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Abstract: The structure of the complete bornological vector space has been 

studied and related concepts, such as quotient, product and direct sum of 

completion of  bornological vector spaces. The study also implied concepts 

of Cauchy net in the basis of converge net in convex bornological vector 

space.  

Introduction: 

       In (1971), H.Hogbe-Nlend introduced the concepts of bornology on a 

set. In(1981) M.D. Patwardhan extended this idea to a space of entire 

functions. However, The study also implied concepts of Cauchy net in the 

basis of converge net in convex bornological vector space (cbvs) and the 

bornological completion of  bornological vector space and some main results  

related to this concept. 

1. Basic Notations: 

   In this section we introduce the basic definitions, notions and the theories 

of bornological vector spaces and  construction of  bornological vector 

space. 

Definition 1.1.[3] :-  Let A and B be two subsets of a vector space E. We say 

that: 

(i) A is circled if λAA whenever λK and   1; 
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(ii) A is convex if λ A+ μAA whenever λ and μ are positive real numbers 

such that λ+μ=1; 

(iii) A is disked, or a disk,  if A is both convex and circled; 

(iv) A absorbs B if there exists αR, α>0, such that λAB whenever α  ; 

(v) A is an absorbent in E if A absorbs every subset of E consisting of a 

single point. 

Remark 1.2.[3]:-  (i) If A and  B are convex and λ, μK , then λA+μB is 

convex. 

(ii) Every intersection of circled (resp. convex, disked) sets is circled (resp. 

convex, disked). 

(iii) Let E and F be vector spaces and letu : E →F be a linear map. Then 

the image, direct or inverse, under u of a circled (resp. convex, disked) 

subset is circled (resp. convex, disked). 

Remark 1.3.[6]:-  A subset A is bounded if it is absorbed by any 

neighborhood of the origin.     

Definition 1.4.[1]:-   A bornology on a set X  is a family ß of subsets of X  

satisfying the following axioms: 

(i) ß is a covering of X , i.e. X =
B

B ; 

(ii) ß is hereditary under inclusion i.e. if A ß and B is a subset of X  

contained in A, then B  ß; 

(iii) ß is stable under finite union. 

A pair ( X , ß) consisting of a set X  and a bornology ß on X  is called a 

bornological space, and the elements of ß are called the bounded subsets of 

X . 
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Definition 1.5.[5]:-  A base of a bornology ß on X  is any subfamily ß 0  of ß 

such that every element of ß is contained in an element of ß 0 . 

Definition 1.6.[3]:-  Let E be a vector space over the field K (the real or 

complex field). A bornology ß on E is said to be a bornology compatible 

with a vector space structure of E or to be a vector bornology on E, if ß is 

stable under vector addition, homothetic transformations and the formation 

of circled hulls, in other words,  if the sets A+B, λ A , 
1

A  belongs to ß 

whenever A and B belong to ß and λ K . 

Definition 1.7.[2]:-  A convex bornological space is a bornological vector 

space for which the disked hull f every bounded set is bounded i.e. it is 

stable  under the formation of disked hull. 

Definition 1.8.[3]:-  A separated bornological vector space (E, ß) is one 

where {0} is the only bounded vector subspace of E. 

Example 1.9.[3]:-  The Von–Neumann bornology of a topological vector 

space, Let E be a topological vector space. The collection 

 ß ={AE: A is a bounded subset of a topological vector space E} 

forms a vector  bornology on E called the Von–Neumann  bornology of E. 

Let us verify that ß is indeed a vector bornology on E, if   

ß 0  is a base of circled neighborhoods of zero in E, it is clear that a subset A 

of E is bounded if and only if for every B  ß 0  there exists λ>0 such that     

A   λ B.  

Since every neighborhood of zero is absorbent, ß is a covering of E.  

ß is obviously hereditary and we shall show that its also stable under vector 

addition. Let A
1
, A 2

  ß and B 0
  ß 0 ; there exists B

/

0  
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such that B
/

0
+ B

/

0   B 0  . Since   A 1  and A 2 are bounded in E, there exists 

positive scalars  λ and μ such that A
1
λ B

/

0
 and A 2   μ B

/

0
. with α= max(λ, 

μ), we have: 

A
1
+A 2   λ B

/

0
+ μ B

/

0   α B
/

0
+ α B

/

0   α(B
/

0
+ B

/

0
)   α B 0 .  

Finally, since ß 0  is stable under the formation of circled hulls (resp. under 

homothetic transformations). Then so is ß, and we conclude that ß is a vector 

bornology on E. If E is locally convex, then clearly ß is a convex bornology. 

