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Abstract

n?-3n

In this paper, we find six types of S X3 X % - contingency tables with fixed two dimensional

marginal using the action of largest subgroup H of dihedral group D,, , n is multiple of 6 and the
Markov basis B such that B is H-invariant, where B is found by H. H. Abbass and H. S.
Mohammed Hussein [7].

Keywords linear transformation, contingency table, action, dihedral group, Markov basis, toric
ideal.

LAY
. . 2_ £ . . .
5a) Sl aladtils el cpaadl il ae sl sk Jslaa & 33” X3 X2 e gl 6 an ot ) N b

B laxic H Jdudloymie e A B uny B € le (ol 56 Glavia N ¢ D), 7 sdand) 43583 505 (e H 4 5>
[7]oms dans Glalis Gn s (sl (53 Gas Aol 5 Caaa

1. Introduction

A Contingency table is a matrix of nonnegative integers with prescribed positive row and
column sums [6].

Let I be a finite set n = [I| elements, we call an element of I a cell and denoted by i € I. i
is often multi-index i = i; ... i;. A non-negative integer x; € N = {1, 2, ... } denotes the frequency
of a cell i. The set of frequencies is called a contingency table and denoted as x = {x;};;, With an
appropriate ordering of the cell, we treat a contingency table x = {x;};c; € N" as a n-dimensional
column vector of non-negative integers. Not that a contingency table can also be considered as a
function from I to N defined asi+— x;, The L;-norm of x € N" is called the sample size and
denoted as |x| = X;e; x;. We will denote Z be the set of integer numbers, also we denote to the
a €Z",j=1,..,v, as fixed column vectors consisting of integers. A v-dimantional column
vector t = (ty,...,t,) € Z” as t; = a’jx,j = 1,...,v. Here ' denotes the transpose of a vector or
a'y

matrix. We also define a v x p matrix 4, with its j-row being a'; given by A= ] and if

a',
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t = Ax is a v-dimensional column vector, we definethe set T = {t: t = Ax,x € N"} = AN" c 7V,
where N is the set of natural numbers. In typical situations of a statistical theory, t is sufficient
statistic for the nuisance parameter. The set of x's for a given t, A71[t] = {x € N"™: Ax = t} (t-
fibers), is considered for performing similar tests, for the case of the independence model of two—
way contingency tables, for example, t is the row sums and column sums of x , and A~1[t] is the
set of x's with the same row sums and column sums to t. The set of t-fibers gives a decomposition
of N™. An important observation is that ¢-fiber depends on given only through its kernel, ker (4).
For different A's with the same kernel, the set of t-fibers are the same. In fact, if we define
X,1~X, © x; — x, € ker(A). This relation is an equivalence relation and N™ is partitioned into
disjoint equivalence classes. The set of t-fibers is simply the set of these equivalence classes.
Furthermore, t may be considered as labels of these equivalence classes, A n-dimensional column
vector of integers z = {z;};c; € Z™ is called a move if it is in the kernel of 4, i.e. Az = 0 [3]. A set
of finite moves B is called Markov basis if for all ¢, A~1[t] constitutes one B equivalence class [1].
If a group G acts on A~1[t] on the left, B is a Markov basis, and G(B) = {gz:z € B,g € G}, B is
called invariant under G (or G- invariant) if G(B) = B. We will denote to the polynomials in the p
indeterminates (polynomial variables) p;,p,,..,p, over the complex field ¢ by either
C[p1, P2, .. pp] OF C[P], P = (P1, D2, -, Pp). LEL AT — Z% be a linear transformation, the toric
ideal Iis the ideal < P"—P":u,v € N" A(u)=A(v)>c ([P,,..,P,] where P*=
P,"“1P,*2 ... B,¥P[6].

