The Permutation Topological Spaces and their Bases

SHUKER MAHMOOD AL-SALEM
Department of Mathematics, College of Science,
University of Basrah, Iraq
shuker.alsalem@gmail.com

Abstract

:- Given a permutation β in the symmetric group on n letters, we present permutation topological space $\left(\Omega, t_{n}^{\beta}\right)$ and others new concepts in topology field such as β-sets, permutation subspace $\left(\Omega^{\prime}, t_{m}^{\gamma^{\gamma^{\beta}}}\right)$, permutation continuous, β-decomposition, β-connected. In this paper we prove that every permutation space is an Lindelof space. Moreover, we prove that, if the spaces $\Omega_{1}, \Omega_{2}, \ldots$ are permutation topological spaces. Then the product permutation topology on $\Omega_{1} \times \Omega_{2} \times \ldots$ has a countable base, and we give a number of examples.

Keywords: Symmetric group, Lindelof space, continuity, permutation, connectedness

MSC: 54A05, 54B05, 54B10, 54C05

Introduction

The purpose of this work was to delve into the aspects of finite groups that has a link with topological space in terms of permutation in symmetric group is called permutation topological space. This would aid users to appreciate the role it plays in the theories and applications of topological space and deal with these in permutation topological space. In this work we use members in symmetric groups to structure permutation topological spaces and permutation continuous functions, the relation between groups and topological spaces was studied by many mathematicians like Flapan et al. (2006), Arhangel'skii and Tkachenko (2008), Pyrch (2011). For any permutation $\beta \in S_{n}$ can be decomposed essentially uniquely into the product of disjoint cycles. That means $\beta=\left(b_{1}^{1}, b_{2}^{1}, \ldots, b_{\alpha_{1}}^{1}\right)\left(b_{1}^{2}, b_{2}^{2}, \ldots, b_{\alpha_{2}}^{2}\right)$ $\ldots\left(b_{1}^{c(\beta)}, b_{2}^{c(\beta)}, \ldots, b_{c_{c(\beta)}}^{c(\beta)}\right)$ where for each $i \neq j$ we have $\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{\alpha_{i}}^{i}\right\} \cap\left\{b_{1}^{j}, b_{2}^{j}, \ldots, b_{\alpha_{j}}^{j}\right\}=\phi$ (Dixon, 1967). So we can write β as $\lambda_{1} \lambda_{2} \ldots \lambda_{c(\beta)}$. With λ_{i} disjoint cycles of length $\left|\lambda_{i}\right|=\alpha_{i}$ and $c(\beta)$ is the number of disjoint cycle factors
including the 1 -cycle of β. We call the partition $\quad \alpha=\alpha(\beta)=\left(\alpha_{1}(\beta), \alpha_{2}(\beta), \ldots, \alpha_{c(\beta)}(\beta)\right)=$ $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{c(\beta)}\right)$ the cycle type of β (Zeindler, 2010). In this paper we introduce new two operations \wedge and \vee on β-sets in permutation topological space $\left(\Omega, t_{n}^{\beta}\right)$ where $\Omega=\{1,2, \ldots, n\}$. Moreover, we introduce new concepts β sets $\quad \lambda_{i}^{\beta}=\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{\alpha_{i}}^{i}\right\}$ and permutation topological space $\left(\Omega, t_{n}^{\beta}\right)$. We discuss closure and interior β-sets in permutation space Ω. In this paper we define permutation continuous function $\delta:\left(\Omega, t_{n}^{\beta}\right) \rightarrow\left(\Omega, t_{n}^{\mu}\right)$ by the rule $\delta\left(\lambda^{\beta}\right)=\left\{\delta\left(a_{1}\right), \delta\left(a_{2}\right), \ldots, \delta\left(a_{k}\right)\right\}$ for each $\beta-$ set $\lambda^{\beta}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subset \Omega, \quad$ where $\delta \quad$ is permutation in symmetric group S_{n}. Also, we show in this work the identity permutation $e=(1)$ in symmetric group S_{n} is permutation continuous function on the permutation space Ω. Moreover, the composition of permutation continuous functions is permutation continuous function. For each β-set $\lambda^{\beta} \subset \Omega$ we define permutation subspace $\left(\Omega^{\prime}, t_{m}^{\gamma^{\gamma^{\beta}}}\right)$ induced by λ^{β} of permutation topological
space $\left(\Omega, t_{n}^{\beta}\right)$. Let $\Psi=\left\{\lambda_{i}^{\beta}\right\}_{i \in I}$ be collection of β-sets, then Ψ is said a β-decomposition of the set $\Omega=\{1,2, \ldots, n\}$ if $\Omega=\vee_{i \in I} \lambda_{i}^{\beta}$ and if the members λ_{i}^{β} of Ψ are all nonempty different and pairwise disjoint. Finally, we define $\beta-$ connected spaces and our work is supported by a number of examples.

2. β-Sets

Definition 2.1

Suppose β is permutation in symmetric group S_{n} on the set $\Omega=\{1,2, \ldots, n\}$ and the cycle type of β is $\alpha(\beta)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{c(\beta)}\right)$, then β composite of pairwise disjoint cycles $\left\{\lambda_{i}\right\}_{i=1}^{c(\beta)}$ where $\lambda_{i}=\left(b_{1}^{i}, b_{2}^{i}, \ldots, b_{\alpha_{i}}^{i}\right), 1 \leq i \leq c(\beta)$. For any $k-$ cycle $\lambda=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ in S_{n} we define β-set as $\lambda^{\beta}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ and is called β-set of cycle λ. So the β-sets of $\left\{\lambda_{i}\right\}_{i=1}^{c(\beta)}$ are defined $\operatorname{by}\left\{\lambda_{i}^{\beta}=\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{\alpha_{i}}^{i}\right\} \mid 1 \leq i \leq c(\beta)\right\}$.

Remark 2.2

Suppose that λ_{i}^{β} and λ_{j}^{β} are $\beta-\operatorname{sets}$ in Ω, where $\left|\lambda_{i}\right|=\sigma$ and $\left|\lambda_{j}\right|=v$. We will give some definitions needed in this work.

Definition 2.3

We call λ_{i}^{β} and λ_{j}^{β} are disjoint β-sets in Ω, if and only if $\sum_{k=1}^{\sigma} b_{k}^{i}=\sum_{k=1}^{\nu} b_{k}^{j}$ and there exists $1 \leq d \leq \sigma$, for each $1 \leq r \leq v$ such that $b_{d}^{i} \neq b_{r}^{j}$.

