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ABSTRACT: - Fractional order PID (FOPID) controller is a special kind of PID 

controller whose derivative and integral order are fractional rather than integer which has five 

parameters to be tuned. This paper presents study of the implementation of tuning method 

and performance enhancement of the closed loop system by use of the fractional order PID 

(PIλDμ) controller utilizing a MATLAB/Simulink. The tuning methods for these type 

controllers have many mixed tools of the available optimization methods and update artificial 

optimization methods in the design. In this paper particle swarm optimization has been 

implemented to design FOPID controller in which the unknown parameters  are determined 

minimizing a given integral of time weighted absolute error (ITAE). The main specification 

of this paper is that the all five parameters of (PIλDμ) have been found directly without 

spreading the steps. It has been shown that the response and performance of the closed loop 

system with FOPID controller is much better than integer order PID controller for the same 

system and with better robustness. 

Keywords: FOPID controller, Particle Swarm. 

1- INTRODUCTION 

PID controller is a wide spread, and well known controller which is implemented 

practically in the most industries and in other applications. As an example for the application 

of PID controller in industry, slow industrial process can be pointed, low percentage 

overshoot and small settling time can be obtained by using this controller. In feedback control 

systems the controller function has ability to eliminate steady state offsets through derivative 

action. The derivative action in the control loop will improve the damping and therefore 

accelerating the transient response. By generalizing the derivative and integer orders, from 

the integer field to non-integer numbers, the fractional order PID control is obtained (1). The 

performance of the PID controller can be improved by making the use of fractional order 

derivatives and integrals. This flexibility can be helps the design for more robust system. The 
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most important advantages of the PIλDμ controller is the better control of dynamical systems 

and less sensitive to changes of parameters of a control system (2). Before using the fractional 

order controller in design an introduction to the fractional calculus is required. The first time, 

calculus generation to fractional, was proposed Leibniz and Hopital for the first time after 

words, the systematic studies in this field by many researchers such as Liouville (1832), 

Holmgren (1864) and Riemann (1953) were performed (1) Due to Widespread usage of PID 

controller in industries and product manufactures so researchers always motivated to look for 

abettor and suitable design method or alternative controller (3). For example, the fractional 

order algorithm for the control of dynamic systems has been introduced by utilization of 

CRONE (French abbreviation for Command Robusted’Ordre Non Entier), over the PID 

controller, which has been demonstrated by Oustaloup (4). Podlubny has proposed a 

generalization of the PID controller as PIλDμ controller which is known as fractional order 

PID controller, where λ is the non-integer order of integrator and μ is the non-integer order of 

the differentiator term. He also demonstrated that the PIλDμ controller has better response 

than classical PID controller (5). Frequency domain approaches of PIλDμ controller are studied 

in (6). Also many valuable studies have been done for fractional order controllers and their 

implementations in two discretization methods. The first scheme is a direct recursive 

discretization of the Tustin operator. The second one is a direct discretization method using 

the Al-Alaoui operator via continued fraction expansion (CFE) (7). Crucial importance of 

tuning of the controllers cannot be underestimated. Thus, many tuning techniques for 

obtaining the parameters of the controllers were introduced during last few decades. Tuning 

methods of PIλDμ controllers are recent research subject. Most of the researchers oriented to 

the classical optimization and intelligent methods (8).Some tuning rules for robustness to plant 

uncertainty for PIλ controller are given in (9).However in order to achieve better results, there 

are still needs for new methods to obtain the parameters of PIλDμ controllers. 

