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Abstract

In this paper we define the "rising greatest factorial factorization" (RGFF) of polynomials. It
Is a canonical form representation which can be viewed as an analogue to the greatest factorial
factorization (GFF) [V.Z. Gathen and J. Gerhard, 1999, P.Paule, 1995], but with a positive integer
shifts instead of negative integer shifts. We give lemma to compute the RGFF for any polynomial.
We use this canonical representation and greatest common devisor (gcd) concept to give an

approach for Gosper’s algorithm [R.W, Jr. Gosper, 1978].
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1. Introduction

Let N be the set of natural numbers, K be the field of characteristic zero, K(n) be the field
of rational functions of n over K, K[n] be the ring of polynomials of n over K, if p(n) € K[n] is
a non zero polynomial we will denote its leading coefficient by lc(p(n)), a nonzero polynomial
p(n) € K[n] is said to be monic if lc(p(n)) = 1, gcd(p, q) denotes the greatest common devisor
for any polynomials p,q € K[n]. We assume that the gcd always takes a value as a monic
polynomial. The pair (f,g) f,g € K[n]is called the reduced form of a rational function r(n)

ifr(n) = é ¢ monic and ged(f, g) = 1.

A nonzero term t,, is called a hypergeometric term over K if there exists a rational function
r(n) € K(n) such that

t
r(n) = n+1
tn

For any monic polynomial p(n) € K[n] and m € N, the m™ rising factorial [p(n)]™ of
p(n) is defined as
[p(m)]™ = [Ti%" E'p(n),
where E denote the shift operator defined as Ep(n) = p(n + 1). Note that [p(n)]° = 1.

In many parts of mathematics and computer evaluating these kinds of sums, provided such
science some expressions like S, = Yo ty an expression exists see for example [R.W, Jr.
(called indefinite hypergeometric Gosper, 1978, J.C. Lafon, 1983, P. Lisonék
summation), arise in a natural way, for and et al, 1993, Y. Man, 1993, M. Petkovsek,
instance in combinatorics or complexity 1994, M. Petkovsek and et al, 1996, C.
analysis. Usually one is interested in finding a WeixlIbaumer, 2001]. Given a hypergeometric
solution for such an expression, Gosper's term t, and suppose that there exists a
algorithm is an automatic procedure for hypergeometric term z,, satisfying
Zny1 — Zn = ty. (1.1)

2



Basrah Journal of Science (A)

Vol.32(1),1-12, 2014

In [RW, Jr. Gosper, 1978], Gosper
developed an algorithm for finding the sum
Sn = YRZJt, depends on finding at first the
hypergeometric term z,, that satisfies (1.1).

In [M. Petkovsek, 1992], Petkovsek
used the Gosper-Petkovsek representation, Or
GP representation, for short, to give an
approach for Gosper algorithm. In [M.
Petkovsek, 1994],
derivation for Gosper's algorithm. In [M.
Paule and V. Strehl, 1995], Paule and Strehl

PetkovSek gave a

gave a derivation of Gosper’s algorithm by

using the GP representation. In [ P. Paule ,

2. Rising Greatest Factorial Factorization

1995], equipped with the Greatest Factorial
Factorization (GFF), Paule presented a new
approach to indefinite  hypergeometric
summation which leads to the same algorithm
as Gosper’s, but in a new setting. In [W.Y.C.
Chen and H.L. Saad, 2005], Chen and Saad
presented a simplified version for Gosper's
algorithm by using GP representation. In
[W.Y.C. Chen, et al, 2008], Chen and et al

found a convergence property for the ged of
the raising factorial and falling factorial.
Based on this property, they presented an

approach for Gosper's algorithm.

In this section "rising greatest factorial factorization" of polynomial is introduced. It is a

canonical form representation of polynomial which is can be defined as follows:

Definition 2.1.

We say that (py, p2, ", Px)rs Pi € K[n] is a RGFF-form of a monic polynomial p(n) € K[n] if the

following conditions hold:

(RGFF1) p(n) = [p;]"[p2]% -+ [pi]¥,

(RGFF2) each p;(n) monic, and k > 0 implies deg(py) > 0,
(RGFF3) i<j = ged([pi], E™"p;) = 1 = ged([pi]", E'py).
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2.1 Computing the RGFF-form
The following lemma is the rule to compute the RGFF of a polynomial p(n) € K[n] which is

depend on finding gcd between the polynomial p(n) and it’s shift Ep.

Lemma 2.1.

Let p(n) € K[n] be monic polynomial with RGFF-form{p,, p,, ***, Px)r- Then

RGFF(ged(p,E™'p)) = (pz,Ps, Py and  py(n) = = il

212 [pi]¥

Proof:

Ged(p, E71p) = ged([p4]17[p21% -+ [Pl E7L([pa] [p]? -+ [pi]¥)
=D, 3 Epsc P Ek_zpk
-ged(py - Ep, - E?p3 - EX 'y, E7'py - E7'py -+ E7'py).
From RGFF3 we can easily prove that

gcd(py - Ep, - E?ps - EX"p ,E71p; - E7lp, - E71py) = 1.

