

(b) If $k=2$ then $\Phi_{(i,j)} (g) = 3$ (since H \cap CL(g)= {(g,1'), (g,r'), (g,r'_2)})

$$\Phi_{(i,2)}(g_{hk}) = \frac{\left|C_{D_{2^{n}}}\right| \cdot \left|C_{3}\right|}{\left|C_{H}(g_{h})\right| \cdot \left|C_{H}(g_{2}')\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \sum_{t=1}^{m_{2}} \phi_{2}'(x_{t}) = \frac{\left|C_{D_{2^{n}}}\right|}{\left|C_{H}(g_{h})\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \left(\frac{3}{3}\right)$$

$$= \Phi_{i} (g_{h}) \cdot 0 = \Phi_{i} (g_{h}) \cdot \Phi_{2} (g_{2}')$$
[II] $\Phi_{(i,1)} (g_{hk}) = \frac{|C_{D_{2^{n}}}| \cdot |C_{3}|}{|C_{H} (g_{h})| \cdot |C_{H} (g_{k}')|} \sum_{t=1}^{m_{1}} \phi_{i} (x_{t}) \sum_{t=1}^{m_{2}} \phi_{1}' (x_{t})$
(a) If k = 1then $\Phi_{(i,j)} (g) = 1$ (since $H \cap CL(g) = \{(g,1')\}$)

$$\Phi_{(i,1)}(g_{hk}) = \frac{\left|C_{D_{2^{n}}}\right| \cdot \left|C_{3}\right|}{\left|C_{H}(g_{h})\right| \cdot \left|C_{H}(g_{1}')\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \sum_{t=1}^{m_{2}} \phi_{i}'(x_{t}) = \frac{\left|C_{D_{2^{n}}}\right|}{\left|C_{H}(g_{h})\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \left(\frac{3}{3} - 1\right)$$

$$= \Phi_i (g_h) \cdot 1 = \Phi_i (g_h) \cdot \Phi_1 (g'_1)$$

(b) If $k=2$ then $\Phi_{(i,j)} (g) = 1$ (since $H \cap CL(g) = \{(g,r')\}$

$$\Phi_{(i,1)}(g_{hk}) = \frac{\left|C_{D_{2^{n}}}\right| \cdot \left|C_{3}\right|}{\left|C_{H}(g_{h})\right| \cdot \left|C_{H}(g'_{2})\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \sum_{t=1}^{m_{2}} \phi'_{1}(x_{t}) = \frac{\left|C_{D_{2^{n}}}\right|}{\left|C_{H}(g_{h})\right|} \sum_{t=1}^{m_{1}} \phi_{i}(x_{t}) \left(\frac{3}{3}\right) (1)$$

 $=\Phi_i(g_h).1=\Phi_i(g_h).\Phi_1(g'_2)$ From [I] and [II] we have $\Phi_{ij} = \Phi_i \cdot \Phi_j$ Then $\operatorname{Ar}(D_{2^n} \times C_3) = \operatorname{Ar}(D_{2^n}) \otimes \operatorname{Ar}(C_3)$.

Example(3.4):

To find the matrix $Ar(D_{2^3} \times C_3)$ from theorems (2.17) and (2.14)

$$\operatorname{Ar}(\operatorname{D}_{2^{3}}) = \begin{bmatrix} 16 & 0 & 0 & 0 & 0 & 0 \\ 8 & 8 & 0 & 0 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 & 0 \\ 2 & 2 & 2 & 2 & 0 & 0 \\ 8 & 0 & 0 & 0 & 2 & 0 \\ 8 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} \text{ and } \operatorname{Ar}(\operatorname{C}_{3}) = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$$

Which is $(3+3) \times (3+3)$ square matrix. Using theorem (3.3), we have

 $\frac{Proposition (3.5)}{M(D_{2^3} \times C_3)} = \begin{bmatrix} M(D_{2^n}) & M(D_{2^n}) \\ 0 & M(D_{2^n}) \end{bmatrix}$ which is $\lceil 2(n+3) \rceil \times \lceil 2(n+3) \rceil$ square matrix. By theorem(3.1) we obtain the Artin characters table $Ar(D_{2^n} \times C_3)$ and from Proof : theorem(3.1) we find the rational valued characters table $\equiv^* (D_{2^n} \otimes C_3)$ $M(D_{2^3} \times C_3)$ we find the matrix $M(D_{2^3} \times C_3)$: Thus by definition of

$$M(D_{2^{n}} \times C_{3}) = Ar(D_{2^{n}} \times C_{3}). (\equiv^{*} (D_{2^{n}} \times C_{3}))^{-1} = \begin{bmatrix} M(D_{2^{n}}) & M(D_{2^{n}}) \\ 0 & M(D_{2^{n}}) \end{bmatrix}$$

