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Abstract 

 

In this paper, we consider semi parametric regression model where the mean function of this 

model has two part, the parametric ( first part ) is assumed to be linear function of p-

dimensional covariates and nonparametric ( second part ) is assumed to be a smooth penalized 

spline. By using a convenient connection between penalized splines and mixed models, we can 

representation semi parametric regression model as mixed model. Bayesian approach to semi 

parametric regression is described using fuzzy sets and membership functions. The membership 

functions are interpretedas likelihood functions for the model. Bayesian approach is employed 

to making inferences on the resulting mixed model coefficients, and we prove some theorems 

about posterior and Bayes factor. 
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1. Introduction
 

 

Consider the model: 

    ∑               
 
                             (1) 

where         response variables and the 

unobserved errors are         are known to 

be i.i.d. normal with mean 0 and 

covariance  
  with   

  unknown. 

The mean function of the regression model 

in (1) has two parts. The parametric ( first 

part ) is assumed to be linear function of p-

dimensional covariates    and 

nonparametric (second part)          is 

function defined on some index set     . 

Inferences about model (1) such as its 

estimation as well as model checking are of 

interest. 

A Bayesian approach to (fully) semi 

parametric regression problems typically 

requires specifying prior distributions on 

function spaces which is rather difficult to 

handle. The extent of the complexity of this 

approach can be gauged from sources such 

as Angers and Delampady (see [1]),Ghosh 

and Ramamoorthi(see [8]),and Lenk 

(see[9]), and so on. Furthermore, 

quantifying useful prior information of 

model (1) such as “  is close to (a specified 

function)   ” ( we will define this function 

in section 5 )  is difficult probabilistically, 

whereas this seems quite straightforward if 

instead an appropriate metric on the 

concerned function space is used. This is 

where fuzzy sets or membership functions 

can be made use of.  

In this paper, a simple Bayesian approach 

tosemiparametric regression is described 

using fuzzy sets and membership functions. 

The membership functions are 

interpretedaslikelihood functions for the 

model, so that with the help of a reference 

prior they can be transformed to prior 

density functions. By using penalized spline 

for the nonparametric function ( second part 

) of the model (1) we can representation 

semi parametric regression model (1) as 

mixed model and Bayesian approach is 

employed to making inferences on the 

resulting mixed model coefficients, and we 

prove some theorems about posterior and 

Bayes factor. 
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2. Fuzzy sets and membership functions 

 

A fuzzy subset A of a space G (or just a 

fuzzy set A) is defined by a membership 

function: 

   : G → [0, 1](see [2,3,5,15,16]). 

The membership function,      , is 

supposed to express the degree of 

compatibility of g with A.  

For example, if G is the real line and A is 

the set of points “closeto 0”, then 

        indicates that 0 is certainly 

included in A, but                says 

that 0.07 is not really "close" to 0 in this 

context. Similarly, if G is a set of functions 

and       is a set of functions "close" to a 

given function   , then           

indicates that    is certainly included in A; 

however, if              with        

             then    is not really 

“close” to    in this case.Note that even 

when       is the parameter space, a 

membership function      is not a 

probability density or mass function defined 

on  , and hence cannot be usedto obtain a 

prior distribution directly. 

AngersandDelampady (see [3])proposethat a 

reasonable interpretation for a fuzzy subset 

A of   is that it is a likelihoodfunction for 

 given A.Anotherimportant question is how 

to define      from    and    for 

incorporating    and   in Bayesian 

inference. If A and B are independent, then 

interpreting    and   as likelihood 

functions leads to the result that     

    , for this purpose.Further, the 

qualitative ordering that underlies a 

membership function can also 

beinvestigated with this interpretation, in 

conjunction with a prior distribution, (see 

[3]). 

