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Abstract

In this paper, we consider semi parametric regression model where the mean function of this
model has two part, the parametric ( first part ) is assumed to be linear function of p-
dimensional covariates and nonparametric ( second part ) is assumed to be a smooth penalized
spline. By using a convenient connection between penalized splines and mixed models, we can
representation semi parametric regression model as mixed model. Bayesian approach to semi
parametric regression is described using fuzzy sets and membership functions. The membership
functions are interpretedas likelihood functions for the model. Bayesian approach is employed
to making inferences on the resulting mixed model coefficients, and we prove some theorems

about posterior and Bayes factor.
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1. Introduction

Consider the model:

Yi = 2?:0 Bjxji + m(xpyq,) + €

wherey, , ..., ¥, response variables and the
unobserved errors aree, , ..., €, are known to
be i.i.d. 0 and

covariances2Iwith 62 unknown.

normal with mean
The mean function of the regression model
in (1) has two parts. The parametric ( first
part ) is assumed to be linear function of p-
and

dimensional covariatesx;;

nonparametric (second part) m(x,q,)is
function defined on some index set T c R™.
Inferences about model (1) such as its
estimation as well as model checking are of
interest.

A Bayesian approach to (fully) semi
parametric regression problems typically
requires specifying prior distributions on
function spaces which is rather difficult to
handle. The extent of the complexity of this
approach can be gauged from sources such
as Angers and Delampady (see [1]),Ghosh
[8]),and Lenk

Furthermore,

and

(see[9]),
quantifying useful

Ramamoorthi(see

and so on.

prior information of
model (1) such as “g is close to (a specified

function) g ( we will define this function
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,i=12,..,n(1)
in section 5 ) is difficult probabilistically,
whereas this seems quite straightforward if
instead an appropriate metric on the
concerned function space is used. This is
where fuzzy sets or membership functions
can be made use of.

In this paper, a simple Bayesian approach
tosemiparametric regression is described
using fuzzy sets and membership functions.
The

interpretedaslikelihood functions for the

membership functions are
model, so that with the help of a reference
prior they can be transformed to prior
density functions. By using penalized spline
for the nonparametric function ( second part
) of the model (1) we can representation

semi parametric regression model (1) as
mixed model and Bayesian approach is
employed to making inferences on the
resulting mixed model coefficients, and we
prove some theorems about posterior and

Bayes factor.
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2. Fuzzy sets and membership functions

A fuzzy subset A of a space G (or just a
fuzzy set A) is defined by a membership
function:

h, : G — [0, 1](see [2,3,5,15,16]).

The membership function, h,(g), is
supposed to express the degree of
compatibility of g with A.

For example, if G is the real line and A is

the set of points “closeto 0” , then

hy(0) =1
included in A, but h,(0.07) = 0.03says
that 0.07 is not really "close™ to 0 in this

indicates that O is certainly

context. Similarly, if G is a set of functions
and A c G is a set of functions "close" to a
g®  thenh,(g%) =1
indicates that g° is certainly included in A;
however, if h,(g!) = 0.03with gl(x) =
4g%(x) + 24

given  function

then g! is not really
“close” to g in this case.Note that even
when G = O is the parameter space, a
h,(8)is

probability density or mass function defined

membership  function not a
on ©, and hence cannot be usedto obtain a

prior distribution directly.
AngersandDelampady (see [3])proposethat a

reasonable interpretation for a fuzzy subset
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A of O is that it is a likelihoodfunction for
fgiven A.Anotherimportant question is how
to define hynp from h, and hg for
incorporating h, andhg in Bayesian
inference. If A and B are independent, then
andhg likelihood
functions leads to the result thath,,p =
hshg, this the

gualitative

interpreting  hy as

for purpose.Further,
that

function

ordering underlies a

membership can also
beinvestigated with this interpretation, in

conjunction with a prior distribution, (see

[3D.

3. Mixed Models

The general form of a linear mixed
model for the ith subject (i = 1,..., n) is
given as follows (see [14,17]),

Yi= Xif + Yo Ziju; + €

u;;~N(0,G;), €,~N(0,R)) (2)
where the vector Y; has length m;, X; and
Z;; are, respectively, a m; X p design matrix
and a m; X gq; design matrix of fixed and
random effects. fis a p-vector of fixed
effects and uy; are the g;-vectors of random
effects. The variance matrix G; is a q; X g;

matrix and R; is a m; X m; matrix.
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We assume that the random effects

{wj;i=1.,n;j=1,.,r} and the

set of error terms {e,..,€,} are

independent. In matrix notation,
Y=XB+Zu+e (3)

Here Y = (¥,...,7)T has length

N =YY" m, X=X],..XDTisa Nxp
design matrix of fixed effects, Zisa N X g

block diagonal design matrix of random

effects, g = Xj_;q;, u= (uf,..,uf)" isa
g-vector of random effects, R =
diag(R4, ...,R;) 1S @ N x N matrix and

G = diag(Gyq, ...

diagonal matrix.