In 2008, A. Takemura, and S. Aoki defined an invariant Markov basis for a connected Markov
chain over the set of contingency tables with fixed marginals and derived some characterizations of
minimality of the invariant basis, they give a necessary and sufficient condition for uniqueness of
minimal invariant Markov bases. By considering the invariance, Markov bases can be presented
very concisely. As an example, also present minimal invariant Markov bases for all 2x2x2x2
hierarchical models [3]. In the same year, A. Takemura, and S. Aoki defined the largest group of
invariance for a given toric ideal and the associated Markov basis. Reduction by invariance leads to
a concise description of an invariant Markov basis and a sampling scheme in terms of the group and
a list of representative elements from the orbits of the Markov basis, they also give explicit forms of
the largest group of invariance for several standard statistical problems [4]. In 2014 H. H. Abbass

—-3n

and H. S. Mohammed Hussein found a Markov basis and toric ideals for nt X 3 xg -

contingency tables with fixed two dimensional marginals, n is a multiple of 3 greater than or
equal 6 [7].

Contingency tables are used in statistics to store date from sample surveys. One of related problems
for a survey of contingency tables is how to generate tables from the set of all non-negative K; X K,
integer tables with given row and column sums. In this paper, we find the largest subgroup H of the
dihedral group such that the Markov basis B is H-invariant to generate five subsets of t-fibers each

n%-3n
3

subset contains - contingency tables.

2. Preliminaries

In this section, we review some basic definitions and notations of contingency tables, moves,
Markov basis, dihedral group, and action of group on the set that we need in our work.

Definition (2.1) [2].

Let n be a positive integer greater than or equal 3. The group of all symmetries of the regular
polygon with n sides, including both rotations and reflections, is called dihedral group and denoted
by D,, . If we center the regular polygon at origin then the elements of the dihedral group acts as
linear transformation of the plane. Lets us represent the elements of D,, as matrix, with composition
multiplication. Dihedral groups are among simplest examples of finite groups and they play an
important role in group theory, geometry, and chemistry. The set of rotations is generated by r -
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counterclockwise rotation with angle 27/ n of order n, and the set of reflections is of order 2 and
every element sr/ generates {e, sr /} , where e is the identity element in D,, . The 2n elements in

D,, can be written as:{e ,r ,r?, ..., vt s, sr,sr?, ..., sr™ 1 }In general, we can write D,,

as: D,={ s/ r¥:0<k <n-—1,0<j<1} which has the following properties: r* = 1, srks =

r7% (sr®¥2 =1, forall0 < k < n— 1.The composition of two elements of the D,, is given
by rird = vt risr) = sr/7t, sriv) = srit) srisr) = /7t

Remark (2.2) [2].

If we label the vertices (of the regular n-gon) 1 to n in a counterclockwise direction around n-gon
then the elements of D,, can be written as permutations of vertices, let » be a counterclockwise
rotation, and let s be the reflection of the n-gon about an axis through the center and vertex 1, as
indicated in below . The element r generates C,, the cyclic group of order n which is a normal cyclic
subgroup of D, . In all cases, addition and subtraction should be performed using modular
arithmetic with modulus n.

3 e e 3
4. 4
y A j
—//n n
n-1 n-
Elements of C,, Elements of D,,

Any symmetry will fix the origin and is determined by the image of two adjacent vertices , say
1 and 2 .The vertex 1 can be taken to any of n vertices and then the vertex 2 must be taken to one
of the two vertices adjacent to the image of 1. Hence, D,, is a non abelian group of order 2n
generated by r and s.

Now, we give some concepts about the action of a group on a set that we use later.

Definition (2.3) [3].

Let G be a group and W be a set. A left action of G in W is a function from G X W into W,
usually denote by (g,w) - gw € W such that g(hw) = (gh)w and ew = w for all g,h € G and
w € Wwhere e is the identity element of G. We also say that G acts on W on the left.

Definition (2.4) [3].
Let a group G actonaset W, andU S W, Gy = {g: gu = u,V u € U} is called the pointwise
stabilizer of U.

Definition (2.5) [3].
Leta group G actsonaset W, U € W, and GU = {gu:u € U, g € G}. We call U invariant under
G (or G-invariant) if GU = U.

Remark (2.6) [1].

For a move z, the positive part z* = {z*;};¢; and the negative part z~ = {z7;};c; are defined by
zt; = max(z;,0), z~; = max(—z;,0), respectively, Then z=2z*—-2z" and z*,z— € N" .
moreover, z* and z~ are in the same t-fiber, i.e., zt,z= € A™![t] for t = Az* = Az~. We define
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the degree of z as the sample size of z*or (z7) and denote it by deg(z) = |z*| = |z~|. In the
following we denote the set of moves (for a given A) by M = M, = Z" N ker(A4).
Theorem (2.7) [1].