Then
gcd(p, E7'p) = p, - p3 - Eps -+ pr - EX2py
= (p2,P3***» Prr-
Hence
p(m) _ [pal lpal%-[pil® 1_
[p2)Z[pil®  [p2l%-[pklK [p.]" = pa(0).

Algorithm 2.1. RGFF
INPUT: A monic polynomial p(n) € K[n];
OUTPUT: The RGFF-form of p(n) ( RGFF(p))
If p(n) = 1 then RGFF(p) =<>,
Otherwise , let (p,, p3,**, Px)r = RGFF (gcd(p,E~1p)) then:

RGEE(p) = L' D2,
GFF(p) <[p2]2.._[pk]k P2, P3, ", Px)
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Example 2.1.
Compute the RGFF of the monic polynomial
p(n) = n® + 5n°+5n*—5n3 — 6n2.

Solution. We can write p(n) as p(n) = (n— Dn?(n+ 1)(n+ 2)(n+ 3). We start with
computing q; = ged(p, E~1p) yielding

qdg; =Mm—1Dnn+1)(n+2).
We continue with q, and compute q, = gcd(q;, E"1q,) yieldin

qQ; = (m—1n(n+1).
Then
qs = gcd(qz, E71qz) = n(n—1)

and

qqs = ged(gs, E7'q3) =n—1.
It is clearly that

qs = ged(qs, E77q,) = 1.
Now we can compute RGFF(p) starting with a list containing the last nontrivial gcd which is
qs = n—1, hence
RGFF(q,) =n—1.

At this point we use Lemma 2.1. on p = q; Yyields

n(n—-1)
[n-1]2°

RGFF(q3) = ( — 1) =(L,n-1),

again on p = q, yields

and for p = q, we have

RGFF(qy) = (UMD 4 40— 1), = (11,10 = 1),.

Finally we can compute the RGFF for p as

_,(n-1)n?(n+1)(n+2)(n+3)
RGFF(p) = (22 wte

,1,1,1,n— 1), = (n,1,1,1,n — 1),.
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2.2 Fundamental RGFF Lemma
The "gcd-shift" i.e., the gcd of a polynomial p(n) and its shift Ep(n), play a basic role in
hypergeometric summation. By using the Fundamental RGFF Lemma, we can compute

gcd(p, Ep) from the RGFF-form of p(n). Also it is a basic result in our approach.

Lemma 2.2. (Fundamental RGFF Lemma)
Given a monic polynomial p(n) € K[n] with RGFF-form (p;, p2, ***, px)r then

ged(p, Ep) = E([p11°[p2]" -+ [Pkl D).
Proof. The case k = 0 is trivial. For k > 0,
ged(p, Ep) = ged([py][p2)? - [pul® E([p1] [p2]% -+ [pi]*))
= ged([ps]" -+ [Pr_1 15 " PrE[piI< ™ E([p1] [p2]? - [pr—1 ¥ D EXpRE[py]<?

= E[pi]* "ged([p]* -+ [Pre1] "o E([p1] [p2]% -+ [P 1] ) EXpy)-
From RGFF3 we get

ged([pi]" E¥pr) =1, v1<i<k

and
ged(py, E[pi]) = Eged(E~'py, [pi]) =1 for i<k
also
ged(pio E*pio)|ged ([pi]®, E¥pr) = 1.
Hence
ged(p, Ep) = E[pi]*Tged([ps ]+ [Pt 1L E([p1 ] [p21% -+ [Pr—11<71)).
The rest follows from applying the induction hypothesis O

The Fundamental RGFF Lemma tell us that from the RGFF-form of p(n), i.e. RGFF(p)=
(p1, P2, Px)r,» ONe directly can extract the RGFF-form of its "gcd-shift”, i.e. RGFF

(ged(p, Ep) = E{p2,P3,***, Pr)r) -
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Example2.2.
Let p(n) =n®+ 5n°+5n*—5n3 — 6n?, then from Example 2.1 we have RGFF(p) =
(n,1,1,1,n — 1), one immediately gets by Lemma 2.2. that

RGFF(gcd(p,Ep)) = E(1,1,1,n — 1), = (1,1,1,n),.

The following lemma is very important for our approach for Gosper’s Algorithm:
Lemma 2.3.