 

 

3. Mixed Models 

 

The general form of a linear mixed 

model for the ith subject (i = 1,…, n) is 

given as follows (see [14,17]), 

        ∑       
 
          ,   

     (    )             (2) 

where the vector    has length   ,    and 

    are, respectively, a      design matrix 

and a       design matrix of fixed and 

random effects.  is a p-vector of fixed 

effects and     are the   -vectors of random 

effects. The variance matrix    is a       

matrix and    is a       matrix. 
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We assume that the random effects 

                               and the 

set of error terms           are 

independent. In matrix notation, 

            (3) 

Here                  has length 

   ∑   
 
   ,      

      
   is a     

design matrix of fixed effects, Z is a     

block diagonal design matrix of random 

effects,    ∑   
 
    ,      

      
    is a 

q-vector of random effects,    

               is a       matrix and 

                  is a       block 

diagonal matrix. 

 

4. Semiparametric regression and spline 

 

The model (1) can be expressed as a smooth 

penalized spline with q degree,thenit's 

become as(see [14]): 

    ∑       ∑           
  

   
 
    

∑              
 
     

 
    (4) 

Where         are inner knots       

         . 

By using a convenient connection between 

penalized splines and mixed models. Model 

(4) is rewritten as follows(see [11,14]) 

          (5) 

where 

   [

  

 
  

]  ,      

[
 
 
 
 
 

  

 
  

    

 
    ]

 
 
 
 
 

   ,     [

  

 
  

],    [

            
 

             
 

   
            

 
             

 
] 

   

[
 
 
 
 
        

        

             
 

             
 

    
        

   
             

 
]
 
 
 
 

 

We assume that the function  is: 

         (6) 

And its prior guess    can be written as: 

            (7) 

Further, some of the a priori information penalized spline coefficients can be translated into: 



Basrah Journal of Science (A)                                                                                                      Vol.32(1),141-167, 2014 

 

141 
 

      ;                 
   

      ;                       
   (8) 

      ;                        
   

The term   in (5) is the pure polynomial 

component of the spline, and    is the 

component with spline truncated functions 

with covariance   
  , where      . 

Letting        
    

   be the parameter 

vector, the mixed model specifies a 

      
    prior on u as well as the 

likelihood,           
    

  . To specify a 

complete Bayesian model, we also need a 

prior distribution on      
    

  . Assuming 

that little is known about  , it makes sense 

to put an improper uniform prior on  . Or, if 

a proper prior is desired, one could use a 

      
    prior with   

  so large that, for all 

intents and purposes, the normal distribution 

is uniform on the range of  . Therefore, we 

will use         . We will assume that 

the prior on   
  is inverse gamma with 

parameters    and    – denoted           

– so that its density is  

      
    

  
  

     
   

            ( 
  

  
 ) (9) 

Also, we assume that: 

  
             

 

Here                are 

“hyperparameters” that determine the priors 

and must be chosen by the statistician. 

These hyperparameters must be strictly 

positive in order for the priors to be proper. 

If    and    were zero, then       
   would 

be proportional to the improper prior 
 

  
  , 

which is equivalent to log(  ) having an 

improper uniform prior. Therefore, choosing 

   and    both close to zero (say, both equal 

to 0.1) gives an essentially noninformative, 

but proper, prior. The same reasoning 

applies to          . The model we have 

constructed is a hierarchical Bayes model, 

where the random variables are arranged in 

a hierarchy such that distributions at each 

level are determined by the random 

variables in the previous levels. At the 

bottom of the hierarchy are the known 

hyperparameters. At the next level are the 

fixed effects parameters and variance 

components whose distributions are 

determined by the hyperparameters. At the 

level above this are the random effects, 

 and  , whose distributions are determined 
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by the variance components. The top level contains the data,  .( see [14] ) 

5. Prior information and Membership functions
 

 

We have explained in the previous section that we would like to make use of impreciseprior 

information such as “  is close to   ” by using a membership function (see [3,7,12]) which 

translates this into a measure of distance between the corresponding penalized spline 

coefficients. Let us examine the implications of assuming that the available prior information is 

quantified in terms of a membership function 

                    

Where  is a measure of distancein   . Due to the penalized spline decomposition assumed on 

 as well as   (see section 4), a natural choice for   is the distance given by 

         ‖    ‖   ‖               ‖   ‖      ‖   ∑        

  Where         and          

We will use a membership function that will depend only on         . Some possibilities for 

   are the following: 