A collection of binomials {pz+ —p?izE€ B} C 14 is generating set of toric ideal I, if and only
if + B isa Markov basis for A.

In [7] the Authors gave a Markov basis B for
dimensional marginal as follows:

n?-3n
3

X 3 xg - contingency tables with fixed two

Remark (2.8) [7].

Let n be a multiple of 3 such that n > 6, and let x; € A™'[t], j =1, ...,k be the representative
elements of the set of 3 xg—contingency tables and B = {z4,%,,...,z} such that each z;
J=12,..k, is a matrix of dimension 3 xg either has two columns (1,—-1,0)',(—1,1,0)’

((1,0,-1)’, (—=1,0,1)" or either (0,1,—1)", (0,—1,1)" ) and the other columns are zero denoted
by +z;, or it has two columns (—1,1,0)’, (1,—1,0) ( (=101, (1,0,—1)" or (0,—-1,1),
(0,1,—1)") and the other columns are zero denoted by —z;,like

1 -1 0 1 -1 0 0 0 O
| I I P
0 0 O -1 1 0 -1 1 0
-1 1 0 -1 1 0 0 0 O
,[ 1 -1 0f, [0 0 0] ) [—1 1 0].
0 0 O 1 -1 0 1 -1 0

Also, we can write all elements of B as one-dimensional column vector as follows:
zj = (z1,,zp)',j=1,..,kand z; = 1 or — 1 or 0 such that
n

Ift=1,2,..,-
3 n
(1 if znt+z, m =-1 andzigzlzi =-1
3 3 i%t
n
z, =1 —1 if zn+z, m =land}i 7z, =1 (1)
3 3 i%t
0 if z,n+z, 2 =0and Zig:lzi=0
\ 3 3 i%t
fe=2+1242.%2
3 3 3 ,
( Zn
1 n = — 3 P e J—
1 if zt_g + zt+§ 1 and Zi=§+1Z‘ 1
it
2_17.
-_ [ n n = 3 P
Z: =1 1 if Z,_n + Zy,n 1 and Zi=§+1zl 1 (2)
it
2_71
[ n n = 3 . =
0 if Zt_g + Zt+§ 0 and Zi=§+1zl 0
\

it

ft=24+124+2 ..,n
3 3
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. — n =
(1 let—%"-l_Zt—g = 1and2i=2?n+lzl 1
it
-1 J n n =1 "z =1
2, = | if zt_z?+zt_§ and Zl=§+1zl 3)
it
0 ith_z?n-I-Zt_g:Oand Z:;;_HZL-:O

i#t
Theorem (2.9) [7].
n?-3n

The number of elements in B equal to :

3
Remark (2.10) [7].
Given a contingency table x = (x;, x5, ... ,x,)" , the entry of the matrix A in the column indexed

xi ) Z?=

.., Xn + xzn + X, respectively. The entry in the column indexed by x; in
3 3

2n

by x,,x,, ... ,x, respectively and its rows indexed by Z?:N‘i'z Xi, Xy +xn,, +
3

3
.. n 2n
l—§+1 3 +1

xz?n+1,x2 + x§+2 + XZ?n
the matrix A will be equal to one, if x; appears in the index of its row, and otherwise it will be
zero. Then

+2’

1 1 1 1 0 O 0 0 0 O 0 07

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 O 0 0 1 1 1 1
A=[1 0 0 0 1 0 0 01 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0o 0 -~ 0 1 0 O -« 01 0 0 -+ 0 1o,

Theorem (2.11) [7].
The set B = {z,, ..., Z,.2_,,, } is a set of moves.

3

Remark (2.12) [7].

) 2_3
We can find Z - -

contingency table xg, xq, ..., X,2_sp ) in A~[t] (each of them is 3 x”; -
3

contingency table) from the elements of the set B = {z;, 25, ..., Z,.2_5,, }, Where x; = x;_; + z;, for
3

n?-3n

alli=1,2, ...,

—1land x, = xn2_3n_1 +2Z,2_,,.
3 3

Corollary (2.13) [7].
The set B of moves in theorem (2.11) is a Markov basis.
Corollary (2.14) [7].