Example (3.6): To find $(M(D_{2^n} \times C_3))$ we must

Which is $2(3+1) \times 2(3+1)$ square matrix. Then by proposition (3.5) we have

$$\mathbf{M}(D_{2^{n}} \times \mathbf{C}_{3}) = \begin{bmatrix} \mathbf{M}(\mathbf{D}_{2^{3}}) & \mathbf{M}(\mathbf{D}_{2^{3}})) \\ \hline \mathbf{M}(\mathbf{D}_{2^{n}}) = \begin{bmatrix} \mathbf{M}(\mathbf{D}_{2^{3}}) & \mathbf{M}(\mathbf{D}_{2^{3}})) \\ \hline \mathbf{M}(\mathbf{D}_{2^{3}}) = \begin{bmatrix} \mathbf{M}(\mathbf{D}_{2^{3}}) & \mathbf{M}(\mathbf{D}_{2^{3}})) \\ \hline \mathbf{M}(\mathbf{D}_{2^{3}}) \end{bmatrix} = \begin{bmatrix} \mathbf{M}(\mathbf{D}_{2^{3}}) & \mathbf{M}(\mathbf{D}_{2^{3}})) \\ \hline \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{2} & \mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}$$

Theorem (3.7):

 $\frac{2n-times}{D(D_{2^n} \otimes C_3)} = diag \{2, 2, \dots 2, 1, 1, 1, 1, 1\}$ $\frac{Proof}{2^n} : \text{the matrices } P(D_{2^n} \otimes C_3) \text{ and } W(D_{2^n} \otimes C_3) \text{ are taking the } 1$ forms : which is $\lceil 2(n+3) \rceil \times \lceil 2(n+3) \rceil$ square matrix. and the form of $W(D_{2^n} \otimes C_3)$ is : $W(D_{2^n} \otimes C_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes W(D_{2^n})$ which is $[2(n+3)] \times [2(n+3)]$ square matrix.

By using theorem(2.4) we have $M(D_{2^n} \otimes C_3)$. From proposition(3.3) and the above forms of $P(D_{2^n} \otimes C_3)$ and $W(D_{2^n} \otimes C_3)$) then :

 $P(D_{2^{n}} \otimes C_{3}) \cdot M(D_{2^{n}} \otimes C_{3}) \cdot W(D_{2^{n}} \otimes C_{3}) = diag \{ \underbrace{2, -2, \cdots, 2}_{2, 1, 1, 1, 1, 1} \} = D(D_{2^{n}} \otimes C_{3})$ which is $[2(n+3)] \times [2(n+3)]$ square matrix.

Now we can find the invariant factors matrix of the group $D_{2^n} \otimes C_3$, $D(D_{2^n} \otimes C_3)$ and the cyclic decomposition of the factor group $AC(D_{2^n} \otimes C_3)$ by using theorem(3.7).

Corollary (3.8):

The cyclic decomposition of AC($D_{2^n} \otimes C_3$) is : AC($D_{2^n} \times C_3$) = $\bigoplus_{i=1}^{2n} C_2$

<u>Proof :</u>

By theorem (3.7), we have $D(D_{2^{n}} \otimes C_{3}) = diag\{\overbrace{2, 2, 2, 2, ..., 2}^{2n}, 1, 1, 1, 1, 1, 1\}$ Then by theorem (2.7) we have $AC(D_{2^{n}} \otimes C_{3}) = \bigoplus_{i=1}^{2n} C_{2} .$ Example(3.9) $1 - AC(D_{2^{5}} \otimes C_{3}) = \bigoplus_{i=1}^{2(5)} C_{2} = \bigoplus_{i=1}^{10} C_{2}$ $2 - AC(D_{2^{3}} \otimes C_{3}) = \bigoplus_{i=1}^{2(3)} C_{2} = \bigoplus_{i=1}^{6} C_{2}$

References

- [1] A.H.Mohammed,2006,"On Artin Cokernal Of Finite Group", M. Sc. thesis ,University of Kufa.
- [2] **A.S.Abid,2006**, "Artin's Characters Table of Dihedral Group for Odd Number ", MSc.thesis, university of kufa.
- [3] **C. Curits and I.Reiner, 1981**," Methods of Representation Theory with Application to Finite Groups and Order", John wily& sons, New york.
- [4] H. R. Yassien, 2000," On Artin Cokernel of Finite Group", M. Sc. Thesis, Babylon University.
- [5] J. P. Serre, 1977, "Linear Representation of Finite Groups ", Springer- Verlage.
- [6] **M. S. Kirdar**, **1980**, "The Factor Group of The Z-Valued Class Function Modulo the Group of The Generalized Characters ", Ph. D. Thesis, University of Birmingham.
- [7] **R.N. Mirza, 2007,** "On Artin Cokernel of Dihedral Group Dn When n is An Odd Number ",M.Sc. thesis, University of Kufa.
- [8] Lam. T.Y, 1967, "Artin Exponent of Finite Groups ", Columbia University, New York.
- [9] W. J. Glibert ,2004, " .Modern Algebra With Application ", Calgary University.