Definition 2.4

We call λ_{i}^{β} and λ_{j}^{β} are equal β-sets in Ω , if and only if for each $1 \leq d \leq \sigma$ there exists $1 \leq r \leq v$ such that $b_{d}^{i}=b_{r}^{j}$.

Definition 2.5

We call λ_{i}^{β} is contained in λ_{j}^{β}, if and only if $\sum_{k=1}^{\alpha_{i}} b_{k}^{i}<\sum_{k=1}^{\alpha_{j}} b_{k}^{j}$.

Definition 2.6

We define the operations \wedge and \vee on $\beta-$ sets in Ω as followers:
$\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}=\left\{\begin{array}{c}\lambda_{i}^{\beta}, \text { if } \sum_{k=1}^{\sigma} b_{k}^{i}<\sum_{k=1}^{\nu} b_{k}^{j} \\ \lambda_{j}^{\beta}, \text { if } \sum_{k=1}^{\sigma} b_{k}^{i}>\sum_{k=1}^{\nu} b_{k}^{j} \quad \text { and } \lambda_{i}^{\beta} \vee \lambda_{j}^{\beta} \\ \lambda^{\beta}, \text { if } \lambda_{i}^{\beta}=\lambda_{j}^{\beta}=\lambda^{\beta} \\ \phi, \text { if } \lambda_{i}^{\beta} \& \lambda_{j}^{\beta} \text { are disjoint }\end{array}\right.$
$\int \lambda_{i}^{\beta}$, if $\sum_{k=1}^{\sigma} b_{k}^{i}>\sum_{k=1}^{\nu} b_{k}^{j}$
$=\left\{\quad \lambda_{j}^{\beta}\right.$, if $\sum_{k=1}^{\sigma} b_{k}^{i}<\sum_{k=1}^{\nu} b_{k}^{j}$
λ^{β}, if $\lambda_{i}^{\beta}=\lambda_{j}^{\beta}=\lambda^{\beta}$
Ω, if $\lambda_{i}^{\beta} \& \lambda_{j}^{\beta}$ are disjoint

Remarks 2.7

Lemma 2.8

For any not disjoint β-sets $\lambda_{i}^{\beta}, \lambda_{j}^{\beta}$ and λ_{h}^{β} in Ω satisfying:

1. $\lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$.
2. $\lambda_{i}^{\beta} \vee\left(\lambda_{j}^{\beta} \wedge \lambda_{h}^{\beta}\right)=\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right) \wedge\left(\lambda_{i}^{\beta} \vee \lambda_{h}^{\beta}\right)$.
3. $\Omega-\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right)=\left(\Omega-\lambda_{i}^{\beta}\right) \wedge\left(\Omega-\lambda_{j}^{\beta}\right)$.
4. $\Omega-\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right)=\left(\Omega-\lambda_{i}^{\beta}\right) \vee\left(\Omega-\lambda_{j}^{\beta}\right)$.
5. The intersection and union of ϕ and λ_{i}^{β} are ϕ and λ_{i}^{β}, respectively.
6. The intersection and union of Ω and λ_{i}^{β} are λ_{i}^{β} and Ω, respectively.
7. The intersection of λ_{i}^{β} and λ_{j}^{β} is $\lambda_{i}^{\beta} \wedge$ λ_{j}^{β}.
8. The union of λ_{i}^{β} and λ_{j}^{β} is $\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}$.
9. The complement of λ_{i}^{β} is $\Omega-\lambda_{i}^{\beta}$.

Proof:

Firstly, we have to prove that $\lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$, since $\lambda_{i}^{\beta}, \lambda_{j}^{\beta}$ and λ_{h}^{β} are not disjoint β-sets, then we get ($\lambda_{h}^{\beta} \subseteq \lambda_{j}^{\beta}$ or $\lambda_{j}^{\beta} \subseteq \lambda_{h}^{\beta}$) and ($\lambda_{h}^{\beta} \subseteq \lambda_{i}^{\beta}$ or $\lambda_{i}^{\beta} \subseteq \lambda_{h}^{\beta}$) and $\left(\lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\right.$ or $\left.\lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta}\right)$. Hence, there are eight cases cover all probabilities which are holed as following:
(1)- $\left(\lambda_{h}^{\beta} \subseteq \lambda_{j}^{\beta}\right.$ and $\lambda_{h}^{\beta} \subseteq \lambda_{i}^{\beta}$ and $\left.\lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\right) \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{i}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$
(2)- $\left(\lambda_{h}^{\beta} \subseteq \lambda_{j}^{\beta}\right.$ and $\lambda_{h}^{\beta} \subseteq \lambda_{i}^{\beta}$ and $\left.\lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta}\right) \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{j}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$
(3)- $\left(\lambda_{h}^{\beta} \subseteq \lambda_{j}^{\beta}\right.$ and $\lambda_{i}^{\beta} \subseteq \lambda_{h}^{\beta}$ and $\left.\lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\right) \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{i}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$
(4)- $\left(\lambda_{j}^{\beta} \subseteq \lambda_{h}^{\beta}\right.$ and $\lambda_{h}^{\beta} \subseteq \lambda_{i}^{\beta}$ and $\left.\lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta}\right) \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{h}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$
(5)- $\left(\lambda_{j}^{\beta} \subseteq \lambda_{h}^{\beta}\right.$ and $\lambda_{i}^{\beta} \subseteq \lambda_{h}^{\beta}$ and $\left.\lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\right) \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{i}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$
(6)- $\left(\lambda_{j}^{\beta} \subseteq \lambda_{h}^{\beta}\right.$ and $\lambda_{i}^{\beta} \subseteq \lambda_{h}^{\beta}$ and $\left.\lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta}\right) \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{i}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$
(7)- $\left(\lambda_{h}^{\beta} \subseteq \lambda_{j}^{\beta}\right.$ and $\lambda_{i}^{\beta} \subseteq \lambda_{h}^{\beta}$ and $\left.\lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta}\right) \Rightarrow \lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta} \subseteq \lambda_{h}^{\beta} \subseteq \lambda_{j}^{\beta} \Rightarrow \lambda_{j}^{\beta}=\lambda_{i}^{\beta}=\lambda_{h}^{\beta} \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{j}^{\beta}=$ $\lambda_{i}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$
(8) $-\left(\lambda_{j}^{\beta} \subseteq \lambda_{h}^{\beta}\right.$ and $\lambda_{h}^{\beta} \subseteq \lambda_{i}^{\beta}$ and $\left.\lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\right) \Rightarrow \lambda_{j}^{\beta} \subseteq \lambda_{h}^{\beta} \subseteq \lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta} \Rightarrow \lambda_{j}^{\beta}=\lambda_{h}^{\beta}=\lambda_{i}^{\beta} \Rightarrow \lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\lambda_{h}^{\beta}=$ $\lambda_{i}^{\beta}=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$. Then for all eight cases we have $\lambda_{i}^{\beta} \wedge\left(\lambda_{j}^{\beta} \vee \lambda_{h}^{\beta}\right)=\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right) \vee\left(\lambda_{i}^{\beta} \wedge \lambda_{h}^{\beta}\right)$.