2_
The  toric  ideal I, for 2=

X 3 xn; - contingency tables are

n 2n

In =< P P = Py P j=1,2,..,5 and Lk = 0,2,%% ,suchthat i <jandl <k > c
C[Py, P, ..., B,].
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3. The Main Results
Let n be multiple of 6, x; € A™*[t], j =0, ...,

n?-3n
3

— 1 be representative elements of the set of
n 2n n 2n

3 % % —contingency tables , and H be the subgroup {e, 73,73 ,sr,sr3'",srs T} of dihedral group

D,wherer =(123 ..n)ands=(2 n)(3 n—1).. (2 §+ 2). we will write, each g € D,, as

a n xn permutation matrix T, = {p;;} = {6;,g(i)}, where § is the Kronecker's delta such that

Tgr9, = Tg, Ty, TOr g1, 92 € Dy, andT -+ = T*;. Then the identity matrix of order n is denoted by

E,, for the unitelemente € D,,.
n?-3n
3

Now, we consider a left action of dihedral group D,,,n = |I|, on A~'[t] the set of X 3 X g -
contingency tables, and the action of dihedral group D,, on the set of Markov basis B.

Definition (3.1). Let A~1[¢] be the set of 3 X g —contingency tables A left action of D,, on A™[t]
is a function from D,, x A~*[t] into A~*[¢t] such that (g,x) — gx = Tyx € A7'[t].

Remark (3.2). A left action of D,, on the set of all n-diminsional column vectors of integers Z™ is a
function (g,v) > gv=Tyv € z" of D, XZ" into Z", where T is a permutation matrix
representation of D,, and T, is the permutation matrix of g, A~*[t], B S z" when the element of
A~1[t] and B tread as all n-dimensional column vectors. If x € A"1[t], z€ B, and g € G, then
T,x, T,z € z" but T;x may not be in A~*[t] and T,z may not be in B as in the following example.

Example (3.3). Consider 3 x 3- contingency table

1/4|5

2(1] 3]

4126

717114

x can be represented as 6-dimensional column vector of non negative integer x = (1,4,2,1,4,2)" €
Né. Then x € A~1[t], where A~![t] = {x € N®: Ax = t},

11000 0
[001100]

A=f0 0 0 0 1 1| , and t=(53,6,77). If g=r=(123456), then T,x=
101010

001 0 1 0 1dg

00 00 0 1717 (27 [*6

hooooo]lml H X

01000 0 S I

|0 0100 0|% =15]= |x, | € A7'1¢), since

[000100J4 EZ

00 0 o0 1 ollal lal [x
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100 0 0 I[i 31 [5]
001100 6 |3
AT,x=10 0 0 0 1 1 |‘2L = 5!¢!6!=t,andifz=(—1,1, 1,—1,0,0)".
|l101010| HEUNH
001 0 1 0 ggly 7 7
0 00 0 0 13f=1 [0
1000 0 of 1] |-1
o100 0 ol 1] |1
Thenng—O 010 o oll=11=1 1 ¢ B
00 010 0|0 -1
o000 1 olg

Now, we will prove H is the Iargest_sub-grou-ps (_)f the dihedral group D,,, such that the Markov basis
B invariant under their actions.
Remark (3.4). The left action of H on B is a function H X B — gz; € B.

Theorem (3.5). The Markov basis B is H-invariant.

Proof
To prove B is H-invariant
Letz; € B, z; = (21, 2y, ..., Zg, Z§+1, ) Zz?n, Zz?nﬂ, ey Zn_1,Zn)".

= ezj = T,z; € B.
; _ - n 2n n 2n n 2n .. .
Sincer =(12 .. n), then r3 = (1 st1 5+ 1) (2 st2 S+ 2) (g 5 n). This implies