,G.) 1s a g x g block

where
_ ,3.0 ]
V1 Uq
Yn : Uk
Bya
1 x4
X = X12
1 xln

We assume that the function gis:

And its prior guess g can be written as:

4. Semiparametric regression and spline

The model (1) can be expressed as a smooth
penalized spline with g degree,thenit's
become as(see [14]):
Vi = Y=o Bixji + Ximr BosjXpar; +
Y {u (pan — ki)l + € (4)
Where kq, ..., kg are inner knots a < k; <
oy <kg < b.
By using a convenient connection between

penalized splines and mixed models. Model

(4) is rewritten as follows(see [11,14])

Y=XB+Zu+ € (5

(xp+1,1 - kK)(-I]-

q q
(xp+1,n k1)+ (xp+1,n - kK)+
X xd
p+11 = Api11
q
Xp+1,2 Xp+1,2
X .'X,'q
p+in - p+1n

g= XL + Zu (6)

g? =XB°+ Zu° (7)

Further, some of the a priori information penalized spline coefficients can be translated into:
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E(e) = 0;

E(u) =0;
The term XgBin (5) is the pure polynomial
component of the spline, and Zu is the
component with spline truncated functions
with covariance ¢2Q, whereQ = ZZT.
Letting (B,u,02,062) be the parameter
vector, the mixed model specifies a
N(0,c2I) prior on u as well as the
likelihood, f(Y|B,u,02, 62). To specify a
complete Bayesian model, we also need a
prior distribution on (B, d2,52). Assuming
that little is known about g, it makes sense
to put an improper uniform prior on S. Or, if
a proper prior is desired, one could use a
N(0, g5 1) prior with o so large that, for all
intents and purposes, the normal distribution
is uniform on the range of . Therefore, we
will use my(B) = 1. We will assume that
the prior on o? is inverse gamma with
parameters A, and B, — denoted /G (A, Be)

— 50 that its density is

A
B, € -
1(02) = 755 (08) etV exp

(-5)©

Also, we assume that:
01% ~1G (Aw Bu)

var(e) = o2l
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E(B) =0;

var(u) = o2l

var(B) = o41 (8)

Here A, B:, Ayand B, are
“hyperparameters” that determine the priors
and must be chosen by the statistician.
These hyperparameters must be strictly
positive in order for the priors to be proper.

If A, and B,, were zero, then m,(c2) would

be proportional to the improper prior % ,

€

which is equivalent to log(o,.) having an
improper uniform prior. Therefore, choosing
A, and B, both close to zero (say, both equal
to 0.1) gives an essentially noninformative,
but proper, prior. The same reasoning
applies to A, and B,,. The model we have
constructed is a hierarchical Bayes model,
where the random variables are arranged in
a hierarchy such that distributions at each
level are determined by the random
variables in the previous levels. At the
bottom of the hierarchy are the known
hyperparameters. At the next level are the
fixed effects parameters and variance

components  whose  distributions  are
determined by the hyperparameters. At the
level above this are the random effects,

uand e, whose distributions are determined
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by the variance components. The top level contains the data, y.( see [14] )

5. Prior information and Membership functions

We have explained in the previous section that we would like to make use of impreciseprior
information such as “g is close to g°” by using a membership function (see [3,7,12]) which
translates this into a measure of distance between the corresponding penalized spline
coefficients. Let us examine the implications of assuming that the available prior information is
quantified in terms of a membership function

ha(g) = ¢(d(g g%))
Whered is a measure of distancein L,. Due to the penalized spline decomposition assumed on

gas well as g°(see section 4), a natural choice for d is the distance given by
d*(g,g°) = llg—g°lI> = IXB + Zu — (XB° + Zu®)||> = ||CF — CF°||* = E(F — F9)2

Where C = [X,Z] and F = [B,u]”
We will use a membership function that will depend only on d?(g,g°). Some possibilities for

h, are the following:

(1) The Gaussian membership function given by:

ha(g) = exp(— d*(g g%) = exp(— a X(F — F°)*) (10)
This membership function can be explained as follows. Suppose we have available some past

data of the form

y'=x"f+zut+e

where
_ BO -
y [’;p u.l (p11 — kl)i o (pyr1 — kK)‘i
y*= * ' '8: ﬁp+1 y U= : ’Z*= : q - S aq
I : UK (xp+1,n* — kg (xp+1,n* —kg)y
Bp+q
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* * * *q
|[ 1 X11 xpl xp+1’1 xp+1,1 —I
* * * *q
X = | LoXx e X2 xpiap Xp+1,2
1n* e xpn* xp+1,n* xp+1,n*