 

(i) The Gaussian membership function given by: 

 

                              ∑          (10) 

This membership function can be explained as follows. Suppose we have available some past 

data of the form 

                 

where 

    [
  

 

 
   

 
]  ,      

[
 
 
 
 
 

  

 
  

    

 
    ]

 
 
 
 
 

   ,     [

  

 
  

],     [

       
      

 
        

      
 

   
        

      
 

         
      

 
] 
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[
 
 
 
 

    
     

 

    
     

 

      
        

  

      
        

  

    
     

      
 

   
       

         
  

]
 
 
 
 

 

 

 

 Suppose        is estimated from this data by  ̂.Then the information in this data may be 

quantified using a membership functionof the type 

         (         ̂ )        ‖    ̂‖        ‖     ̂‖
 
 

        ∑(   ̂)
 
  

  may then be identified with  ̂. If we have multiple past data sets, we may thenhaveavailable 

   
                 ̂   ,    

                 ̂   , and soon, which may be combined 

into             
        

      
    

              ̂                ̂    

         ∑(   ̂ )
 
     ∑(   ̂ )

 
   

        ‖   ̂ ‖
    ‖   ̂ ‖

   

 

  As an example one could consider fitting regression lines to two (or more) sets of past data 

with possibly different error variances and use the fitted regression lines along with the 

estimated variances for constructing the membership functions. The constants    and    

provide additional scope for assigning different weights to the two sources of information, 

which is another appealing feature of this approach. 

The multivariate t membership function 

 

                                                            (11) 

Where       is the degrees of freedom and   denotes the dimension of , where     

        . This is a continuous scale mixture of Gaussian membership functions with the same 
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   for each of the membership functions. Since this vanishes more slowly than Gaussian 

membership function, one could expect better robustness with this (see[2,3]). 

 

(iii) The uniform function 

       {
                      
                           

 (12) 

This is an extreme case where g is restricted to a neighborhood of   (see[2,3]).In order to 

proceed with Bayesian inference on g, we need to convert the membership function into a prior 

density. Thus we obtain the prior density 

                  

or, upon utilizing the spline decomposition for g, we have an equivalent prior density 

       
    

                
    

  .(13) 

where             

 

 

5. Posterior calculations
 

  

We have the model 

      
    

          
      

     
     (14) 

                

Unless   has a normal prior distribution or a hierarchical prior with a conditionallynormal prior 

distribution, analytical simplifications in the computation of posterior quantities are not 

expected. For such cases, we have the joint posterior density of the penalized spline coefficients 

F and the error variances   
 and   

  given by the expression. 

       
    

               
    

                
    

   

Where  is the likelihood. From (14),   can be expressed as 

        
    

  

 |  
      

     
  |

   ⁄
      

  

 
       (  

      
  

   
  )
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Proceeding further, suppose    of the form 

       
    

         
    

   (15) 

whichis constant in  , is chosen. 

Markov Chain Monte Carlo(    ) based approaches to posterior computations are now 

readily available. For example, Gibbs sampling is straightforward (see [ 3,14]).  

Note that the conditional posterior densities are given by 

        
    

      {
  

 
       (  

      
     

  )
  

      }       (16) 

    
        

   |  
      

     
  |

   ⁄
   {

  

 
       (  

      
     

  )
  

   

   }     
    

  (17) 

    
        

   |  
      

     
  |

   ⁄
   {

  

 
       (  

      
     

  )
  

   

   }     
    

   (18) 

  However, major simplifications are possible with the Gaussian    as in (i)( see section 4 ). 