n
132; =T nz; = (Z2n, _,Z2n
J r3 7 ( St

1A
2, y ZnsZyy e s 20,20, ,Zz_n_l,Zz_n) € B.
3 3 3 3 3

o

2n 2n n 2n n n 2n - -
And rs =(1 Z+1 2+1)(2 Z+2 2+42)..(3 n Z). This implies
2n

T?Zj =T Z_an = (ZE+1,

!
yee s Z2Zon ey Zn, Zq, ,Zn_,zn)" € B.
r3 3 3

Zn
3+ 3 3 3

2

Since r=(2 @B n-1) (g %+ 2) , then

sr=mEn-1..(3Z+1)(E+1 2).. ¢ 2+ 1) . This implies
srz; = Tsp Zj = (Zn, Zn—1, - ,Zan L, Zom, ... ,ZE_H,ZE, 22,71 ) € B. Also
3 3
L _( Zn)( 2n ) (n n )(Zn ) (Sn 5n )
sr3’ T =(1 . 2 2 1...3 3+1 3+1n...6 6+1.Hence
LT l d L]
sr3 z; =T Z; = (2Zwm,Z e 3 I TN eee 71, Ty e S 2 ,Z € B, an sr3 =

(1 )z 2-1)-( 2+1)G+1 n)(3+2 n-1)-(Z Z+1). Therefore
2n

41
STr3

zj=T 2,
sr3

and this follows B is H-invariant.
Corollary (3.6). The subgroup H is the Largest Subgroup of the group D,, such that the Markov
basis B is H-invariant.
Proof
The Markov basis B is H-invariant (By Theorem (3.5))
Now, letg € D,, and g € H. Then, we have

Ifg=rjthenj6£{%,27n,n}

z; = (zg, zg_l, e 1 Z1y Zgy een 1 Z +2,z§+1)’ € B. Then H(B) = B,

Z2n, .. ,Zn
3 3

2n, _,
3+1
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r Z1 T Zn—j+17
Zy Zn—j+2
) Z; z
] o i ] = n
r'z; =T, Zie1 2 € B,
Zj+2 Z3
L Z, | Zn—j i
. j . n 2n
And if g = sr’/ then j ¢ {1’T+1'T+1}
- Z1 7 [%n—j+1]
ZZ Zn_j
Z‘I’L—j+1 Z1
srlz; =T |%n-j+2(=| 2z, |&B.
Z‘I’L—j+3 Zn-1
Zn-1 Zn-j+3
Zn [ Zn—j+2]

Implies that g € G(gy Where G = D,
Thus H is the largest subgroup of the group D,, such that B is H-invariant.
Now, we use H(B) to generate 3 xg contingincy tables with given row and colum sums, and

Markov basis B.
Remark (3.7). Let t = (tl,tz,t3, ...,t3+3> , X; EA™1[t] and g € H. Then gx; € A~1[gt] where
3
gt = (gtl,gtz,gtg, ...,gt2+3) , A7l[gt] = {x € N™ Ax = gt}. Therefore, we have six types of
3
n 2n
gt-fibers A71[t], A1 [rgt] JATT [th] ,A™[srt],
n 2n
At [sr§+1t] and A~1 [srT“t].
Theorem (3.8). If g€ H, then B is a Markov basis for -
9X0, GX1, s GXn2oan in A"t gt].

3

contingency tables

Proof
2_
By remark (2.12) we have x; = x;_; + z;, forall i =1,2,..,2=2—1 and x, = X,2_, Tt
3
Z,2_3p,.
3 -
Now, if g € H
2_
gx; = Tgxl- = Tg(xi_l + Zi) = Tgxl-_l + ngi forall i = 1,2, ...,n n_ 1 and
gxo =Tyxy =T, <xn2;3n L + Zn2;3n> = Tgxnz;m_1 + Tan2;3n.
n2-3n n?-3n

Then T,x; = gx; € A~'[gt] for all i =0,1,2,...,

tables gxq, 9x1, ..., gXn2_3n, X
3
To prove B is a Markov basis for the contingency tables gx,, gx1, ..., gXn2_3n )

3

— 1, and B generate

. contingency

Let gx;, gx; € A™'[gt], such that j > i.
By Remark (3.7), we get

gx; = gx; + Y _.., gz, imples that gx; — gx; = X! _,,, gz, and

35



Journal of Kerbala University , Vol. 12 No.4 Scientific . 2014

9z, € Ker(A).Hence ¥, _;,, 9z, € Ker(4) andso gx; — gx; € Ker(A).

Therefore x; ~ x; .

A~1[gt] Constitutes one B equivalence class implies that B is a Markov basis.