Supposeg = xf + zu is estimated from this data by g.Then the information in this data may be

quantified using a membership functionof the type
~ A — 112
ha(g) = exp(—d*(g 8)) = exp(~llg - 8lI*) = exp(— ||CF — CF||")

= exp(—aZ(F — F)Z)
g°may then be identified with g. If we have multiple past data sets, we may thenhaveavailable
ha, (g) = exp( — d?(g,81)), ha,(g) = exp(— d?(g,8,)), and soon, which may be combined
intoh, (8) = ha,na,(8) = ha, (@)ha,(g)
= exp(— d*(g,§1)) exp(— d*(g &)

= exp(—QIZ(F — Fl)z) —a, E(F — Fz)z))

= exp(—a4llg — gl”2 —allg — §2||2)

As an example one could consider fitting regression lines to two (or more) sets of past data
with possibly different error variances and use the fitted regression lines along with the
estimated variances for constructing the membership functions. The constants a; and «,
provide additional scope for assigning different weights to the two sources of information,
which is another appealing feature of this approach.

The multivariate t membership function

ha(g) = (1+ d?(g g™ P/2 = (1+ (F = FO)TV7H(F — F°) /)72 (11)

Where g > 2 is the degrees of freedom and n denotes the dimension ofF, where( F =

[ B,u]). This is a continuous scale mixture of Gaussian membership functions with the same
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g® for each of the membership functions. Since this vanishes more slowly than Gaussian

membership function, one could expect better robustness with this (see[2,3]).

(iii) The uniform function

_ (L ifd(gg®)=<$¢
hag) = {O, otherwise (12)

This is an extreme case where g is restricted to a neighborhood of g°(see[2,3]).In order to
proceed with Bayesian inference on g, we need to convert the membership function into a prior
density. Thus we obtain the prior density
n(g) « hy(g)mo(g),
or, upon utilizing the spline decomposition for g, we have an equivalent prior density
n(F,0¢,08) « hy(F) mo(ad,05).(13)
whereF =[S u]’.

5. Posterior calculations

We have the model
Y|F,05,02 ~ N(CF,0¢l, + o5H + 0;Q). (14)
Where C = [X Z].
Unless F has a normal prior distribution or a hierarchical prior with a conditionallynormal prior
distribution, analytical simplifications in the computation of posterior quantities are not
expected. For such cases, we have the joint posterior density of the penalized spline coefficients
F and the error variances o2and ¢ given by the expression.
n(F o4, 02|Y) « f(Y|F,04,08) ha(F) mo(F, 04, 0)
Wheref is the likelihood. From (14), f can be expressed as
f(YIF, 0, 08)

_ -1
« |02, + aZH + 62Q| 1/Zexp{7(Y — CF)T (621, + o3H

+02Q) (¥ - CF)}
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Proceeding further, suppose m, of the form

no(F,05,0¢) = my(of, ) (15)
whichis constant in F, is chosen.
Markov Chain Monte Carlo(MCMC) based approaches to posterior computations are now
readily available. For example, Gibbs sampling is straightforward (see [ 3,14]).

Note that the conditional posterior densities are given by

n(F|Y,02,02) « exp{= (Y — CF)T (021, + gfH + 62Q) " (Y — CF)} hy(F) (16)

n(62|Y,F,02) o |o2l, + ofH + 05Q|_1/2 exp {_71 (Y —CF) (oI, + ofH + aﬁQ)_l(Y —
CF)}mi (02, 02)(17)

n(aZ|Y,F,02) « |21, + o5 H + 05Q|_1/2 exp {_71 (Y — CF)"(dll, + o4 H + aﬁQ)_l(Y —

CF)}my (02, 02) (18)
However, major simplifications are possible with the Gaussian h, as in (i)( see section 4 ).
Specifically, assuming that h, (F) is proportional to the density of N(F,, 72I" ) with

72 — [Uﬁz 0] = [Ip+q+1 0 ] = [UEIP+CI+1 0
0 of 0 In-p+q+1) 0 04 In—(p+q+1)
Y|F,05,02 ~N(CF,0¢l, + o4H +0Q) (19)
F|t? ~N(F,,t°TI")
Therefore, it follows that
Y|oZ,02 ~ N(CF,,02I, + [CT*T'CT]) (20)
F|Y,02,6% ~N(F, + A, (Y — CE,)), 4,) (21)
where
A, = {2 CTHo2l, + [CT2ICT]} 1 (22)
A, =TT — 7T CT{c?1, + [CT*I'CT]}1{CI} (23)