Specifically, assuming that       is proportional to the density of       
     with 

    [
  

  

   
 
] ,     [

       

           
] ,       [

  
        

   
           

] 

      
    

              
      

     
      (19) 

              
     

Therefore, it follows that 

    
    

            
               (20) 

      
    

                       (21) 

where 

              
                (22) 

                 
                    (23) 

 

  Now proceeding as in [3], we employ spectral decomposition to obtain                , 

where                     is the matrix of eigenvalues and B is the orthogonal matrix of 

eigenvectors. Thus, 
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      [

        

            
]      

Where   =   
    

  and     
    

  Then, the first stage (conditional) marginal density of Y 

given  
  and   can be written as 

      
       

  
 

     
  

 
 ⁄

 

   [   [
        

            
] ]

 
 ⁄
      

 

   
 
  

     
  (   [

        

            
]   )           

  
 

(    
 )

 
 ⁄

 

  ∏         
 

 ⁄
     
    ∏         

 
 ⁄ 

       

     
 

   
  ∑

  
 

     

     
    

∑
  
 

     

 
         (24) 

where                            . We choose the prior on   
 ,   =   

    
  and   

  
    

 , qualitatively similar to the used in [3]. Specifically, we take      
       to be 

proportionalto the product of an inverse gamma density 

   
                    

     
         for   

  and the gamma density for   andthe density of 

a      distribution for  (for suitable choice of   ,   , b and a). Conditions apply on a and 

bsuchthat(see[2,3]): 

1- The prior covariance of    and    
          

            
    is infinite. 

2- The fisher information number   
            

             
  is minimum. 

3- The prior mode   
      

      
  is greater than 0. 

This can be done by choosing       and                

Once      
       is chosen as above, we obtain the posterior density of    given  , the 

posterior mean and covariance matrix of   as in the following theorems. 
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Theorem1: the posterior density of     given   is: 

            
    ⁄            

 

  

             ⁄ (∏        
     
   )

   ⁄
(∏        

 
       )

   ⁄
(    

∑
  
 

     

     
    ∑

  
 

     

 
       )

           ⁄

(25) 

Proof: 

           ∫      
                               

           
  

 ∫
 

     
  

 
 ⁄
( ∏        

     

   

)

   ⁄

( ∏        

 

       

)

   ⁄

 

       
(
  

  
)
    

 

   { 
 

   
 
( ∑

  
 

     

     

   

 ∑
  

 

     

 

       

)}   
  

  

   ⁄    ⁄

      

    ⁄    

             ⁄
 

  
  

     
   

            ( 
  

  
 
)    

  

where     
  

         
           

  

  

       
 

   ⁄    ⁄

      

    ⁄    

             ⁄
∫( ∏        

     

   

)

   ⁄

( ∏   

 

       

     )

   ⁄

   { 
 

   
 
(    ∑

  
 

     

     

   

 ∑
  

 

     

 

       

)}   
             ⁄    
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   ⁄    ⁄

      

    ⁄    

             ⁄
             ⁄ ∫( ∏   

     

   

     )

   ⁄

( ∏        

 

       

)

   ⁄

   { 
 

   
 
(    ∑

  
 

     

     

   

 ∑
  

 

     

 

       

)}(
    ∑

  
 

     

     
    ∑

  
 

     

 
       

   
 

)

          ⁄

(   

 ∑
  

 

     

     

   

 ∑
  

 

     

 

       

)

           ⁄

   
  

 

  
    ⁄            

  

  

             ⁄
∫( ∏        

     

   

)

   ⁄

( ∏        

 

       

)

   ⁄

   { 
 

   
 
(   

 ∑
  

 

     

     

   

 ∑
  

 

     

 

       

)}(
    ∑

  
 

     

     
    ∑

  
 

     

 
       

   
 

)

           ⁄    

(   

 ∑
  

 

     

     

   

 ∑
  

 

     

 

       

)

           ⁄

   
  

  
    ⁄            

  

  

             ⁄
            ⁄  ( ∏        

     

   

)

   ⁄

( ∏        

 

       

)

   ⁄

 

(    ∑
  

 

     

     

   

 ∑
  

 

     

 

       

)
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    ⁄            

  

  

             ⁄
( ∏        

     

   

)

   ⁄

( ∏        

 

       

)

   ⁄

(   

 ∑
  

 

     

     

   

 ∑
  

 

     

 

       

)

           ⁄

 