Also, by the same way we show that $\lambda_{i}^{\beta} \vee\left(\lambda_{j}^{\beta} \wedge \lambda_{h}^{\beta}\right)=\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right) \wedge\left(\lambda_{i}^{\beta} \vee \lambda_{h}^{\beta}\right)$. Next, we want to prove that $\Omega-\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right)=\left(\Omega-\lambda_{i}^{\beta}\right) \wedge\left(\Omega-\lambda_{j}^{\beta}\right)$, since $\left(\lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\right.$ or $\left.\lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta}\right)$. Hence $\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}= \begin{cases}\lambda_{i}^{\beta}, \text { if } \lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta} \\ \lambda_{j}^{\beta}, \text { if } \lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\end{cases}$ $\Rightarrow \Omega-\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right)= \begin{cases}\Omega-\lambda_{i}^{\beta}, & \text { if } \\ \Omega-\lambda_{j}^{\beta} \subseteq \lambda_{i}^{\beta} \\ \Omega & \lambda_{i}^{\beta} \subseteq \lambda_{j}^{\beta}\end{cases}$

But for each $\lambda_{t}^{\beta} \subseteq \lambda_{g}^{\beta}$ implies $\Omega-\lambda_{g}^{\beta} \subseteq \Omega-\lambda_{t}^{\beta}$.
Thus $\Omega-\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right)=\left\{\begin{array}{l}\Omega-\lambda_{i}^{\beta}, \text { if } \Omega-\lambda_{i}^{\beta} \subseteq \Omega-\lambda_{j}^{\beta} \\ \Omega-\lambda_{j}^{\beta} \text {, if } \Omega-\lambda_{j}^{\beta} \subseteq \Omega-\lambda_{i}^{\beta}\end{array}\right.$. Moreover, λ_{i}^{β} and λ_{j}^{β} are not disjoint β-sets, then $\Omega-\lambda_{i}^{\beta}$ and $\Omega-\lambda_{j}^{\beta}$ are not disjoint β-sets. Hence $\left(\Omega-\lambda_{i}^{\beta} \subseteq \Omega-\lambda_{j}^{\beta}\right.$ or $\left.\Omega-\lambda_{j}^{\beta} \subseteq \Omega-\lambda_{i}^{\beta}\right)$. Thus $\left(\Omega-\lambda_{i}^{\beta}\right) \wedge\left(\Omega-\lambda_{j}^{\beta}\right)=\left\{\begin{array}{l}\Omega-\lambda_{i}^{\beta}, \text { if } \Omega-\lambda_{i}^{\beta} \subseteq \Omega-\lambda_{j}^{\beta} \\ \Omega-\lambda_{j}^{\beta}, \text { if } \Omega-\lambda_{j}^{\beta} \subseteq \Omega-\lambda_{i}^{\beta}\end{array}\right.$.

Then $\Omega-\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right)=\left(\Omega-\lambda_{i}^{\beta}\right) \wedge\left(\Omega-\lambda_{j}^{\beta}\right)$. Moreover, by the same way we show that $\Omega-\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right)=\left(\Omega-\lambda_{i}^{\beta}\right) \vee\left(\Omega-\lambda_{j}^{\beta}\right)$.

Lemma 2.9

For any pair disjoint β-sets $\lambda_{i}^{\beta}, \lambda_{j}^{\beta}$ and for some $\lambda_{h}^{\beta} \beta$-set in Ω we have:
(1) If $\lambda_{i}^{\beta} \subset \lambda_{h}^{\beta}$ or $\lambda_{j}^{\beta} \subset \lambda_{h}^{\beta}$, then $\lambda_{h}^{\beta} \wedge\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right)=\left(\lambda_{h}^{\beta} \wedge \lambda_{i}^{\beta}\right) \wedge\left(\lambda_{h}^{\beta} \wedge \lambda_{j}^{\beta}\right)$.
(2) If $\lambda_{h}^{\beta} \subset \lambda_{i}^{\beta}$ or $\lambda_{h}^{\beta} \subset \lambda_{j}^{\beta}$, then $\lambda_{h}^{\beta} \wedge\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right)=\left(\lambda_{h}^{\beta} \wedge \lambda_{i}^{\beta}\right) \vee\left(\lambda_{h}^{\beta} \wedge \lambda_{j}^{\beta}\right)$.

Proof: Suppose that λ_{i}^{β} and λ_{j}^{β} are disjoint β-sets, where $\lambda_{i}^{\beta} \subset \lambda_{h}^{\beta}$ or $\lambda_{j}^{\beta} \subset \lambda_{h}^{\beta}$. Let $\lambda_{i}^{\beta}=\left\{a_{1}, a_{2}, \ldots, a_{\gamma}\right\}, \lambda_{j}^{\beta}=\left\{b_{1}, b_{2}, \ldots, b_{\sigma}\right\}$, and $\lambda_{h}^{\beta}=\left\{c_{1}, c_{2}, \ldots, c_{\nu}\right\}$. If $\lambda_{i}^{\beta} \subset \lambda_{h}^{\beta}$ we have $\lambda_{j}^{\beta} \subset \lambda_{h}^{\beta}$, since $\left(\sum_{k=1}^{\sigma} b_{k}\right.$
$\left.=\sum_{k=1}^{\gamma} a_{k}<\sum_{k=1}^{v} c_{k}\right)$. Also, if $\lambda_{j}^{\beta} \subset \lambda_{h}^{\beta}$ we have $\lambda_{i}^{\beta} \subset \lambda_{h}^{\beta}$, since $\left(\sum_{k=1}^{\gamma} a_{k}=\sum_{k=1}^{\sigma} b_{k}<\sum_{k=1}^{v} c_{k}\right)$ However, $\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right)=\phi$ and $\left(\lambda_{i}^{\beta} \vee \lambda_{j}^{\beta}\right)=\Omega$. Hence $\lambda_{h}^{\beta} \wedge\left(\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}\right)=\lambda_{h}^{\beta} \wedge \phi=\phi=\lambda_{i}^{\beta} \wedge \lambda_{j}^{\beta}=\left(\lambda_{h}^{\beta} \wedge \lambda_{i}^{\beta}\right) \wedge\left(\lambda_{h}^{\beta} \wedge \lambda_{j}^{\beta}\right)$. And $\lambda_{h}^{\beta} \wedge\left(\lambda_{i}^{\beta}\right.$ $\left.\vee \lambda_{j}^{\beta}\right)=\lambda_{h}^{\beta} \wedge \Omega=\lambda_{h}^{\beta}=\lambda_{h}^{\beta} \vee \lambda_{h}^{\beta}=\left(\lambda_{h}^{\beta} \wedge \lambda_{i}^{\beta}\right) \vee\left(\lambda_{h}^{\beta} \wedge \lambda_{j}^{\beta}\right)$.