Moreover, since every topological vector space has a base of closed 

neighborhoods of 0, the closure of each bounded subset of E  is again 

bounded. 

Definition 1.10.[6]:-  Let ( X i , ß i ) Ii  be a family of bornological space 

indexed by a non-empty set I and let X = 
Ii

 X i be the product of the sets 

X i . For every iI, let P i : X → X i be the canonical projection then. The 

product bornology on X  is the initial bornology on X  for the maps P i . The 

set X  endowed with the product bornology is called the bornological product 

of the space ( X i , ß i ). 

Definition 1.11.[6]:- Let F be a vector subspace of a bornological vector 

space E, the vector bornological quotient space is the quotient space E/F 

with the quotient bornology on E/F  

i.e. ß  = {θ(B):θ(B)=B+F, B is bounded in E}.  

Definition 1.12.[3]:-  Let ( X i , v j i ) be an inductive system of bornological  

vector spaces (resp., of convex bornological space) and let X  be the set 

(resp. The vector space) which is the inductive limit of the system ( X i , v j i
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). For every iI, denote by ß i  the bornology of X i  and by v i  the canonical 

map of X i  into X . The inductive limit bornology on X  with respect to 

bornologyies ß i  is the final bornology on X  for the maps v i . For every iI, 

let v i ( ß i )={ v i  (A):A  ß i }. 

Then the family ß =
Ii

v i ( ß i ) is precisely the final bornology on X .           

X  =
Ii

v i ( ß i ) and ß is indeed a bornology. It follows that, if ( X i ,v
j i ) is an 

inductive system of bornological vector spaces (resp. of convex bornological 

space), then the inductive limit bornology on  X  is necessarily a vector (resp. 

convex) bornology. When giving the inductive limit of the bornology, X  is 

called the bornological inductive limit of the bornological inductive system  

( X i , v
j i ) and is denoted by: X =  

lim

Ii
 ( X i , v j i ). 

Proposition 1.13.[3] :-  Let E=
lim



i

(
jii vE , )be a bornological inductive limit of 

separated convex bornogical vector space . If all the maps 
jiV  are injective, 

then E is separated. 

Proof:  Indeed every bounded subset of E is then a bounded subset of one of 

the space E i , which is separated. 

Definition 1.14.[3]:-  Let J(I) be the set of all finite subsets of I ordered by 

inclusion and, for every J J(I), Let E J  =
Ji
  E i be the bornological direct 

sum of the spaces (E i ) Ji . For J  J /  denoted by u
jj / the canonical 

embedding of E J  in E /J
. Then (E J , u

jj / ) is an inductive system of 

bornological vector spaces and E=
lim

 (E J , u jj / ) . 
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Definition 1.15.[7]:-  Let X and Y be two bornological spaces and u: X →  

Y is a map of X  into Y. We say that u is a bounded map if the image under 

u of every bounded subset of X  is bounded in Y  i.e. u(A) ß y , A ß x . 

Definition 1.16.[3]:-  Let E be a bornological vector space. A subset    A   E 

is said to be bornologically closed (briefly, b- closed ) if the conditions       

(x γ)

 A  and x γ  x in E imply that x A . 

Remark 1.17.[3] : Let E and F  be bornological vector spaces and let          

u : E → F  be a bounded linear map. The inverse image under u of b-closed 

subset of F is b-closed in E, since (xγ)  x in E implies  

u  (xγ)→u (x) in F . 

       The following theorems are given in [3] with out proof:- 

Theorem 1.18.[3] :-  A bornological vector space E is separated if and only 

if the vector subspace {0} is b- closed in E 

Proof:-    Necessity: Suppose E to be separated and let A={0} and let (xγ) be 

a net  in A which converges bornologically to an   

element x in E. since xγ=0 for every γ, this net   also  converges to 0 in E and 

the uniqueness  of limits  x=0. 

       Sufficiency: Suppose that {0} is b- closed in E and that (xγ) is a net  

having limits x and y in E. The net  xγ- xγ=0 converges to x-y, hence x-y=0 

and E is separated. 

Theorem 1.19.[3] :-Let E be a convex bornological vector cpace  and let M 

be a subspace of E. the quotient ME /  is separated if and only if M is 

bornologically closed in E. 