 

 

Theorem2: The posterior mean and covariance matrix of   are: 

                {(   [
        

            
]  )

  

    }   (26) 

And  

         

 

       
  [(    (∑

  
 

     

     
    ∑

  
 

     

 
       ))   ]    

 

       
     [(    

(∑
  
 

     

     
    ∑

  
 

     

 
       )) [   [

        

            
]  ]

  

  ]      

                     (27) 

where               [
        

            
]       

Proof: 

From (21): 

                    

                  
                       

             {  
      

      [
        

            
]    }

  

        

     
  

  
 
          

(   [
        

            
]  )

  

           

 B is the orthogonal matrix of eigenvectors, then        and     
   

Therefore  
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       [
        

            
] (   [

        

            
] )

  

    

       

             {(   [
        

            
]   )

  

    }   

Where the expectation  {(   [
        

            
]   )

  

    } is taken with respect to 

          ( see theorem 1 above ). And by same way can prove the variance of   given  . 

 

6. Model checking and Bayes factors 

 

An important and useful model checking problem in the present setup is checking the two 

models 

                  versus                . 

Under                
    

    is given the prior             
    

          , whereasunder 

  ,      
   induced by        

    
   is the only part needed. In order toconduct the model 

checking, we compute the Bayes factor,    , of    relative to  : 

         
       

       
   (28) 

where        is the predictive (marginal) density of y under model             

We have 

         ∫         
         

     
  

and 

         ∫        
    

                  
    

        
    

  

As in the previous section      
    

   will be constant in F, while  
  is inverse gamma and is 

independent of      
    

 which is given the     prior distribution and      
    

  which is 

given the inverse gamma priordistribution. (Equivalently,     
    

  and     
    

  is given 
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the     , Gamma prior as before.)Specifically,      
    

  
  

     
   

            ( 
  

  
 ), where 

   and    (small)are suitably chosen. Therefore, 

         ∫         
       

     
  

         
  

  

     
∫   

         ( 
  

  
 
)    

               
          

   
 

    
  

          
  

  

     
∫   

                  
   

 

 
           

 

  
 

    
  

          
  

  

     
∫   

  
 (

 

 
     )

    
 

 
           

  
 

 
         

 

 
   

        
    

 

 
         ( 

   
 

 
           

 

  
 

)     
  

          
  

  

     
∫

    
 

 
           

  
 

 
     

   
  

(
 

 
     )

   ( 
   

 

 
           

 

  
 

)   

 
 

 
           

    
 

 
          

  

          
  

  

     
∫(

   
 

 
           

 

  
 

)

 
 

 
        

   ( 
   

 

 
           

 

  
 

)   

 
 

 
           

    
 

 
          

  

            
  

     
  

 

 
          

 

 
           

    
 

 
          

 (29) 

Further, using (20) it follows that:  

          
            

   
 

 (∏        
     
   )

   ⁄
(∏        

 
       )

   ⁄
 

   { 
 

   
 (∑

  
 

     

     
    ∑

  
 

     

 
       )} (30) 

Therefore, 

         ∫         
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  ∫
  

  

     
   

            ( 
  

  
 
)      

      ( ∏        

     

   

)

   ⁄

( ∏   

 

       

     )

   ⁄

   { 
 

   
 
( ∑

  
 

     

     

   

 ∑
  

 

     

 

       

)}           
        

  
  

  

     
        ∫ ( ∏        

     

   

)

   ⁄

( ∏        

 

       

)

   ⁄

        

{∫   { 
 

  
 
(   

 

 
∑

  
 

     

     

   

 ∑
  

 

     

 

       

)}     
 }        

  
  

  

     
       ⁄     ⁄     ∫ ( ∏        

     

   

)

   ⁄

( ∏        

 

       

)

   ⁄

 

       (   
 

 
∑

  
 

     

     
    ∑

  
 

     

 
       )

    ⁄      

       (31) 

 

 

6.1. Prior robustness of Bayes factors
 

 