Now proceeding as in [3], we employ spectral decomposition to obtain Ct2I'c” = Bt?I'DBT
where D = diag(d,,...,d,) is the matrix of eigenvalues and B is the orthogonal matrix of

eigenvectors. Thus,
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2
T
oll, + [CT*I'CT] = 621, + Bt?’I'DBT = Bo?I,BT + Bt*I'DBT = Bo2(I, + ;FD)BT

€

V1p+q+1

= 02B(I, + ]D BT

0 5171 (p+q+1)
Where § = 62/c? and y = g 2 /a2 Then, the first stage (conditional) marginal density of Y
givens?2 and & can be written as
m(Y|dZ,8,v)
1 1

= n
R TN T
" 0 Oln-p+q+1)

1/2 20—62

I
— CFE,)"B <1n + [y pg"“ ] D )BT( Y — CE,)

51n—(p+q+1)

1 1

p+q+1_st
= 24
(Znag)”/z[H?’:"“[1+ydinl/2[ T ranalirodl T o Z(Z L+yd;

:l p+q+2 1+8d )}(24)

where s = (sq,...,5,)T = BT(Y — CF,). We choose the prior on 62, § = 62/0? and y =

aﬁz/aez, qualitatively similar to the used in [3]. Specifically, we take m,(c2,v,8) to be
proportionalto the product of an inverse gamma density
{B.</T'(A.)} exp(—B./02)(c?)~“etDfor g2 and the gamma density for y andthe density of
aF (b, a)distribution fors (for suitable choice of B,, A., b and a). Conditions apply on a and
bsuchthat(see[2,3]):

2b?%(a+b-2)

1- The prior covariance of y and 6 (= 2 (b-2)?

) is infinite.
a’(b+2)(b+6)

2- The fisher information number = (Z(a_4)(a+b+2)

) IS minimum.

3- The prior mode = (ZEZIE;) is greater than 0.

This can be done by choosing 2 < b <4anda = 8(b + 2)/(b — 2)
Once m,(c2,y,8) is chosen as above, we obtain the posterior density of y,8given Y, the

posterior mean and covariance matrix of F as in the following theorems.
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Theorem1: the posterior density of y, § given Y is:

5(B/2)=1yAc=1 gyp Y.
Be

1/2
7-[22()/: 5|Y) X (a+b6)‘(a+b)/2 (Hp+q+1(1 + ydl)) (H p+q+2(1 + &d, )) (ZBe +

—(N+2Ac+2)/2
pra+1 s n i
2= 1+yd; T Li=p+q+2 1+5di) (25)
Proof:
77:22(]/1 6|Y) = j m(Y|062, 6,]/ ) f(yJAE' Be) f(6, b, a) f(JGZ'AE' Be)do-ez
" ~1/2 . -1/2 L
c cy\Ae™
1_[ (1 +yd,) 1_[ (1 +6d)) (—)
.[ (27‘[0’ ) /2 i=p+q+2 l BI'(Ae) \Be
p+q+1 2
eXPY 206 AVEE yd
=
cy bb/2q%/2 5®/2)-1
L T 5d, eXpB B(b,a) (a+ bs) (@+b)/2
A
B.© B
—(Ac+1) __€ 2
T (02) exp ( Gé) do;
_ 2
wherec = aj
-1/2
(2 )—n/z (Cy)Ae—l expg—ibb/Zaa/Z 5(b/2)—1 p+q+1(1 o ) n (1
= 4n 2 —(a+b)/2_[ 1_[ ydi 1_[
(I'(A) B(b,a) (a+ bd) = =g +2
—1/2 p+q+1
5d, ——| 28, z
+0dy) exp 062 T 1+ yd

2

2\—(N+2Ac+2)/2
+ Z 1+6d S do¢

i=p+q+2

151



AmeeraJaberMohaisenAmmar Muslim Abdulhussein Fuzzy sets in semiparametric.....