In this paper the Particle Swarm Optimization (PSO) algorithm has been used to tune 

the parameter of  PIλDμ controller in order to get an optimum time domain specifications in 

which integral of time weighted absolute error (ITAE) has been minimized and the results 

compared with conventional PID and with some other methods like the proposed method by 

(Vineet Shekher, Pankaj Rai  and Om Prakash( (1), in which the parameters of PIλDμ 

controller  has been obtained in three steps where Zeigler and Nichols method to find 

proportional Kp, integral Ki parameters, Astrom - Hagglund method to find derivative 

parameter Kd and the remained  parameter   λ  and  μ  found by optimization  toolbox of the 

MATLAB " fsolve". While in our method the optimization method, the five parameters found 

directly by utilizing PSO algorithm. 
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2- MATHEMATICAL BACKGROUND 

Fractional calculus is a generalization of integration and differentiation to non-integer 

order fundamental operator aD
r
t, where a and t are the limits of the operation and r ∈ R. The 

continuous Integra-differential operator is defined as: 

aD
r
t= {

𝑑𝑟

𝑑𝑡𝑟                  ∶ 𝑟 > 0,

 1                     ∶ 𝑟 = 0,

∫ (𝑑𝜏)−𝑟        ∶ 𝑟 < 0.
𝑡

𝑎

  … … … … (1) 

The three equivalent definitions most frequently used for the general fractional differ 

integral are the Grünwald-Letnikov (GL) definition, the Riemann-Liouville (RL) and the 

Caputo definition. The GL definition is given by: 

𝐷𝑡
𝑟𝑓(𝑡)𝑎 = lim

ℎ→0
ℎ−𝑟 ∑ (−1)𝑗 (

𝑟

𝑗
)

[
𝑡−𝑎

ℎ
]

𝑗=0

𝑓(𝑡 − 𝑗ℎ) … … … … (2)  

where [.] means the integer part. The RL definition is given as: 

𝐷𝑡
𝑟𝑓(𝑡)𝑎 =

1

𝛤(𝑛 − 𝑟)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝑟−𝑛+1
𝑑𝜏 … … … … (3)

𝑡

𝑎

 

for (n − 1 < r < n) and where Γ(.) is the Gamma function. The Caputo definition can be 

written as: 

𝐷𝑡
𝑟𝑓(𝑡)𝑎 =

1

𝛤(𝑛 − 𝑟)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝑟−𝑛+1
𝑑𝜏 … … … … (4)

𝑡

𝑎

 

for (n−1 < r < n). The initial conditions for the fractional order differential equations with 

the Caputo derivatives are in the same form as for the integer-order differential equations. 

In the above definition, Γ(m) is the factorial function, defined for positive real m, by the 

following expression: 

𝛤(𝑚) = ∫ 𝑒−𝑢𝑢𝑚−1𝑑𝑢
∞

0

 … … … … (5) 

for which, when m is an integer, it holds that: 

𝛤(𝑚 + 1) = 𝑚! … … … … (6) 

The definition of fractional derivative easily derives by taking an n order derivative (n 

suitable integer) of a m order integral (m suitable non integer) to obtain an n − m = q order 

one: 

𝑑𝑞𝑓(𝑡)

𝑑𝑡𝑞
=

𝑑𝑛−𝑚𝑓(𝑡)

𝑑𝑡𝑛−𝑚
=

1

𝛤(𝑚)𝑑𝑡𝑛

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝑦)𝑚−1𝑓(𝑦)𝑑𝑦 … … (7)

𝑡

0

 

It must be noted that for q = 1(n = 2, m = 1), (7) becomes the canonical first order derivative. 
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Laplace transform of non-integer order derivatives is necessary for an optimal study. 

Fortunately, not very big differences can be found with respect to the classical case, 

confirming the utility of this mathematical tool even for fractional systems. Inverse Laplace 

transformation is also useful for time domain representation of systems for which only the 

frequency response is known. The most general formula is the following: 

𝐿 {
𝑑𝑚𝑓(𝑡)

𝑑𝑡𝑚
} = 𝑠𝑚𝐿{𝑓(𝑡)} − ∑ 𝑠𝑘 [

𝑑𝑚−1−𝑘𝑓(𝑡)

𝑑𝑡𝑚−1−𝑘
]

𝑛−1

𝑘=0

 … … … (8) 

where n is an integer such that n − 1 <m<n. 