Note that the most informative part of the prior density that we have used is contained in the 

membership function   . Since a membership function       is to be treated only as a 

likelihood for  , any constant multiple        also contributesthe same prior information about 

 . Therefore, a study of the robustness of theBayes factor that we obtained above with respect 

to a class of priors compatiblewith    is of interest. Here we consider a sensitivity study using 

the density ratioclass defined as follows. Since the prior π that we use has the form 

      
    

               
    

  ,  

we consider the class of priors 
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  For specified         . We would like to investigate how the Bayes factor (28)behaves as 

the prior π varies in   . We note that for any     , the Bayes factor    has the form 

     
∫          

         
    

         
    

 

∫        
    

         
    

         
    

 
 

Even though the integration in the numerator above need not involve  ,   
 , wedo so to apply 

the following result(see[1,2,3,6,8]). 

Consider the density-ratio class 

                                             

,for specified non-negative functions  and  . Further, let            be the 

usualdecomposition of   into its positive and negative parts, i.e.,                    and 

                     . Then we have the following theorem. 

 

Theorem 3:For functions    and    such that ∫                 , for i = 1, 2,and with    

positive a.s. with respect to all     , (see[3]) 

   
     

∫              

∫               
 

is the unique solution   of 

∫                       ∫                        (32) 

   
     

∫              

∫               
 

is the unique solution   of 

∫                       ∫                        (33) 

Proof:( This prove follow to researchers ) 

To prove part one  

∫                 ∫                  ∫                  ∫                  

 ∫                                ∫                                
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∫                             

∫                             
 

By theorem 4.1.inDeRobertis and Hartigan (1981)( see [6]). 

(                       )          
                     , then 

   

∫    
     

               

∫    
     

               
 

      
     

∫            

∫             
 

Then the         

∫              

∫               
is the solution  , now to prove unique solution suppose 

      
     

∫            

∫            
 ,       

     

∫            and        
     

∫            . Then 

           and        it follows that       if and only if 

∫                       ∫                       .Moreover, for any    , 

          implies  ∫                       ∫                        

which in turn implies          ; thus ;       if and only if 

∫                       ∫                       . Hence, then  is the unique 

solution. 

Now to prove part two   

∫                 ∫                  ∫                  ∫                  

 ∫                                ∫                                

   
∫                             

∫                             
 

Also by theorem 4.1.inDeRobertis and Hartigan (1981), 

(                       )          
                      , then 

   

∫    
     

               

∫    
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∫            

∫             
 

By same way of proof the unique of first part above ( the proof complete) . 

 

Now we shall discuss this result for the Gaussian membership function only. Then,since the 

prior π that we use has the form        
    

              
    

  , and wedon’t intend to vary 

     
    

   in our analysis, we redefine    as 

                                              

For specified        . Now, were express     as 

     
∫ ∫          

        
     

         

∫ ∫         
    

       
    

      
    

         
  

∫               

∫               
 

where 

      ∫         
        

     
  

      ∫        
    

        
    

     
    

  

Then by theorem 3 is readily applicable, and we obtain the following theorem: 

 

Theorem 4: (see[3]) 

       
      is the unique solution   of 

  ∫                         ∫                         (34) 

       
      is the unique solution   of 

  ∫                         ∫                         (35) 

Proof:( This prove follow to researchers ) 

To prove part one  

  ∫                ∫                 ∫                 ∫            

   

 ∫                                ∫                                
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∫                             

∫                             
 

Then,  

(                         )          
                               , then 

   
∫    

    

               

∫    
    

               
 

      
    

∫             

∫             
 

      
    

       

To prove part two   

  ∫                ∫                 ∫                 ∫            

   

 ∫                                  ∫                                  

   
∫                                

∫                               
 

Then,  

                                     
                               , 

then 

   

∫    
     

                 

∫    
     

                 
 

      
     

∫             

∫             
 

      
     

       

By same as the unique prove to part first in theorem 2. 
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7. Simulation results 

    In this section, we illustrate the effectiveness of the our methodology. We generated 

observations from the model (1) with the following regression functions which represent a 

variety of shapes: 

(i)                        ,                                                 (36) 

(ii)                                 
 

 
  

 .                 (37) 

  The settings for the simulation study are as follows. The observations for the design variable 

are generated from uniform distribution on the interval [-1,1], for various sample sizes. These 

values are kept fixed for all settings to reduce simulation variability. The sample size taken is 

 =150. 