Example (3.9). Consider the 3 x 3 —contingency table x in Example (3.3). x can be represented as
6-dimensional column vector as x = (1,4,2,1,4,2)' € N®. Thenx € A~[t], where A l[t] =
{x € N®: Ax = t},and t = (5,3,6,7,7)". Then by remark (2.8) we can find the elements of B

1 -1 0 0
7, = 1)1 Z,= 0] 0 S ]
0/ 0 -1 1 -1 1
11 1] 1 0,0
— Z 4 z6 -
Z, = 1 -1 » 45 0 0 -1 1
0 0 1] 1 111

1] 4[5 235 3] 2[5

Xg = 2| 2] 4 Xy = 13 4 Xz = 13[4
41216 41216 3/3]6
7] 8|15 718 15 7] 8] 15
3[2]5 23] 5 11415
212 4 3/1] 4 31114

X3 = , Xq = , X5 =
21416 214 6 3/ 36
71815 7181 15 7] 8]1s5

Now r2 = (1 3 5)(2 4 6) in Dg. To find T,2z,. z; can be represented as 6-dimensional
column vector of integer z; = (1,—1,—1,1,0,0)" € Z°
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00 0 0

[o 0 0 0
100 0
Trz_lo 1.0 0
[o 01 0
00 0 1

[0 0 0

0 0 0

1.0 0
Tezi=1y 1 o
0 01

0 0 0

Similarly, we obtain

o O OO0 O

SO O OO =

0

1

0

0|,then

)

0
10]‘1‘ 07
o 11|—1 0
0 of|]-1]_| 1
o ofl 11 [-1
OOJO -1
0 O0/L pod L 1

T,22, = 26, T, 223 = 24, T,224 = Z5,T 225 = 23, T,2Z¢ = Z1. ThUs

T,2B = {z,,%¢,24,25,23,2,} = B.
{Trzxo, T,2x1,Ty2x5,Ty2x3, T,2Xy, Trsz,Trzxe,} c A‘l[rzt] (rzt-fibers),

(6,5,3,7,7),and

We

also

use  r? to

generate

the

where

15

41216 41216 3
1145 2135
T %o = T 2xy = Tr2Xe =
2X0 = oo |0 T 13| 2 1
71815 7181 15 7
2146 21416
3125 21315
Tr2X3 = ,TT2X4 = 'Tr2x5 =
212 4 31 |4
71 8] 15 718115

Andr* = (15 3)(2 6 4)in Dg. Tofind T,z,.

[00 0

0
0
0

1
0

|

_o O OO0
SO O OO
SO O OoOr

T.r4 Z1 =

—_Oo O oo O

[
ORrRr OOCO O
SO O OO K

SO OO O

SO O RO O

SO O rOoO O

0

of

0

1,then

o

0

()-l 1 r— 17
ol—1 1
OI -11_1 0
11 11 10
011 O 1
04L o —14

37
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Similarly, we find T,4z, = z,, T 423 = Z5,T4Zy = Z3, T 4Zs = 24, T,4Zg = Z,. ThUS

T,«B =1{2%s,2,25,25,24, Z,} =B. We also use r* to generate the  set
{T,ax0,Tyaxy, TraXy, Traxs, Traxy, Traxs, Traxe, } € A™1[r*t] (r*t-fibers), where rit =
(3,6,5,7,7),and

21 2] 4 1] 3] 4 1] 3] 4
41216 41216 3] 3| 6
T,1xXo = T axq = TraXy =
AXo = T4 | T 2135 3 2[5
7] 8|15 718 15 71 8] 15
212 [ 4 3(1 4 371 (4
204 6 214 |6
Tr4X3 = 'TT4X4- = ITT‘4x5 = 3/ 3|6
312 5 21315 11415
71815 718115 7] 8|15
Sinces =(26)(35)andr=(1 23 45 6). Thensr =(16)(25)(34).Tofind T, z,,
00000 1
[000010]
o oo 10 0
Tsr"o 010 0 ofthe
[010000J
1000 0 0
000 O0UO0 19717 [O
0000101—1 0
r =000 1 0 off-1f_|1]|_,
st 710 001 0 0 off 1| -1
l010000Jo 1
100 0 0 oll of L 1]