/2 (C]/)Ae—l expCB—ybb/zaa/z 5b/2)-1 nr2as2)) p+q+1
= —n < n+2A.+
= (2m) (F(AE))Z B(b,a) (a + b5)_(a+b)/2 (2) J U (1
e n 2 p+q+1
+ yd; 1_[ 1+ 6d: expy — 2B, + z
yd;) i:p+q+2( i) P Ug ]_+-yd
(n+2Ac+2)/2
pra+1 st n 52 ¢
+ Z 2B+ 24 1+yd; T 2i=prq+2 1+8d; I8
+ +2 20¢ €
i=p+q
p+q+1 —(n+2Ac+2)/2
do?
1+ Vd 1+ 6d Oe
i=p+q+2
sm/2)- 1yAe 1 exp p+q+1 -1/2 n -1/2 .
(a + b§)~(atb)/2 j 1_[ (1+ydy) | 1_[ (1+4d;) exps — 202 2B,
i=p+q+2
p+q+1
1+ yd
2B, + Zp+q+1 s? 4y s? [(n+2Ac+4)/2]-1
+ Z 1+yd; I=p+q+2 1484, -
i=p+q+2 1+ 6d 20¢ €
p+q+1 n , —(n+2Ac+2)/2
Sj
+ d 2
Z 1+ Vd z 1+ 6d; Oe
i=p+q+2
5®/2)- 1yA -1 expL cy p+q+1 -1/2 n -1/2
(a + bd)—@+b)/2 I+ 2Ac+4)/2) l_[ (1+yd) 1_[ (1+68dy)
i=p+q+2
p+q+1 —(n+2Ac+2)/2
2B, Z Z
* 1+ yd 1+ (Sd
i= p+q+2
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5(b/2)—1yA€—1 expz p+q+1 —1/2 n ~1/2
B.
(a n b5)—(a+b)/2 1 (1 + ]/dl) 11 (1 + 6dl) ZBE
i=1 i=p+q+2
—(N+2Ac+2)/2

p+q+1

1+yd 2 1+6d

i=p+q+2

Theorem2: The posterior mean and covariance matrix of F are:

I 0 -1
E(F|Y) =F, + I'CTBE (In + [y pra+i ]D ) |Y!s (26)
0 Oln—(p+q+1)
And
var(F|Y) =

1 p+q+1  s? n s? B 1 r
n+24¢+2 E KZB + (Z 1+yd; T Li=ptq+2 1+6di)> |Y] r N+24c+2 I'C"BE KZBE +
-1
(Zp+q+1 st Lym I+ Ylp+q+1 0 | r|Brer+
1+yd; i=p+q+2 1+8d 0 Sl (prqs1)

E[R(y,5)R(y,®)|Y],  (27)

I 0
whereR(y, 1) = I'CTB(1,, + [y pra+i ] D) 1s
0 Oln—(p+q+1)
Proof:
From (21):

E(F|Y) = F, + A,(Y — CF°)
= FE, + {t2I, CTH{o?I, + t21,CrCT} (Y — CE,)

-1

Vptq+1 ] D)BT} (Y —CK)

= F,+ 1%, CT {aezln + oZB(I, + [
0 Oln-(p+q+1)

-1
]D) B-1(Y — CE,)
6In—(p+q+1)

B is the orthogonal matrix of eigenvectors, then B~ = BTand BT ' =B

2
= F,+—1,I CTB" 1(1 +[y1p+q“
J

€

Therefore
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E(F|Y) = F,

I 0 I 0 !
+ICTB [y pra+i ] I, + [y pra+i ]D BT(Y
0 Oln—(p+q+1) 0 Oln—p+q+1)

- CFO))

YIp+q+1 0 -
= F,+I'C"BE (1n+[ prd ]D) |Yts
0 Oln—(p+q+1)

-1
Ylpiq+1

D ) Y
0 5In—(p+q+1)] |

., (Y, 6|Y)( see theorem 1 above ). And by same way can prove the variance of FgivenY.

Where the expectation E {(In + [ } Is taken with respect to

6. Model checking and Bayes factors

An important and useful model checking problem in the present setup is checking the two
models

H,: g = XB°+Zu® =g°versusH, : g=XB + Zu # g°.
Under H,, (g = g(F),a2,02) is given the prior hy(F)my(F,d2,02) I(g # g°), whereasunder
H,, my(c?) induced by m,(F,d2,062) is the only part needed. In order toconduct the model

checking, we compute the Bayes factor, B,,, of H, relative toH; :
n(Y) = 2 (2g)
wherem(Y'|H;) is the predictive (marginal) density of y under model H;,i = 0, 1.
We have
m(Y1H,) = [ F(¥1g?,02) molo2) do?
and
(1) = [ 1R, 02,08) ha(F) mo(F, 0%, 02) dFdogdat
As in the previous section (02, 52) will be constant in F, whileg? is inverse gamma and is
independent of v; = oZ/a7which is given the F, ,prior distribution and v, = 62 /05 which is

given the inverse gamma priordistribution. (Equivalently, § = o7 /0Z and y = g /o7 is given
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Ae
the F, ,, Gamma prior as before.)Specifically, 7,(c2) = %(aﬁ)‘(“eﬂ) exp (— %) where

A, and B, (small)are suitably chosen. Therefore,

m(Y|H,) = j £(Y1g®, 02)me(02) da?