  For the error distribution we used normal distribution       
  , where        ,      and 

   . We have tried with different choices of   as well. The penalty parameter   is chosen by 

minimizing the generalized cross validation (   ) criterion. 

  To give an impression on the variability of the obtained estimators, we plot in figure (1) a 

scatter plot of the randomly generated data sets together with the fitted values from the 

penalized LS. regression spline estimation method.  
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Figure (1) fitted curves from penalized regression spline estimation of first ( right side ) 

and second test function ( left side )  with design variable   distributed uniform 

distribution [-1,1] with the error distributed normal distribution       ,              

and      , and sample size n=150 
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  In all examples we have used Gaussian 

membership functions       proportional to 

the density of        
    , where    is 

obtained from the penalized spline 

decomposition of   . The hyper-parameters 

  and   (see (25) and (27)) are            

     and     and                     

as in table (5.4). The values of the other 

hyper-parameters    and    (see (25) and 

(27)) are            . From the table (1) 

it can be seen that the posterior density of 

    given   (see (25)) corresponding to the 

test functions and values of (        and    ) 

. As well as we considered two different 

prior guesses for   :  

(i)             

(ii)           

  We have displayed the posterior of (  

given  ) see (21), in figure (2) , where red 

curve represent the posterior of the first test 

function while blue curve represent the 

posterior of the second test function. 

  The model checking approach based on 

Bayes factors see (28) has been tested on 

simulated examples. These Bayes factors are 

given in Table (2). From this table, it can be 

seen that the model corresponding to the 

second test function obtains the largest 

Bayes factor followed by that the first test 

function and the Bayes factor favors    with 

strong evidence for two test functions. 

 

 

 

 

 

 

 

Table (1) result of the posterior density of      given   

 

 b= 3 b= 3.2 b= 3.3 b= 3.5 

a a= 40 a= 34.66667 a= 32.61538 a= 29.33333 

   2.125341 0.5452288 0.05967334 0.003914634 

   1.748961 0.3811545 0.03844471 0.00214147 
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Figure (2) posterior   given   for first and second test functions 

  اكتبالمعادلةهنا

Test functions        Evidence 

                   very strongly favors    

                  strongly favors    

 

Table (2) Bayes factor for 

        versus         

 

 

8. Conclusions 

 

In this paper we suggest approach to semi 

parametric regression by proposing an 

alternative to dealing with complicated 

analyses on function spaces. The proposed 

technique uses fuzzy sets to quantify the 

available prior information on a function 

space by starting with a “prior guess” 

baseline regression function   . First the 

penalizedsplineis used for the model and by 

using a convenient connection between 

penalized splines and mixed models, we can 

representation semi parametric 

regression model as mixed model. The 

penalized spline assumed on   as well as 

prior   .Then prior of g relative to distance 

from   specified in the form of a 
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membership function which translates 

thisdistance into a measure of distance 

between the corresponding mixed model 

coefficients. Furthermore we obtain the 

posterior density of    given  , the 

posterior mean and covariance matrix of  ( 

theorem 1, 2 ), and a Bayesian test is 

proposed to check whether the baseline 

function   is compatible with the data or 

not and we proved the prior robustness of 

Bayes factors ( theorem 3, 4 ). 
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 الخلاصة

في هذا البحث تم دراسة التحليل البيزي لنموذج الانحدار شبه المعلمي بوجود مجموعات ضبابية ودوال انتماا        

. ان دوال الانتما  استخدمت كدوال ترجيح للنموذج . التحليل البيازي اساتخدم للولاول الات اساتدلالات حاول نتاا   

 وعامل بيز. قة بالتوزيع اللاحمعالم النموذج المختلط ، وبرهنا بعض النظريات الخال
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