Proof:-    If ME /  is separated, then 0 is b-closed in ME / . If θ: E → ME /  



 
-7- 

is the canonical map, then M = θ
1
(0) is b- closed in E remark 1.17 

Conversely, suppose M is b- closed in E and let H  be a bounded subspace 

of ME / . We show that H ={0} let θ(x)H , xE; we can fined a bounded 

and absolutely convex set A  E such that K
)( x θ(A), and hence xK A M

. Thus, for every   , x  MA  and hence there exists (xγ) M such that 

γx-xγA. It follows that (x- yγ)(


1
)A,Where yγ=( xγ/γ)M  and therefore   

yγ  x. 

Since M  is b- closed, which implies θ(x)=0. 

 

2. Bornological Cauchy Net  

In convex bornological vector space(cbvs), a notation of cauchy net can be 

introduced. The main results are of considerable interest in many situations. 

Definition 2.1.[6] :-  A  directed system is an index set I together with an 

ordering < which satisfies: 

i. If  I ,   , then exists I such that γ>α and γ>β. 

ii. < is a partial ordering ( a reflexive transitive and antisymmetric 

relation on I).  

Definition 2.2.[6] :- A net  
x   in a set x is a function Xq : where Γ is 

some ordered set. The point q(λ) is usually denoted xλ. 

Definition 2.3 :-  Let (xγ) be a net in a convex bornological vector space E. 

We say that (xγ) converges bornologically to 0 ((xγ) →    if there exists a 

bounded and absolutely convex set BE and a net ( λγ) in K converging to 

0, such that xγ λγ B, for every  γ  Γ. We then say that a net (xγ) converges 

bornologically to a point xE and xγ  → x when   xγ- x →0. 
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Definition 2.4 :-  Let E be a convex bornological vector space. (xγ) γ  Γ is 

called  a bornological Cauchy net in E if there exists a bounded and 

absolutely convex set BE and a null net of postive scalars (µγ,γ') (γ,γ')Γ×Γ 

such that  (xγ - xγ')  µγ,γ'B. 

 Theorem 2.5:- Every bornological Cauchy net  is bounded. 

Proof:-   Suppose (xγ) γ  Γ is a Cauchy net  in a bornological vector space E. 

by definition 2.4, there exists a   bounded and absolutely convex set BE  

and a null net of postive scalars (µγ,γ') (γ,γ')Γ×Γ such that  (xγ - xγ')  µγ,γ'B. 

Since xγB for all γ  Γ. since B is bounded subset of E.Then (xγ) is 

bounded.   

Theorem 2.6 :- A bornological convergent net  in a convex bornological 

vector space is a Cauchy net . 

Proof:-    Let (xγ) in E converges bornologically to a point x E  by 

definition 2.3, there exists a bounded and absolutely convex set BE and a 

net (µγ) of scalars tends to 0 such that (xγ - x)  µγB.for every γ  Γ hence if 

γ' is a positive integer such that    γ'. xγ' - x µγ'B for every integer γ' with 

   γ'. 

Then xγ'  - x→0 implies xγ-xγ' = xγ- x-( xγ'-x) µγ,γ'B for all γ,γ'Γ with     

   γ', then (xγ) is a bornological Cauchy net .    

Theorem 2.7 : -  Every Cauchy net  in a convex bornological vector space E  

which has a bornologically convergent subnet , it is bornologically 

convergent. 

Proof:-     Let (xγ) be a Cauchy net  in a bornological vector space E and let  

(
 kx ) be a subnet  of (xγ) converges to x E, then there exists a bounded and 

absolutely convex set B1  E and a net (µγ’ ) of scalars tends to 0 such that 
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xxk 







B1 for every integer  k  . Since (xγ)  is a Cauchy net .  By 

definition 2.4, there exists a bounded and absolutely convex set  B2
  E and a 

null net  of positive scalars  (µγ) such that:- 

 
 

 kxx  




B2 

for every  ,k  . with   k let 21 BBB 
, 

then Bxxxx kk 
 

 )(  for every  ,k with   k
,
 

Since 0


xxk
 then Bxx k

 
 for every  ,k with   k

, 

then Bxx   for every  . 

i.e.  x  converges bornologically to a point x E. 

3. Completeness 

        In this section the fundamental bornological complete concepts such as 

product, quotient and direct sum of complete bornology have been studied 

on the basis of converge net and Cauchy net in convex bornological vector 

space. 

Definition 3.1 : A separated  cbvs  is called a complete bornological vector 

space if every bornological Cauchy net   in E  converges in E . 