40 2
- (27-[)—"/2 F(Ae) J(O-ez) " P <_ G_> ()" Ay exp(= = ZgO'ez(x)) do?
Be + (i — 8°(x))>
(27.[) n/2 F(AE)J(O.Z) (n/2+Ae+1)eXp(_ 2 (yo.ez 8" (x )) )dO’ez

Bee —(Z2+Ac+ 1 RrAc+ 1
= @m s [ 6 ot 300 g ) B+ 3 00

1
Be + 2 (i —8°(x:))?

—g°())) A Vexp| - p do?
1 n 1
(2my -2 B¢ f(Be+5<yi—gO(xi))Z)z“‘e“ Be +- (v — 8°(x)* s
= 4n exp| — c
€

1 e
+5 0 =g () do?

GHA+2)-1

1 1
., Be Be +2 (v — 8°(x:))? Be + - (i —8°(x:))*
= 2m)™ exp| —
(Ao & ¢

1 e
+5 0 =g () do?

= (Qm) V22 r( +Ac+ D) (Be+5 (3 — g°(x))2)~GAD dg2(29)

F(A)

Further, using (20) it follows that:

m(Y|Hy, 02,y,8) = (ZMZ)“(H”*"“(l + Vdi)) (Hl prqr2(1+8d))
1 (yp+q+l_s{

xp{~ oz (ST Sy + Zhoprara g} 0

Therefore,

-1/2

m(Y|H,) = fm(YIHl,JGZ,y, 8 my(a2,y,6) do? dy db
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BAe B ptq+1 —1/2 n
= [ @t e (-2 @ty [Ja+ran| | ] @
F(AE) Ge L .
=1 i=p+q+2
—1/2 p+q+1
+ 6d;) exp . T yd
s?
+ z m mo(y,8) do? dy db
i=p+q+2
BAG p+q+1 -1/2 n -1/2
= s | | [[a+ra [T a+say) mw.
€ i=1 i=p+q+2
. p+q+1
—— | Be do? } dy déb
jexp 0 + 1+Vd 1+6d e (A
i=p+q+2
Ae p+q+1 —1/2 n -1/2
€ i=1 i=p+q+2
1 s? 2 -(n/24c-1)

Ty (YJ 6) (B + = Zp+q+ %m + ?:p+q+2 %M) d]/ dé (31)

6.1. Prior robustness of Bayes factors

Note that the most informative part of the prior density that we have used is contained in the
membership function h,. Since a membership function h,(F)is to be treated only as a
likelihood for F, any constant multiple ch, (F) also contributesthe same prior information about
F. Therefore, a study of the robustness of theBayes factor that we obtained above with respect
to a class of priors compatiblewith hy, is of interest. Here we consider a sensitivity study using
the density ratioclass defined as follows. Since the prior 7 that we use has the form
n(F,0%,08) « hy(F)mo(F, 0, 08),
we consider the class of priors
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Cy ={m:cihy(F)mo(F,02,02) < an(F,02,02) < c,hy(F)ny(F,02,02),a > 0}
For specified 0 < ¢; < c¢,. We would like to investigate how the Bayes factor (28)behaves as
the prior 7 varies in C4. We note that for any = € C,, the Bayes factorB,; has the form

| f(Y|g° 02) n(F, 0y, 0¢) dF do dog

Bny =
U [ f(Y|F,02,02) n(F,02,02) dF do? do?

Even though the integration in the numerator above need not involve F, o2, wedo so to apply
the following result(see[1,2,3,6,8]).
Consider the density-ratio class

Ipg = {m: L(n) < an(n) <U(m) for somea > 0}
for specified non-negative functions Land U. Further, let g = q* +q~ be the
usualdecomposition of q into its positive and negative parts, i.e., g*(u) = max{q(u),0}and

q (u) = —max{—q(u),0}. Then we have the following theorem.

Theorem 3:For functions g, and g, such that [ q;(n)|U(n) dn < oo, for i =1, 2,and with g,

positive a.s. with respect to allr € IHR, (see[3])

o S a1(m) m(n) dn
nerpr J q2(m) (M) dn

Is the unique solution 9 of

JCa:(m) =9, ) Umdn + [(q:(n) —I9q.(m)*L(n)dn = 0 (32)

sup Ja1(m) m(m) dn
nerpr | 42() () dn

Is the unique solution I of

J(q:(m) = 9q2 )T Udn + [(q:(n) = Igq2(m)"L()dn = 0 (33)
Proof:( This prove follow to researchers )

To prove part one

fql(n)‘ U(mdn + f%(n)* L(mdn — ﬂfqz(n)‘ U(mdn — ﬁj%(n)* L(mdn =0

= j (@)~ U + q()* Lap)dn — 9 f (@)~ UG + a2(m)* La))dy =0
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_J@am~ U@ +a:m* Le)dn
J (@~ U@m) + g2 L())dn
By theorem 4.1.inDeRobertis and Hartigan (1981)( see [6]).