 The above expression becomes very simple if all the derivatives are zero (10): 

𝐿 {
𝑑𝑚𝑓(𝑡)

𝑑𝑡𝑚
} = 𝑠𝑚𝐿{𝑓(𝑡)} … … … … (9) 

A fractional order system is that system described by the following fractional order 

differential equation: 

anD
αn f (x)+an−1D

αn−1 f (x)+an−2D
αn−2 f (x)+・・・ 

= bnD
βn f (x)+bn−1D

βn−1 f (x)+bn−2D
βn−2 f (x)+・・・   …….(10) 

where Dαn =0 𝐷𝑡
α𝑛 , is called the fractional derivative of order αn with respect to variable t and 

with the starting point t = 0 , (11). 

 

3- FRACTIONAL ORDER PID (FOPID) CONTROLLER 

The integro-differential equation defining the control action of a fractional order PID 

controller is given by: 

u(t) = Kpe(t) + KiD
–λe(t) + KdD

 μe(t)  ……..(11) 

Applying Laplace transform to this equation with null initial conditions, the transfer 

function of the controller can be expressed by: 

Cf(s) = Kp+ Kis
-λ+ Kds

μ= K  
(

𝑠

𝑤𝑓
)𝜆+𝜇+

𝑠𝛿𝑓𝑠𝜆

𝑤𝑓
+1

𝑠𝜆   …….. (12) 

In a graphical way, the control possibilities using a fractional-order PID controller are 

shown in Figure (1), extending the four control points of the classical PID to the range of 

control points of the quarter-plane defined by selecting the values of λ and μ (12). 

 

4- PARTICLE SWARM OPTIMIZATION (PSO) AN OVERVIEW 

The goal of particle swarm optimization is to solve the computationally hard 

optimization problems, where it is a robust optimization technique based on the movement 

and intelligence of swarms and applied successfully to a wide variety of search and 
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optimization problems. It was inspired from the swarms in nature such as swarms of birds, 

fish, etc. The PSO was developed in 1995 by James Kennedy and Russ Eberhart. The 

algorithm adopted uses a set of particles flying over a search space to locate a global 

optimum, where a swarm of n particles communicate either directly or indirectly with one 

another using search directions, in each iteration of PSO, each particle updates its position 

based on three components, by determines its velocity using, previous velocity, best previous 

position, and the best previous position of its neighborhood. Figure (2) illustrate the flow 

chart of PSO algorithm. The basic concept of PSO lies in accelerating each particle toward 

the best position found by it so far (pbest) and the global best position (gbest) obtained so far 

by any particle, with a random weighted acceleration at each time step, this is done by the 

equations (13) and (14): 

Vt+1=W*Vt+ C1*rand (0, 1)*(pbest – X t) + C2*rand (0, 1)*(gbest – X t)….. (13) 

Xt+1 = Xt + Vt+1………. (14) 

Where:  gbest = Global Best Position. 

              Pbest = Self Best Position. 

              C1 and C2 = Acceleration Coefficients. 

              W = Inertial Weight. 

              Vt = Velocity. 

              Xt = Particle.  

Once the particle computes the new Xt it then evaluates its new location. If fitness (X 

t) is better than fitness (pbest), then pbest = Xt and fitness (pbest) = fitness (X t), in the end of 

iteration the fitness (gbest) = the better fitness (pbest) and gbest = pbest (13). 

 

5- COMPUTATION OF PIλDμ CONTROLLER PARAMETER 

The negative unity feedback control system with MATLAB simulation which is 

shown in Figure(3), where the fractional order PID (FOPID) controller Gc(s) implemented by 

using fractional control toolbox (14), the integral of time weighted absolute error (ITAE) as 

objective function (fitness function) and the plant G(s) were implemented by MATLAB 

toolbox.  