Definition 2.10

For any collection of not disjoint $\beta-\operatorname{sets}\left\{\lambda_{i}^{\beta}=\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{\sigma_{i}}^{i}\right\}\right\}_{i \in I}$. We define the union (respectively, intersection) of $\left\{\lambda_{i}^{\beta}\right\}_{i \in I}$ by $\vee_{i \in I} \lambda_{i}^{\beta}=\lambda_{j}^{\beta}$, where $\sum_{k=1}^{\sigma_{i}} b_{k}^{j}=\sup \left\{\sum_{k=1}^{\sigma_{i}} b_{k}^{i} ; i \in I\right\}$ and $\quad \hat{i}_{i \in I} \lambda_{i}^{\beta}=\lambda_{j}^{\beta}$, where $\sum_{k=1}^{\sigma_{j}} b_{k}^{j}=\inf \left\{\sum_{k=1}^{\sigma_{i}} b_{k}^{i} ; i \in I\right\}$.

Lemma 2.11

For any not disjoint β-sets $\left\{\lambda_{i}^{\beta}\right\}_{i \epsilon I}$ and λ^{β} in Ω satisfying:

1. $\lambda^{\beta} \wedge\left(\vee \lambda_{i \in l}^{\beta}\right)=\vee_{i \in I}\left(\lambda^{\beta} \wedge \lambda_{i}^{\beta}\right)$.
2. $\lambda^{\beta} \vee\left(\hat{i}_{i \in I} \lambda_{i}^{\beta}\right)=\hat{i}_{i \in I}\left(\lambda^{\beta} \vee \lambda_{i}^{\beta}\right)$.
3. $\Omega-\left(\nu \lambda_{i \in I}^{\beta}\right)=\hat{i}_{i \in I}\left(\Omega-\lambda_{i}^{\beta}\right)$.
4. $\Omega-\left(\hat{i \in I} \lambda_{i}^{\beta}\right)=\vee_{i \in I}\left(\Omega-\lambda_{i}^{\beta}\right)$.

3. Permutation Topological Spaces

Proof:

Its clearly, we consider that all above equations are hold by using lemma (2.8).

Definition 3.1

Let β be permutation in symmetric group S_{n}, and β composite of pairwise disjoint
cycles $\left\{\lambda_{i}\right\}_{i=1}^{c(\beta)}$, where $\left|\lambda_{i}\right|=\alpha_{i}, 1 \leq i \leq c(\beta)$, then $\left(\Omega, t_{n}^{\beta}\right)$ permutation topological space where $\Omega=\{1,2, \ldots, n\}$ and t_{n}^{β} is a collection of $\beta-$ set of the family $\left\{\lambda_{i}\right\}_{i=1}^{c(\beta)}$ union Ω and empty set.

Remark 3.2

If t_{n}^{β} and t_{n}^{μ} are two topology on the same set Ω, then for each k-cycle $\lambda=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ in
S_{n} we have β-set of λ and $\mu-$ set of λ are equal (that means $\lambda^{\beta}=\lambda^{\mu}$). Moreover, if λ belong to $\left\{\lambda_{i}\right\}_{i=1}^{c(\beta)}$ and $\left\{\lambda_{j}^{\mu}\right\}_{j=1}^{c(\mu)}$ are disjoint cycles decomposition of β and λ respectively, then the same $\operatorname{set}\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ is open β-set and open μ-set in permutation spaces $\left(\Omega, t_{n}^{\beta}\right)$ and
$\left(\Omega, t_{n}^{\mu}\right)$, respectively. Let $\beta \in S_{n}, \Omega_{1}=\{1,2, \ldots, n\}$ and $\Omega_{2}=\{1,2, \ldots, n+1\}$, then for each $k-$ cycle λ in S_{n} we have λ^{β} is β-subset of Ω_{2} since λ is k-cycle in S_{n+1} too. However, this is not necessary true for any k-cycle λ in S_{n+1} to be β-subset of Ω_{1} (i.e $\lambda^{\beta} \subset \Omega_{1}$), because λ is not necessary to be k-cycle in S_{n} (see example 3.4).

Example 3.3

Let $\beta \in S_{3}, \quad \lambda_{1}=(1,3,2)$ be $3-$ cycle in S_{3} and $\lambda_{2}=(1,4)$ be 2 -cycle in S_{4}, the β-sets of λ_{1} and λ_{2} are $\lambda_{1}^{\beta}=\{1,3,2\}$ and $\lambda_{2}^{\beta}=\{1,4\}$ in $\Omega_{1}=\{1,2,3\} \quad$ and $\quad \Omega_{2}=\{1,2,3,4\}$ respectively. Finally, we have $\lambda_{1}^{\beta} \subset\{1,2,3,4\}$ (i.e λ_{1}^{β} is also β-subset of Ω_{2}). But λ_{2}^{β} is not $\beta-$ subset of Ω_{1}, because $\lambda_{2}=(1,4)$ is not cycle in S_{3}.

Permutation subspaces 3.4

$\operatorname{Suppose}\left(\Omega, t_{n}^{\beta}\right)$ permutation space , $\lambda^{\beta} \subset \Omega$ and $T_{i}^{\beta}=\lambda^{\beta} \wedge \lambda_{i}^{\beta}$, for each proper $\lambda_{i}^{\beta} \in t_{n}^{\beta}$, then $T_{i}^{\beta}=\left\{\begin{array}{c}\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{i_{k}}^{i}\right\}, \\ \phi, \text { if } \lambda^{\beta} \& \lambda_{i}^{\beta} \text { are not disjoint } \\ \phi, \text { if } \lambda^{\beta} \& \lambda_{i}^{\beta} \text { are disjo int }\end{array}\right.$