Similarly, we find Ts,z, = 24, Tg 23 = 23, Ty 24 = Zg, Ty Zs = Z4, TgpZg = Zg. Thus

TB = {2,,2,,23,25,Z4,Z¢} = B. We also use sr to generate the set
{Tsr xO» Tsr xl: Tsr xz» Tsr X3, Tsr x4: Tsr x5, Tsr x6} - A_1 [ST‘t]

(srt-fibers), where srt = (6,3,5,7,7)’, and
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2] 416 2147 6 6
21 21 4 3/11] 4 . 4
) XZ=
TsrXo = 4] 115 | TeXa= 32| 5 N 5
8| 7115 8l 7] 15 15
412716 412176 316
2121 4 1]3] 4 3 |4
Tsrx3 = 'Tsrx4 = ’ TsrXS =
21315 3(21 5 115
8| 7115 8|71 15 7115
And sr3 = (1 4)(2 3)(5 6).Tofind T2z,
[0 0 0 1 0 0
[0 0 1 0 0 Of
o 1.0 0o o of
Tsr3—|1 00 0 0 O|,then
lo 00 0 0 1J
000 010
0 00 1 0 o1y 1]
|0 01 0 0 of-1] |-1
7 og |01 0 0 0 Off-1f_|-1|_
st®1 711 0 0 0 0 ofl 1 11— "
000 00 1l o0 0
00 0 o0 1 ol ol Lol
Similarly, we obtain T3z, = z4, Tg,323 = 25, T;3Z4 = Zy, T 325 = 23, T,3Z¢ = Z,
T, 3B ={21,26,25,24,23,2,} = B. We also use sr generate

-1
{Tsr3%0, Tsy3%x1, Tsy3%x5, Toy3X3, Tr3X4, Tor3Xs, Tsp3x6} S A7 [s13¢E]

sr3t =(3,5,6,7,7), and
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(sr3t-fibers),

Thus
set

where
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2] 214 3[1] 4 3[ 1] 4
41115 3/2]5 2135

Toxo= 5146 | Ts®1= 2746 e 3036
8| 715 8] 7] 15 8| 7| 15
2[2 4 1[37] 4 134
23| 5 3/2[5 41115

Ts3X3 = 5T Tsr3Xy = ARR R A O 373 16
8 715 87/ 15 8| 7115

And sr5 = (1 2)(3 6)(4 5). Tofind T,,sz,,

0 10 0 0 0
|1 0 0 0 0 Of
lo o 0o 0 0 1|
Tsrs—|000010|,then
l000100J
001000
0 100 0 o1 -1
|100000—1 1
o oo 0o o 1l|-1]_| of_
Tsrs21=10 0 0 0 1 of| 1|7 0|7 %
00010 oo 1
0010 o oll of L[_q

Similarly, we obtain T, sz, = z,,T,5Z3 = 24, Tg,524 = 23, T5Z5 = Z5, T, 52g = Z;.  Thus
T sB={z¢,2,,24,23,25,2,} =B. We also use sr to generate the  set
{Tsr5X0, TspsXq, TgpsXxy, Top5Xs, TopsXy, TopsXs, Tosxg}) © A sr>t]  (srot-fibers),  where
sr°’t=(5,6,3,7,7), and
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41 1[5 3/215 2[3]5

2 4]6 2146 3/3[6

TosXo = 2214 | Ts*1= 3713 e 3[1] 4
8| 7]15 8| 7] 15 8] 7] 15

235 3[2]5 41115

. 426 dl2fe] 3| 3|6
sr5X3 = ARR Y yLgpsXg = T L gp5X5 = T3 12
8] 7|15 87/ 15 8| 7|15

n?-3n

Corollary (3.10). The toric ideal for

x 3 xg -contingency table in A™'[gt] is I, =<

n 2n

PR n . .
Pg(i+l) Pg(j+k) — Lg@i+1 Pg(i+k): L] = 1, 2, ,; and l,k = O,;,T, such that i <] andl < k >

c C[P,,P,,...,B,], forall g € H.
Proof
Let g € H. By theorem (2.7), we have gZ = T)Z = T,Z2* —T,Z2~ = gZ* — gZ~ € B, for all
Z € B. Using theorems (3.8), (2.7) and corollary (2.14) the proof is complete.
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