(a~ U@ +q:D* L) = infrery, Kq1(n) ,where K € I(L, U), then
J inf Kqi(n) m(n)dn

=9

— § = L=IDR
J nlenrf Kq,(n) m(n) dn
P S a1(m) w(m) dn
nerpr J 42() (M) dn

Jai () m(n) dn
Jaz(m) m(n) dn

i 1 d .
9o = inf LLWEDD e [q,(m) m(n) dnand ¢, = sup [ g, () n(n) dn. Then

elpg J 42 T dn elpg €lpg

Thenthe infrer, Is the solution 9, now to prove unique solution suppose

0 <c¢ <cy, <oand |9y < oo it follows that 9, = I if and only if

JCq:(m) =9q:(m)~Umdn + [(q:(m) —I9q,(m))*L(n)dn = 0.Moreover, for any € > 0,
9 +€/c; <Y implies [(q.(m) —9q, () UM)dn + [(q:(m) —Iq(m)*L()dn = €
which in turn implies 9 + €/c, < 9,; thus ; 9, > 9 if and only if

JCar(m) = 9q,(m)"Umdn + [(q.(n) —Iq2(m))*L(m)dn > 0. Hence, then Jis the unique
solution.

Now to prove part two

] () Umdn + j g () L(dn — 9 j G2t Um)dn — 0 f 42()™ Ldy =0

= j (@) UG + ar(m)~ L))dn — f (@@ UM + ao(m)™ L(D)dn =0

_J@m* UG +q: ()~ L))y
J(@m* U@ + q2(m)~ L(n))dn

Also by theorem 4.1.inDeRobertis and Hartigan (1981),
(a* UM + q1(n)™ L) = Suprery, Kq1(n) ,where K € I(L,U), then
J sup Kq,(n) m(n) dn

TEIpR

[ sup Kaz(n) () dn

TEIpR

=9

=99
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_ J a1(n) m(n) dn
=V = sup
nerpr | q2(m) () dn
By same way of proof the unique of first part above ( the proof complete) .

Now we shall discuss this result for the Gaussian membership function only. Then,since the
prior m that we use has the form my(F, 02, 62) « h,(0) my(0Z,02), and wedon’t intend to vary
o(0Z, 02) in our analysis, we redefine C, as

Cp ={n(F): cthy(F) < an(F) < c;hy(F),a > 0}
For specified 0 < ¢; < c,. Now, were express By, as

U f1g°, 02 mo(0D) daZy n(F)dF [ qy(F) m(F) dF
"~ J{JfUYIF, 02,021y (02,02) do2do2} n(F)dF ~ [ q,(F) n(F) dF

BOl
where

G (F) = f £(¥1g°,02) mo(02) do?

4o (F) = j F(VIF, 02, 02) my(a2, 02)doZda?

Then by theorem 3 is readily applicable, and we obtain the following theorem:

Theorem 4: (see[3])

infrcc, Boq (1)is the unique solution ¥ of

¢z [(q1(F) = 9q2(F)) " hy(F)AF + ¢1 [(q1(F) — 9q,(F))*hy(F)dF = 0 (34)
SUprec, Bos ()is the unique solution 9 of

¢2 [(q1(F) = 9qz(F))* hy(F)dF + ¢, [(q:(F) = 9q2(F))"ha(F)dF = 0 (35)
Proof:( This prove follow to researchers )

To prove part one

cz j 4 ()" U(F)dF + c; f a1 (F)* L(F)dF — 9c, j 42 (F)-U(F)dF — ¢, j 42 (F)* L(F)dF
=0

= f (201 (F)"U(F) + 101 (B L(F))dF — 9 j (205 (B)"UCF) + c105 ) L(F))dF = 0
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J(c2q.(F)"U(F) + ¢1q,(F)*L(F))dF

= = ) UG + gy L) dF

Then,
(cqu(F)‘U(F) + clql(F)+L(F)) = infrer, , cKqi(F) ,where K € I(L,U),c <c¢; + ¢y, then
S oF K () ha(B) dF
T Inf cKq; (F) hy (F) dF
F)h,(F)dF
— 9 = inffql() A(F)
meCa [ q,(F) hy(F) dF