Let $\mathfrak{R}=\left\{T_{i}^{\beta} \mid T_{i}^{\beta}\right.$ nonempty open $\left.\beta-\operatorname{set}\right\}$. For each $\quad T_{i}^{\beta} \in \mathfrak{R}, \quad$ let $\quad b_{k}^{i}=\operatorname{Max}\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{i_{k}}^{i}\right\}$ and $m=\operatorname{Max}\left\{b_{k}^{i} ; T_{i}^{\beta} \in \mathfrak{R}\right\}$. Suppose $\sum_{T_{i}^{\beta} \in \mathfrak{R}}\left|T_{i}\right|=s$, and $t=m-s$, then we have this set $B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$ has exactly t points where $B=\bigcap_{T_{i}^{\beta} \in \mathfrak{R}}\left(\Omega^{\prime}-T_{i}^{\beta}\right)$ where $\Omega^{\prime}=\{1,2, \ldots, m\}$. Here we used normal intersection (\cap) between pairwise sets to find the set B. For each $T_{i}^{\beta} \in \mathfrak{R}$ we have
$T_{i}=\left(b_{1}^{i}, b_{2}^{i}, \ldots, b_{i_{k}}^{i}\right)$ is i_{k}-cycle in S_{m}. Then $\{$ $\left.\left\{T_{i}\right\}_{T_{i}^{\beta} \in \Omega}, \quad\left\{\left(b_{r}\right)\right\}_{r=1}^{t}\right\} \quad$ are disjoint cycles decomposition of new permutation in symmetric group S_{m} induced by λ^{β} say $\gamma^{\lambda^{\beta}}$.

Definition 3.5

Let $\left(\Omega, t_{n}^{\beta}\right)$ be a permutation space and $\lambda^{\beta} \subset \Omega$, then we denote to permutation
subspace of $\left(\Omega, t_{n}^{\beta}\right)$ by $\left(\Omega^{\prime}, t_{m}^{\gamma^{\gamma^{\beta}}}\right)$ where $t_{m}^{\gamma^{\gamma^{\beta}}}$ $=\left\{\Omega^{\prime}, \phi,\left\{T_{i}^{\beta}\right\}_{T_{\beta}^{\beta} \in R},\left\{b_{r}\right\}_{r=1}^{\prime}\right\}$ and $\Omega^{\prime}=\{1,2, \ldots, m\}$.

Example 3.6

Find permutation space $\left(\Omega, t_{n}^{\beta}\right)$ and permutation $\quad \operatorname{subspace}\left(\Omega^{\prime}, t_{m}^{\gamma^{\gamma^{\beta}}}\right)$, where $\beta=(23)(18)(69)(45)(7)$ in S_{9} and $\lambda^{\beta}=\{1,8\}$.

Solution

$t_{n}^{\beta}=t_{9}^{\beta}=\{\Omega, \phi,\{2,3\},\{1,8\},\{6,9\},\{4,5\},\{7\}\} \quad$ and $\Omega=\{1,2,3,4,5,6,7,8,9\}, \quad \lambda^{\beta}=\{1,8\} \Rightarrow T_{1}^{\beta}=\{2,3\}, T_{2}^{\beta}=\{1,8\}$, $T_{3}^{\beta}=\{1,8\}, T_{4}^{\beta}=\phi, T_{5}^{\beta}=\{7\} \Rightarrow \mathfrak{R}=\{\{2,3\},\{1,8\},\{7\}\} \Rightarrow \operatorname{Max}\{2,3\}=3, \operatorname{Max}\{1,8\}=8$,
$\operatorname{Max}\{7\}=7 \Rightarrow \operatorname{Max}\{3,8,7\}=8=m \Rightarrow \Omega^{\prime}=\{1,2,3,4,5,6,7,8\}, \sum_{T_{i} \in \mathcal{R}}\left|T_{i}\right|=s \Rightarrow|(23)|+|(18)|+|(7)|=2+2+1=5$. Let $t=m-s=8-5=3 \Rightarrow B=\left\{b_{1}, b_{2}, b_{3}\right\}$ and $B=\bigcap_{T_{i}^{\beta} \in \mathcal{M}}\left(\Omega^{\prime}-T_{i}^{\beta}\right)=\{4,5,6\}$. Then $\gamma^{\gamma^{\beta}}=(23)(18)(7)(4)(5)(6)$ is a permutation in symmetric group S_{8} induced by $\lambda^{\beta}=\{1,8\}$ and $\left(\Omega^{\prime}, t_{8}^{\lambda^{\beta}}\right)$ is a permutation subspace where $t_{m}^{\gamma^{\gamma^{\beta}}}=t_{8}^{\gamma^{\gamma^{\beta}}}=\left\{\Omega^{\prime}, \phi,\{2,3\},\{1,8\},\{7\},\{4\},\{5\},\{6\}\right\}$.

Remark 3.7

A base for a permutation topological space $\left(\Omega_{i}, t_{i}^{\beta}\right)$ is a sub-collection D of t_{i}^{β} such that each member λ^{β} of t_{i}^{β} can be written as $\lambda^{\beta}=\vee_{i \in I} \lambda_{i}^{\beta}$, where each λ_{i}^{β} belong to D. So subbase for the product permutation topology on $(\Omega, t)=\left(\prod_{i \in I} \Omega_{i}, \Pi_{i \in I} t_{i}^{t^{i}}\right)$ is given by
$M=\left\{\pi_{i}^{-1}\left(\lambda_{i}^{\beta^{i}}\right) \mid \lambda_{i}^{\beta^{i}} \in t_{i}^{\beta^{i}}, i \in I\right\}$, so that a base can be taken to be $D=\left\{{ }_{k=1}^{d} \pi_{i_{k}}^{-1}\left(\lambda_{i_{k}}^{\beta^{i} k}\right) \mid \lambda_{i_{k}}^{\beta^{i} k} \in t_{i_{k}}^{\beta^{i} k}, i_{k} \in I, k=1,2, \ldots, d, d \in N\right\}$.

Definition 3.8

If $\lambda^{\beta} \in t_{n}^{\beta}$ is β-set in the space Ω, then $\Omega-\lambda^{\beta}$ is called closed β-set in the space Ω, and $\overline{\lambda^{\beta}}$ is smallest closed β-set containing λ^{β}, and any β-set $\lambda^{\beta} \subseteq \Omega$ is called closed β-set iff $\overline{\lambda^{\beta}}=\lambda^{\beta}$.

Example 3.9

Let $\beta=(123)(45)$ be a permutation in symmetric group S_{5}. Find permutation topological space on $\Omega=\{1,2,3,4,5\}$ and then find $\overline{\{1,2,3\}}$ in space Ω.