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠λ
+ 𝐾𝑑𝑠𝜇 … … … (15) 

𝐺(𝑠) =
1

(𝑠3 + 3𝑠2 + 2𝑠)
… … … (16) 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
∞

0

 … … … (17) 
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The PSO algorithm method has been implemented as M file which interconnected to 

simulink model where the FOPID controller parameters are computed and feed to the GUI of 

the controller. The optimization performed with this initial parameter, number of particles 

(30), number of dimensions (5), maximum iteration (50), C1=1, C2=3, with the objective 

function (fitness function) (ITAE). The initial values of five parameters of the fractional order 

PID controller (Kp, Ki, Kd, λ  and μ) will be generate in PSO program and submit in 

simulation diagram in Figure (3) and running the simulation automatically then compute the 

objective function (fitness function)  (ITAE) and go back with value of (ITAE) to PSO 

program to improve the value of (Kp, Ki, Kd, λ  and μ) and go on, in the end of iteration the 

five parameters of the fractional order PID controller (Kp, Ki, Kd, λ  and μ) has been 

obtained directly according to the minimum value of objective function (fitness function) 

(ITAE). The obtained results shown in the Table (1). Step response of the system in Figure 

(3) for the FOPID controller tuned by PSO algorithm in Table (1), illustrated in Figure (4). 

While the results that obtained in the proposed method by authors in (1) for λ and μ and other 

parameters of the controller for different methods like Zigler-Nichols, Åström-Hägglund and 

the refsolver optimization method, shown in the Table (2). Step response of the system in 

Figure (3), for each controller in Table (2) illustrated in Figure (5). 

Step response of the system gives valuable information such as Maximum overshoot 

(Mo.s %), rise time (Tr), peak time (Tp) and settling time (Ts). It can be observed from the 

Table (3) that, the PSO algorithm method gives much better time domain performance with 

respect to the proposed methods in (1), specially for maximum overshoot (Mo.s%), rise 

time(Tr), peak time(Tp) and settling time(Ts). 

 

6- ROBUSTNESS TEST OF THE SYSTEM 

The main advantages of the fractional order controller are the robustness of the 

system whenever a disturbance occurred and in case of the uncertainty in the parameters. The 

system which has been designed tested by two type of disturbance one is when a load or 

perturbation was applied on the system. The second when selected parameters are deviated 

from its original value by 20%. The Figure (6) shown the simulation system for PID and 

FOPID controller with disturbance putting after the plant, because if the disturbance put 

between the controller and the plant the system never effect (i.e. the system is very robust), 

Figure (7) shown that the system for FOPID controller  remains stable and very little effect 

on the time domain performance which means the sensitivity is very much low considering 

the deviated parameter from is original value, comparing with Figure (8) shown that the 

system for PID controller effect on the time domain performance for the deviated parameter 
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from is original value, Figure (9) shown the system sensitivity for FOPID is very low 

considering the disturbance effect compared with PID. The Table (4) shown the time domain 

performance for System FOPID Controller with Disturbance Figure (8-a) is better than the 

System PID Controller with Disturbance Figure (8-b).  

 

7- CONCLUSION 

In this work the PSO algorithm has been utilized to find the optimal parameters of 

FOPID controller which minimizing the (ITAE).The major properties of our proposed 

method, the five parameters (Kp, Ki, Kd, λ  and μ) are found  directly without spreading in 

steps and without need of finding the first three term of the controller. The system with 

FOPID controller exhibit good time domain response as compared with the integer order PID. 

Besides the system becomes more robust in which a good rejection of the disturbance and 

less sensitive to deviation in system parameters. 
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Table (1): Parameters of FOPID Controller Obtained by PSO algorithm 

  

 

Tuning Method 

and Controller 

Parameters 

Kp Ki Kd λ μ 

PSO Algorithm, 

(FOPID) 
98.1959 0 70.9573 0 1.4497 

 

Table (2): Parameters of PID & FOPID Controllers Obtained by Different Methods. 

 

 

Tuning Method 

and Controller 

Parameters 

Kp Ki Kd λ μ 

Zigler-Nichols, 

(PID) 
3.6 1.63 1.98 1 1 

Åström-Hägglund, 

(PID) 
4.59 1.51 3.48 1 1 

Proposed method 

in [1], (FOPID) 
3.6 1.63 3.75 1.39 0.79 

 

 

http://www.mathworks.com/matlabcentral/
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Table (3): Step Response Specification of PID & FOPID Controllers. 