TECY

To prove part two

czqu(F)+U(F)dF+ cqul(F)‘L(F)dF— ﬁczfqz(F)W(F)dF— ﬁclfqz(F)—L(F)dF
=0

= j(cqu(F)+ U(F)+ c,q.(F)” L(F))dF — 19f(czq2(F)Jr UF)+cq,(F)" L(F))dF =0

— 9 = [(c2q.(F)* U(F) + ¢1q.(F)~ L(F))dF
f(C2‘I2(F)+ U(F) + c,q,(F)~ L(F))dF

Then,
(c2q1(F)T U(F) + ¢1q:(F)™ L(F) = supper,, cKq,(F) ,where K € I(L,U),c < c; + ¢3,
then

[ sup cKq,(F) hy(F)dF

— 19 — mE€lpR
[ sup cKa,(F) ha(F) dF
me€lpp
9= sy J a1(F) hy(F) dF

= aerb [ a2 (F) ha(F) dF
- ?9 = Sup BOl(T[)

T[EFDR

By same as the unique prove to part first in theorem 2.
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7. Simulation results

In this section, we illustrate the effectiveness of the our methodology. We generated
observations from the model (1) with the following regression functions which represent a

variety of shapes:

(I) Yy, = 1— 3x1 + ecos(nx2+2x2), (36)

(ii) y2 = 22, — sin(2mx;) + 0.3(x, — 0.75)% — =3, (37)

The settings for the simulation study are as follows. The observations for the design variable
are generated from uniform distribution on the interval [-1,1], for various sample sizes. These
values are kept fixed for all settings to reduce simulation variability. The sample size taken is
n=150.

For the error distribution we used normal distribution N(0,52), where ¢ = 0.125, 0.25 and
0.5. We have tried with different choices of K as well. The penalty parameter A is chosen by
minimizing the generalized cross validation (GCV) criterion.

To give an impression on the variability of the obtained estimators, we plot in figure (1) a
scatter plot of the randomly generated data sets together with the fitted values from the

penalized LS. regression spline estimation method.
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Figure (1) fitted curves from penalized regression spline estimation of first ( right side )
and second test function ( left side ) with design variable X distributed uniform
distribution [-1,1] with the error distributed normal distribution (0,6%), ¢ = 0.125,0.25

and 0.5, and sample size n=150
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In all examples we have used Gaussian
membership functions h,(g) proportional to
the density of N(F,,¢2I'), where F, is
obtained from the penalized spline
decomposition of g°. The hyper-parameters
a and b (see (25) and (27)) are b =3, 3.2,
34 and 3.5 and a = 8(b + 2)/(b— 2)
as in table (5.4). The values of the other
hyper-parameters A, and B, (see (25) and
(27)) are A = B, = 0.1 . From the table (1)
it can be seen that the posterior density of
v, given Y (see (25)) corresponding to the
test functions and values of (,b, A, and B, )
. As well as we considered two different

prior guesses for g°:
(i) g°(x) =1-3x,

(i) g°(x) = 2x;

We have displayed the posterior of (
givenY ) see (21), in figure (2) , where red
curve represent the posterior of the first test
function while blue curve represent the
posterior of the second test function.

The model checking approach based on
Bayes factors see (28) has been tested on
simulated examples. These Bayes factors are
given in Table (2). From this table, it can be
seen that the model corresponding to the
second test function obtains the largest
Bayes factor followed by that the first test
function and the Bayes factor favors H; with

strong evidence for two test functions.

b=3 b= 3.2 b=3.3 b=3.5
a a=40 a= 34.66667 | a=32.61538 | a= 29.33333
Y1 2.125341 0.5452288 | 0.05967334 | 0.003914634
v, 1.748961 0.3811545 | 0.0384447/1 | 0.00214147

Table (1) result of the posterior density of y,é givenY
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Figure (2) posterior F given Y for first and second test functions

Liadlabaalliss),

Test functions

Bo1(¥)

Evidence

V1

5.850938 x 10722

very strongly favors H,

Y2

7.543237 x 10718

strongly favors H,

Table (2) Bayes factor for

H,:g= glversusH,:g + g°

8. Conclusions

In this paper we suggest approach to semi
parametric regression by proposing an
alternative to dealing with complicated
analyses on function spaces. The proposed
technique uses fuzzy sets to quantify the
available prior information on a function
space by starting with a “prior guess”

baseline regression function g°. First the

164

penalizedsplineis used for the model and by
using a convenient connection between
penalized splines and mixed models, we can
semi

representation parametric

regression model as mixed model. The
penalized spline assumed on g as well as
prior g°.Then prior of g relative to distance

from g°specified in the form of a
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membership  function which translates
thisdistance into a measure of distance
between the corresponding mixed model
Furthermore we obtain the

the

coefficients.
posterior density of y,égiven Y,
posterior mean and covariance matrix of F(
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