Solution

$c(\beta)=2, \alpha(\beta)=\left(\alpha_{1}(\beta), \alpha_{2}(\beta)\right)=\left(\alpha_{1}, \alpha_{2}\right)=(3,2) \Rightarrow \beta=\lambda_{1} \lambda_{2}$, where $\lambda_{1}=(123), \lambda_{2}=(45),\left|\lambda_{1}\right|=\alpha_{1}=3$, and $\left|\lambda_{2}\right|=\alpha_{2}=2$. Then all the proper open β-sets in space Ω are $\lambda_{1}^{\beta}=\{1,2,3\}, \lambda_{2}^{\beta}=\{4,5\}$ $\Rightarrow t_{5}^{\beta}=\left\{\Omega, \phi, \lambda_{1}^{\beta}, \lambda_{2}^{\beta}\right\}$, in other words, $\overline{\{1,2,3\}}$ is the intersection of all closed β-set λ^{β} such that $\{1,2,3\}$ $\subseteq \lambda^{\beta} \Rightarrow \overline{\{1,2,3\}}=\Omega \wedge\{4,5\} \wedge\{1,2,3\}=\{1,2,3\}$. Then $\{1,2,3\}$ is closed β-set.

Definition 3.10

The set $\left(\lambda^{\beta}\right)^{o}=\Omega-\overline{\Omega-\lambda^{\beta}}$ is called the interior of the $\beta-$ set λ^{β} in the permutation space Ω.

Remarks 3.11

1. We call x belong to β-set $\lambda^{\beta}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ iff $x=b_{j}$, for some $j \in\{1,2, \ldots, k\}$.
2. The condition $x \in \Omega-\overline{\Omega-\lambda^{\beta}}$ means that $x \notin \overline{\Omega-\lambda^{\beta}}$. Therefore, x is an interior point of β-set λ^{β} if and only if there is an open $\beta-$ set λ_{r}^{β} containing x and such that $\lambda_{r}^{\beta} \wedge\left(\Omega-\lambda^{\beta}\right)=\phi$.

Example 3.12

Let $\beta=(42)(35)(617)$ be a permutation in symmetric group S_{7}. Find $\left(\lambda^{\beta}\right)^{o}$ in permutation space $\left(\Omega, t_{7}^{\beta}\right)$, where $\lambda^{\beta}=\{3,5\}$.

Solution

$t_{7}^{\beta}=\{\Omega, \phi,\{4,2\},\{3,5\},\{6,1,7\}\}$, where $\Omega=\{1,2,3,4,5,6,7\} \Rightarrow\left(\lambda^{\beta}\right)^{o}=\Omega-\overline{\Omega-\lambda^{\beta}}=\Omega-\overline{\{1,2,4,6,7\}}$
$=\Omega-(\Omega \wedge\{1,2,4,6,7\})=\{3,5\}$. In other words, $\left(\lambda^{\beta}\right)^{o}$ is the union of all open $\beta-$ set λ_{r}^{β} such that $\lambda_{r}^{\beta} \subseteq \lambda^{\beta} \Rightarrow\left(\lambda^{\beta}\right)^{o}=\{4,2\} \vee\{3,5\}=\{3,5\}$.

Lindelof space (see Bourbaki; 1989. Page 144).

Lemma 3.13

A permutation topological space is an Lindelof space.

Proof

Let $\left(\Omega, t_{n}^{\beta}\right)$ be permutation topological space where $\beta \in S_{n}$, and $\alpha(\beta)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{c(\beta)}\right)$, then for each $1 \leq i \leq c(\beta)$ we have the proper open β-set $\lambda_{i}^{\beta}=\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{\alpha_{i}}^{i}\right\}$ is a countable set, and for each base $D=\left\{\lambda_{i}^{\beta}\right\}_{i \epsilon I}$ for permutation space Ω we have $\underset{i \in l}{\vee} \lambda_{i}^{\beta}=\lambda_{j}^{\beta}$ where $\sum_{k=1}^{\alpha_{j}} b_{k}^{j}=\sup \left\{\sum_{k=1}^{\alpha_{i}} b_{k}^{i} \mid i \in I\right\}$, but λ_{j}^{β} is a countable set (each finite set is a countable), (see Runde, 2005), so D is a countable base, since only the union of a countable collection of a countable sets is countable. Therefore permutation space Ω with countable base, then we have permutation space Ω is an

4. Functions and Permutation Continuity

 Let β, μ and δ be three permutations in symmetric group S_{n}, and let $\delta:\left(\Omega, t_{n}^{\beta}\right) \rightarrow\left(\Omega, t_{n}^{\mu}\right)$ be a function, where for each β-set $\lambda^{\beta}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$, the image of λ^{β} under δ is called μ-set and defined by the rule $\delta\left(\lambda^{\beta}\right)=\left\{\delta\left(b_{1}\right), \delta\left(b_{2}\right), \ldots, \delta\left(b_{k}\right)\right\} . \quad$ In another direction, let $\eta^{\mu}=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be μ-set, the inverse image of η^{μ} under δ is called β-set and defined by the rule $\delta^{-1}\left(\eta^{\mu}\right)=\left\{\delta^{-1}\left(a_{1}\right), \delta^{-1}\left(a_{2}\right), \ldots, \delta^{-1}\left(a_{r}\right)\right\}$. The usual properties relating images and inverse images of subsets of complements, unions, and intersections also hold for permutation sets.
Definition 4.1

Given permutation topological spaces $\left(\Omega, t_{n}^{\beta}\right)$ and $\left(\Omega, t_{n}^{\mu}\right)$, a function $\delta:\left(\Omega, t_{n}^{\beta}\right) \rightarrow\left(\Omega, t_{n}^{\mu}\right)$ is permutation continuous if the inverse image under δ of any open μ-set in t_{n}^{β} is an open β-set in $t_{n}^{\mu}\left(\right.$ i.e $\delta^{-1}\left(\lambda^{\mu}\right) \in t_{n}^{\beta}$ whenever $\lambda^{\mu} \in t_{n}^{\mu}$).

Example 4.2

Let

$$
\beta=(12)(35)(467)(8),
$$

$\mu=(3)(15)(87)(462)$, and $\delta=(257)(38)$ in S_{8} , then $\delta:\left(\Omega, t_{8}^{\beta}\right) \rightarrow\left(\Omega, t_{8}^{\mu}\right)$ is permutation continuous from permutation space $\left(\Omega, t_{8}^{\beta}\right)$ into permutation space $\left(\Omega, t_{8}^{\mu}\right)$.

Lemma 4.3

The identity permutation $e=$ (1) in symmetric group S_{n} is a permutation continuous on a permutation space $\left(\Omega, t_{n}^{\beta}\right)$.

Proof

Let $\delta=(1):\left(\Omega, t_{n}^{\beta}\right) \rightarrow\left(\Omega, t_{n}^{\beta}\right)$ and $\lambda^{\beta} \in t_{n}^{\beta}$, then $\delta^{-1}\left(\lambda^{\beta}\right)=(1)^{-1}\left(\lambda^{\beta}\right)=(1)\left(\lambda^{\beta}\right)=\lambda^{\beta}$.