Theorem 3.2 :-Let E be a separated cbvs  and let F  be a bornological 

subspace of E. Then:-  

(i) If F  is complete, it is b-closed in E; 

(ii) If E is complete and F  is b-closed, then F  is complete. 
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Proof:  (i) Let (xγ) be a net  in F  which converges bornologically to  x E; 

by Proposition 2.6 (xγ) is a Cauchy net  in F . Since F  is complete then (xγ) 

converges bornologically to y in F  but, E is a separated bornological vector 

space, then x=y  implies xγ  x in F ,  then F is b-closed in E. 

(ii) Let (xγ) is a Cauchy net  in F ; Since E is complete, then (xγ) 

converge bornologically to x in E. 

 Since F  is b-closed, then (xγ) converges bornologically to x in F . 

then F  is complete. 

Theorem 3.3 :- If E is a complete bornological vector space and F  is b-

closed subspace of E, then the quotient FE  is complete. 

Proof:   Let ß 0  be a base for the bornology of E. If θ: E → FE  is the 

canonical map, then θ(ß 0 ) is a base for the bornology of FE , Since F is b-

closed subspace of E, then by theorem 1.19 the quotient FE is separated, if 

E is a complete bornological vector space then every Cauchy net  in E 

converges in E by Definition 3.1. If θ: E → FE  is the canonical map, then 

it is bounded linear map. Thus every bornologically convergent Cauchy net  

(xγ) in E, θ(x


),   is converge bornologically Cauchy net  in FE . 

Whence FE   is complete. 

Theorem 3.4 :- Every product of any family of complete bornological 

spaces is complete. 

Proof:-   let E i , i Γ ≠ Ø be a family of complete separated bornological 

vector space and let E = 
i

E i be the product of iE . If (xγ) is a Cauchy net  

in E . Then the canonical projection ip : E → E i  of a Cauchy net  is Cauchy   

(x i

 ) in E i for every iΓ. Since every E i  is complete and it is clear that 
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separated bornological vector space for every iΓ, then (x i

 ) converges 

bornologically to a unique point x i in E i  for every iI, and let x=(x i ) E, 

iΓ, then the net ( x  ) converges bornologically to x E. Then E is a 

complete bornological vector space. 

Proposition 3.5:- Let ( iE , u iji ) be an inductive system of  complete 

bornological  vector space, i.e. iE  is complete for every  iΓ  and let           

E =
lim



i

iE .Then E is complete if and only if E is separated.  

Proof:-  Since every complete space is sparated, only the sufficiency needs 

proving. Assume, then, E to be separated and let iu  be the canonical 

embedding of E i  in to E. Let (x i

 )
  be a Cauchy net  in  E i , whenever iΓ. 

Since E i is a complete bornological vector space then (x i

 ) converges 

bornologically to a point x iE ; then iu (x i

 )  converges bornologically 

Cauchy net  in E whenever i Γ. 

Since E is separated then iu (x i

 )  has a unique limit then E is complete.  

Corollary 3.6 :- Let (E i , u iji ) be an inductive system of complete 

bornological space. Let  E =
lim



i

 E i . If the maps  jiu are injective, then E is 

complete. 

Proof:-  Since jiu are injective by proposition 1.13 E is sparated then by 

proposition 3.5 E is complete. 

Corollary 3.7 :- Every bornological direct sum of any family of complete 

bornological spaces is complete. 

Proof:-   Let (E i ) be a family of complete bornological space and let  
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E =
Ii

 E i be their bornological direct sum. denote I, the set of finite subsets of 

I, directed under inclusion. 

For every JI, JE =
Ii

 iE . the space JE is bornologically isomorphic to the 

product 
Ii

iE . Whence is complete theorem 3.4 

If /JJ  , denote by u J J ΄ the canonical embedding of JE into /J
E . Then E 

is the bornological inductive limit of the spaces JE and the assertion  

follows from Corollary 3.6 . 
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 حول فضاء انمتجهات انبرنونوجي انكامم

 فاطمة كامم مجيذ انبصري

 جامعة انقادسية

 كهية انتربية

انرياضياتقسم   

 

 -:انمستخهص

بنية فضاء المحجهات البرنىلىجي الكامل جمث دراسحها بالاضافة الى بعض العلاقات والمفاهيم 

المرجبطة بها مثل فضاء القسمة الكامل , فضاء الجداء الكامل و فضاء الجمع المباشر الكامل في 

وضع جقارب الشبكة في  جضمن البحث ايضا دراسة شبكة كىشي بعد فضاء المحجهات البرنىلىجي.

 فضاء المحجهات البرنىلىجي المحدب.

 

 

 

 

 