Let (py, P2, -+, Px)r e the RGFF-form of the monic polynomial g(n) € K[n]. Then

(1) go(n) = —EX==p; py - Pic

Eg(n)
(2) g1(n) = gcdignEg) Ep, - EZPZ Ekpk-

Proof:

From the Fundamental RGFF Lemma we get

__em  __ adpelPed
8o(n) = ged(gEg)  E([p2]T[ps]?[pklx1) P17 Pz Pl
1 2. k
gl(n) _ Eg(n) _  E([pi]'[p2]*-[px]®) _ Ep1 . Esz ...Ekpk_ O

ged(gEg)  E([p2]l[ps]?-[prl*—1)

3. An Approach for Gosper’s Algorithm

In this section we consider Gosper’s algorithm equipped with RGFF concepts to present
algebraically motivated approach to the problem. Given a hypergeometric term t,, and suppose
that there exists a hypergeometric term z,, satisfying (1.1).
The ratio

Zn Zn 1

— =F, .
th  Zpnt1 —Zp -1

Is clearly a rational function of n. Let



Saad, H. L.& Abdullah, M.Kh. Rising Greatest factorial....

Zp

y(n) = o
Then equation (1.1) can be written as
r(n) - yn+1) —y(m) =1, (3.1)

Is an unknown rational function of n. Hence we need to find rational solutions

th+1

where r(n) = "

n

of (3.2). Let (a, b), (f, g) be the reduced form of r(n) and y(n), respectively, then (3.1) becomes

fn+1) f) _
a(n) A b(n) = b(n) (3.2)

Vice versa any rational solution y(n) € K(n) of equation (1.1) gives rise to a hypergeometric
solution of equation (1.1). This means that finding hypergeometric solutions z, of (3.1) is
equivalent to finding rational solutions y(n) of (3.1). In case such a solution y(n) € K(n) exist,

assume we know g(n) or multiple V(n) € K[n] of g(n). From (3.2) we get
EU U _
a(n) vl b(n) vl b(n).
Hence the problem reduces further to finding a polynomial solution U(n) € K[n] of the resulting

difference equation with polynomial coefficients,
a(n)*V-EU—-b(n)-EV-U=b(n)-V-EV- (3.3)

_. V. _ P i is equi
Note that U = f . Let g.(n) T i € {0,1}. Then equation (3.2) is equivalent to

a(n) - g, Ef—b(n) g -f=bn) g, g, -ged(gE) - (3.4)
Now, if (p,p, -, p ) k>0 is the RGFF-form of g(n), it follows from ged(f,g) =1 =
ged(g, g,) and the Fundamental RGFF Lemma that
g,(n) =p,p, - p.lbn)
PR (35)
gl(n) = Ep] E p, B pkla(n)'

It follows that
p,ged(p, - P Ep, - E“'p ) |ged(E™'a(n), b(n).
Hence

p,|2cd(E™"a(n), b(n)).
8
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By the same way we can get that

pi|gcd(E_ia(n),b(n), i=12-,k
Now we can compute a multiple V=[P,]'[P,]*[P,]® of gn). If
P, = gcd(E™'a(n), b(n)) then obviously p,|P; Indeed, we shall see below that by exploiting

RGFF-form one can extract iteratively p.- multiples P; such that E'P;|a(n) and P;|b(n).

Algorithm 3.1. RVMULT.
INPUT : The reduced form {a, b), of r(n) € K(n).

OUTPUT: Polynomials P;P, - B, such that V = [P;]*[P,]? -+ [P,]™ is a multiple of the reduced
denominator g(n) of y(n) € K(n).
(i)  Compute m = min{j € N| gcd (E‘ka(n),b(n)) =1Vk>j, keZ}
(i)  Setay = a, by = b and compute for i from 1 to m:
P, = ged(E™ a1 (n), bi_1 (n)),
a; = a;_4|E7'P,

b; = b;_4|P;.

From equation (3.3) we get

am)-gm)-f(n+1)=b(n) - g(n+1)-f(n) =b(n)-gn) - gln+1). (36
The next step is to set

gn) =V(n)
in equation (3.6). If equation (3.6) can be solved for f(n) € K[n] then
_fm,
Zn = 5 t, (3.7)

Is a hypergeometric solution of (1.1), otherwise no hypergeometric solution of (1.1) exists.
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Example 3.1.

k24k
— n
Evaluate the sum S,, = k=0T DR

Solution.

n?4m .
Let ¢, = EETYerel The term ratio

t, n’(n+3)

r(n) =

is a rational function of n. The choice a(n) = 4(n + 1)°, b(n) = n’(n + 3) satisfies that (a, b),
is the reduced form of the rational function r(n). Let {(p;, p», -**, px)» be the RGFF-form of g(n).
From the Algorithm RVMULT we get
P,=n’andP,=P;=--=P,=1"
Hence g(n) = V(n) = P,(n) = n?-
From equation (3.6) weget 4(n+1)-f(n+ 1D —n+3)-f()=n’-(n+3):
The polynomial f(n) = %(nz — 4) is a solution to the above equation. By (3.7), we have
fm) -2
mEgm T 3mr D)
Hence from (1.1) we have

. Mrm—1) 2
P S U IS
4 3m+2) 3
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