Lemma 4.4

A composition of permutation continuous functions is permutation continuous.

Proof

Let $\delta_{1}:\left(\Omega, t_{n}^{\beta}\right) \rightarrow\left(\Omega, t_{n}^{\mu}\right)$ and $\delta_{2}:\left(\Omega, t_{n}^{\mu}\right) \rightarrow\left(\Omega, t_{n}^{\eta}\right)$ be permutation continuous functions. For $\lambda^{\eta} \in t_{n}^{\eta},\left(\delta_{2} \delta_{1}\right)^{-1}\left(\lambda^{\eta}\right)=\delta_{1}^{-1} \delta_{2}^{-1}\left(\lambda^{\eta}\right)=\delta_{1}^{-1}\left(\delta_{2}^{-1}\left(\lambda^{\eta}\right)\right)$. But $\delta_{2}^{-1}\left(\lambda^{\prime \prime}\right) \in t_{n}^{\mu} \quad$ since $\quad \delta_{2}$ is permutation continuous, and so $\left(\delta_{2} \delta_{1}\right)^{-1}\left(\lambda^{\eta}\right)=\delta_{1}^{-1}\left(\delta_{2}^{-1}\left(\lambda^{\eta}\right) \in t_{n}^{\beta} \quad\right.$ since $\quad \delta_{1} \quad$ is permutation continuous.

Definition 4.5

Let $\left(\Omega_{i}, t_{i}^{\beta^{i}}\right)$ be permutation topological space for each index $i \in I$. The product permutation topology $t=\prod_{i \in I} t_{i}^{\beta^{i}}$ on the set $\Omega=\prod_{i \in I} \Omega_{i}$ is the coarsest permutation topology on Ω making all the projection mappings $\pi_{i}: \Omega \rightarrow \Omega_{i}$ permutation continuous.

Lemma 4.6

If the spaces $\Omega_{1}, \Omega_{2}, \ldots$ are permutation topological spaces, then $\Omega_{1} \times \Omega_{2} \times \ldots$ have a countable base.
if $\Omega=\vee{ }_{i \in I} \lambda_{i}^{\beta}$ and if the members λ_{i}^{β} of Ψ are all

Proof

Since $\Omega_{1}, \Omega_{2}, \ldots$ permutation spaces, then each one of them has countable base. Let $h_{k, 1}, h_{k, 2}, \ldots$ are permutation topological spaces denote the base of Ω_{k}. The base of $\Omega_{1} \times \Omega_{2} \times \ldots$ is composed of sets of the form $g_{1} \times g_{2} \times \ldots$. Because, if λ is open in Ω_{k}, then $\pi_{k}^{-1}(\lambda)$ is generated by the sets $\pi_{k}^{-1}(g)$, where g belong to the subbase G for space Ω_{k}, in the same way that λ is generated by the sets g in G (with the aid of \vee operation and the finite \wedge operation). So the base of $\Omega_{1} \times \Omega_{2} \times \ldots$ is composed of sets of the form $g_{1} \times g_{2} \times \ldots$ where for each index k, except a finite number of indices, $g_{k}=\Omega_{k}$, while for the exceptional indices g_{k} is a term of the sequence $h_{k, 1}, h_{k, 2}, \ldots$. This base is obviously countable since the set of all finite sequences with terms belonging to a given countable set is countable.

5. β-Connectedness

Let $\left(\Omega, t_{n}^{\beta}\right)$ be permutation topological space. The collection of β-sets $\Psi=\left\{\lambda_{i}^{\beta}\right\}_{i \in I}$ is said to be a β-decomposition of the set $\Omega=\{1,2, \ldots, n\}$
nonempty and $\left\{\lambda_{i}\right\}_{\epsilon \in}$ pairwise disjoint cycles in S_{n}. Then Ψ is called β-decomposition of Ω we also say that Ω has been β decomposed into the β-sets of Ψ. Assume the permutation topological space $\left(\Omega, t_{n}^{\beta}\right)$ has been β-decomposed into two open β-sets λ_{k}^{β} and λ_{j}^{β}. Then the neighborhoods filter of Ω is completely determined by its traces on λ_{k}^{β} and λ_{j}^{β}. This means that no relation or connection exists between the behavior of the underlying permutation topology on λ_{k}^{β} and its behavior on λ_{j}^{β} in this form the permutation space is called β-disconnected.

Definition 5.1

A permutation space $\left(\Omega, t_{n}^{\beta}\right)$ and its topology are both said to be β-connected if Ω cannot be β-decomposed into two open β-sets. A β-subset λ^{β} of Ω is said to be β-connected whenever the permutation subspace $\left(\Omega^{\prime}, t_{m}^{\gamma^{\beta^{\beta}}}\right)$ is $\gamma^{\gamma^{\beta}}$ - connected, and λ^{β} is said to be $\beta-$ disconnected if Ω^{\prime} is $\gamma^{\lambda^{\beta}}$-decomposed into two open $\gamma^{\lambda^{\beta}}$ - sets.

Lemma 5.5

Example 5.2

See example (3.6) the permutation space $\left(\Omega, t_{9}^{\beta}\right) \quad$ is $\quad \beta$-disconnected, where $t_{9}^{\beta}=\{\Omega, \phi,\{2,3\},\{1,8\},\{6,9\},\{4,7\},\{5\}\} \quad$ and $\Omega=\{1,2,3,4,5,6,7,8,9\}$, since there are two open
β-sets
$t_{8}^{\gamma^{\gamma^{\beta}}}=\left\{\Omega^{\prime}, \phi,\{2,3\},\{1,8\},\{5\},[4\},\{6\},\{7\}\right\}$
and
$\Omega^{\prime}=\{1,2,3,4,5,6,7,8\}$.

Example 5.3

See example (3.10) the permutation space $\left(\Omega, t_{5}^{\beta}\right) \quad$ is β-connected, where $t_{i}^{\beta}=\{\Omega, \phi$, $\{1,2,3\},\{4,5\}\}$ and $\Omega=\{1,2,3,4,5\}$, since Ω cannot be β-decomposed into two open β sets.

Remark 5.4

If Ω is a permutation space and Ω is β decomposed into two open β-sets λ_{1}^{β} and λ_{2}^{β} , then we have:

1) $\overline{\lambda_{1}^{\beta}}=\overline{\lambda_{2}^{\beta}}$.
2) $\lambda_{1}^{\beta} \wedge \overline{\lambda_{2}^{\beta}}=\lambda_{1}^{\beta}$ and $\overline{\lambda_{1}^{\beta}} \wedge \lambda_{2}^{\beta}=\lambda_{2}^{\beta}$.