 

Tuning Method 

and Controller 

Step Response Specification 

Maximum 

overshoot 

(Mo.s %) 

Peak Time 

(Tp) 

Rise time 

(Tr) 

Settling Time 

(Ts) 

Zigler-Nichols, 

(PID) 
73.5 1.67 3.25 12.5 

Åström-

Hägglund, 

(PID) 

43 1.66 2.95 6.67 

Proposed 

method in [1], 

(FOPID) 
27.9 0.96 1.74 4.65 

PSO Algorithm, 

(FOPID) 
19.7 0.195 0.084 0.476 

 
Table (4): Step Response Specification of PID & FOPID Controller with Disturbance. 

 

System 

&Tuning 

Method of 

Controller 

Step Response Specification 

Maximum 

overshoot 

(Mo.s %) 

Peak Time 

(Tp) 

Rise time 

(Tr) 

Settling Time 

(Ts) 

Åström-

Hägglund, 

(PID) 

40 2 0.76 11.5 

PSO Algorithm, 

(FOPID) 
19.7 0.23 0.091 2.38 

 

 

 

 
Figure (1): Fractional-order PID vs classical PID. 
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Figure (2): Flow Chart of PSO Algorithm. 

 

 

 

 
Figure (3): Negative unity feedback FOPID control system. 

 

G(s) (s)cG 
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Figure (4): Step response of Negative unity feedback FOPID control system. 

 

 

 
Figure (5): Step response of PID & FOPID control systems Tuned by Different Methods. 
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(a) 

 
(b) 

Figure (6): a- System for PID Controller with Disturbance, b- System for FOPID Controller 

with Disturbance. 

 

 

 

 

 

 

 

 

 

 

 



DESIGN OF FRACTIONAL ORDER PID CONTROLLER BASED PARTICLE SWARM  
 

Diyala Journal of Engineering Sciences, Vol. 07, No. 04, December 2014 

 36 

 

 
 

Figure (7): a-Step Response for System FOPID Controller, b- Focus (zoom) on -a- 

 

(a) 

(b) 
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Figure (8): Step Response for System PID Controller, b- Focus (zoom) on -a- 

 

 

 

 

 

 

(a) 

(b) 
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(a) 

 

 
(b) 

Figure (9): a- Step Response for System FOPID Controller with Disturbance, b- Step 

Response for System PID Controller with Disturbance. 
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 تصميم المسيطر التناسبي التكاملي التفاضلي الكسري بالاستناد لحشد الجسيمات
 

 

 2 بسام فاضل محمد ،1 عبد الاله خضر محمود

 كلية الهندسة / جامعة الموصل، طالب ماجستير 2، استاذ مساعد1
 

 الخلاصة
يعتبر من نوع المسيطر التناسبي التكاملي  (FOPID controller)المسيطر التناسبي التكاملي التفاضلي الكسري 

، والذي يكون فيه المشتقة والتكامل ذو مرتبة كسرية وليس عدد صحيح والذي المألوف (PID controller)التفاضلي 
 يحتوي على خمسة عوامل للتنغيم.

ذات الحلقة  وفي هذا البحث يتم دراسة هذا المسيطر وطرق التنغيم للحصول على تحسين الاستجابة للمنظومة
 بالأستعانة بمحاكاة برنامج الماتلاب. التناسبي التكاملي التفاضلي الكسريالمغلقة بأستخدام المسيطر 

وطرق التنغيم لهذا النوع من المسيطرات مزيج من الطرق الامثلية المتوفرة والطرق الذكية الحديثة، وفي هذا البحث 
، والذي يتم تحديد التناسبي التكاملي التفاضلي الكسريصميم المسيطر تم اسخدام الطريقة الامثلية لحشد الجسيمات لت

، واهم ميزة للبحث ان (ITAE)عوامل المسيطر باستخدام القيمة الصغرى المثلى لتكامل القيمة المطلقة لزمن اشارة الخطأ 
العوامل الخمسة للمسيطر قد تم ايجادها مباشرة وبدون تجزئة الخطوات وكذلك فأن أداء المنظومة ذات الحلقة المغلقة مع 

 المسيطر الكسري يصبح اكثر تحسنا واكثر متانة بالمقارنة بالمسيطر التقليدي.  
 