Let $\left(\Omega^{\prime}, t_{m}^{\gamma^{\beta}}\right)$ be $\gamma^{\lambda^{\beta}}$ - connected subspace of permutation space Ω. If Ω is β-decomposed into two open β-sets $\lambda_{1}^{\beta}, \lambda_{2}^{\beta}$, where $\left\{\lambda_{i}\right\}_{i=1}^{2}$ are cycles in S_{m} and $\left\{\left(\Omega^{\prime} \wedge \lambda_{i}^{\beta}\right)\right\}_{i=1}^{2}$ are disjoint $\gamma^{\lambda^{\beta}}-$ sets, then either $\Omega^{\prime} \cap \lambda_{1}^{\beta}$ or $\Omega^{\prime} \cap \lambda_{2}^{\beta}$ is not open $\gamma^{\lambda^{\beta}}-$ set.
$\{2,3\}$ and $\{5\}$ in Ω, where

Proof

By definition disjoint permutation sets in permutation space we have for each member in $\left\{\left(\Omega^{\prime} \wedge \lambda_{i}^{\beta}\right)\right\}_{i=1}^{2}$ is nonempty. Hence, Ω^{\prime} and $\lambda_{i}^{\beta}, \quad(i=1,2) \quad$ are not disjoint, since $\left(\Omega^{\prime} \wedge \lambda_{i}^{\beta}\right) \neq \phi, i=1,2$. Now we want to prove that $\quad \lambda_{1}^{\beta} \subset \Omega^{\prime}$ and $\quad \lambda_{2}^{\beta} \subset \Omega^{\prime} . \quad$ Assume $\Omega^{\prime} \subset \lambda_{1}^{\beta}=\left\{b_{1}^{1}, b_{2}^{1}, \ldots, b_{k_{1}}^{1}\right\}$ or $\Omega^{\prime} \subset \lambda_{2}^{\beta}=\left\{b_{1}^{2}, b_{2}^{2}, \ldots, b_{k_{2}}^{2}\right\}$, when $\Omega^{\prime} \subset \lambda_{1}^{\beta}$ we have $\Omega^{\prime} \subset \lambda_{2}^{\beta}$ too, since $\sum_{k=1}^{k_{1}} b_{k}^{1}=\sum_{k=1}^{k_{2}} b_{k}^{2}$. Moreover, $\left(\Omega^{\prime} \wedge \lambda_{1}^{\beta}\right) \wedge\left(\Omega^{\prime} \wedge \lambda_{2}^{\beta}\right)=$ $\Omega^{\prime} \wedge \Omega^{\prime}=\Omega^{\prime} \neq \phi$. But this contradiction, since $\left\{\left(\Omega^{\prime} \wedge \lambda_{i}^{\beta}\right)\right\}_{i=1}^{2}$ are disjoint, so $\lambda_{1}^{\beta} \subset \Omega^{\prime}$ and $\lambda_{2}^{\beta} \subset \Omega^{\prime}$. Then $\lambda_{i}^{\beta}=\lambda_{i}^{\gamma^{\beta}},(i=1,2)$ and they are disjoint $\gamma^{\gamma^{\beta}}$-sets too. Cleary the union for $\left\{\left(\Omega^{\prime} \wedge \lambda_{i}^{\beta}\right)\right\}_{i=1}^{2}$ of $\gamma^{\gamma^{\beta}}-$ sets in permutation
space Ω^{\prime} is $\Omega^{\prime}\left[\right.$ i.e $\left(\Omega^{\prime} \wedge \lambda_{1}^{\beta}\right) \vee\left(\Omega^{\prime} \wedge \lambda_{2}^{\beta}\right)=\lambda_{1}^{\gamma^{\gamma^{\beta}}} \vee$ $\left.\lambda_{2}^{\lambda^{\lambda^{\beta}}}=\Omega^{\prime}\right]$. If we assume that $\operatorname{both}\left(\Omega^{\prime} \wedge \lambda_{1}^{\beta}\right)$ and $\left(\Omega^{\prime} \wedge \lambda_{2}^{\beta}\right)$ are open $\gamma^{\lambda^{\beta}}-$ sets. We have Ω^{\prime} is $\gamma^{\lambda^{\beta}}$ - decomposed into two open $\gamma^{\lambda^{\beta}}-$ sets $\left(\Omega^{\prime} \wedge \lambda_{1}^{\beta}\right)$ and $\left(\Omega^{\prime} \wedge \lambda_{2}^{\beta}\right)$. But this is a contradiction with our hypothesis that Ω^{\prime} is $\gamma^{\lambda^{\beta}}$ - connected. Hence, either $\Omega^{\prime} \cap \lambda_{1}^{\beta}$ or $\Omega^{\prime} \cap \lambda_{2}^{\beta}$ is not open $\gamma^{\lambda^{\beta}}-$ set.

References

Archangelskii A.V. and Tkachenko, M., 2008. Topological groups and related structures, Atlantis Press, Paris.

Bourbaki, N., 1989. Elements of Mathematics, General topology, Springer, $2^{\text {nd }}$ Edition.

Dixon, J. D., 1967. Problems in group theory, University of Now South Wales, Printing in the United State of America.

Flapan, E., Naimi R. and Tamvakis, H., 2006. Topological symmetry groups of complete graphs in the 3-sphere, Journal of

London Mathematical Society, Vol. 73, p. 237-251.

Pyrch, N. M., 2011. Free paratopological groups and free products of paratopological groups, Journal of Mathematical Sciences, Vol. 174, No.2, p.190-195.

Runde, V., 2005. A taste of topology, Universitext, Springer, Printing in the United State of America.

Zeindler, D., 2010. Permutation matrices and the moments of their characteristic polynomial, Electronic journal of probability, Vol. 15, No. 34, p.1092-1118.

فضاءات التبديل التبولوجية و قواعدها للباحث شكر محمود خليل السالم جامعة البصرةّ/ كلية العلوم / قسم الرياضيات

shuker.alsalem@gmail.com

الخلاصة

ليكن β تبديل في زمرة التناظر ${ }^{\prime}$ قدمنا هنا فضاء التبدبل ($\left.\Omega, t_{n}^{\beta}\right)$ و مفاهيم جديدة أخرة في مجال التبولوجيا مثل مجمو عات- β ، فضاء التبديل الجزئي א كان لدينا مجموعة من فضـاءات التبديل فأن الجداء لها يمنللك قاعدة معدودة كذللك عززنا هذا العمل بعدد من الأمثلة.

