Synthesis and Charactrization of Hetromacro cyclic Compounds via cyclization Reactions

Dr. Nagham. Mahmood. Aljamali

Assist. Prof., Chem. Dept., College of Education, Univ.Kufa

Abstract :

In the present study, new type of hetromacro cycles [4,5] were synthesized by the reaction between terminal of (amine, thiol) of compounds [1-3] with carbonyl compounds (4 – amino benzoyl chloride, 4-methanal ethyl benzoate, 4-methanal benzaldehyde) by condensation reaction. The synthesized compounds have been investigated using different chemical techniques, such as (Uv–Visble spectra ,FT.IR–spectra ,H.NMR-spectra ,(C.H.N)–analysis, and melting points).

Introduction :

The importance of this compounds has long been recognized in the synthetic organic chemistry ,which have a wide variety of biological activity such as pharmacological activities ,which include anti $\operatorname{fungal}^{(1,2)}$, anti bacterial^(3,4), anti tumor ,antibercular^(5,6) and anti convulsant⁽⁶⁾.

In this article , synthesized hetromacrocycles are result from condensation reaction as the ring – closing step . these compounds are promising candidates for developing new supramolecular structures , they are reported to have antibacterial activity , the structural modification of organic molecule has considerable biological relevance and other uses⁽⁷⁻¹⁰⁾, which are contain (amide, imine , sulphide , thiazol) groups⁽⁶⁻¹¹⁾ due to activity of these compounds .

These compounds are stable at room temperature and are non hygroscopic , have good yield , from a synthetic point of view , they are containing reactivite functional groups are important for the above – listed applications .

Experimental :

All chemical used were supplied from Merck & BDH-chemical company.

All measurements were carried out by :

-Melting points : electro thermal 9300 , melting point engineering \mbox{LTD} , $\mbox{U.K}$. -FT-IR spectra : fourrier transform infrared shimadzu (8300) (FT-IR) ,KBr-disc was performed by CO.S.Q. Iraq .

-H-NMR spectra: in centre lab - institute of earth and environmental science , \mathbf{AL} – by at university , Jordan .

-Elemental analysis (C.H.N) : EA-017 Mth in centre lab –institute of earth and environmental science , AI-byat university , Jordan .

-Uv-Visible spectra :shimadzu-1700 , double beam with computerized , Japan .

Synthesis of 6-Mercapto-2-(4-amino benzamide)-benzothiazole [1]:

A mixture of (0.05mole , 9.1 gm) of 6-Mercapto -2-(4-amino benzothiazole & (0.05 mole , 7.77 gm)of 4- amino benzoyl chloride were heated under reflux for (2 hrs) , the reaction mixture was cooled , the precipitate was filtered of & recrystallized from ethanol to produce (16.4g) 84% of bill yellow crystal compounds [1].

Synthesis of Bis{6-(mercapto-2-benzamide)-benzothiazol}-4-benzamide methyl imine [2]:

Refluxing mixture of (0.04 mole ,12.04 g) of compounds[1] with (0.02 mole ,3.56 g) of 4formal- ethyl benzoate were reacted for two hours refluxing until the participitate formed ,after cooling, the precipitate was filtered off & recrystallized to produce(15.2g) 81% of yellow crystal compounds [2].

Synthesis of Bis{6-(4-aminobenzoyl sulphide-2-benzamide)-benzothiazol}-4-benzamide methyl imine [3]:

A mixture of (0.04 mole, 28.6g) of compound [2] and (0.08 mole, 12.44 g) of 4-amino benzoyl chloride were reacted by condensation for (3hrs) refluxing until the participitate formed, after cooling, the precipitate was filtered off & recrystallized to produce(45.3g) 83% from bill orange crystal compounds[3].

Synthesis of compounds [4,5]:

(0.02 mole , 19.08 g) of compound [3] was reacted with one of [(0.02 mole , 3.56 gm) of 4formal-ethyl benzoat , (0.02 mole , 2.68g) of 4-formal benzaldehyde] respectively by reflux for (4hrs) & recrystallized to yield(23.2g ,21.1g) (82% , 80%) from(orange, red) compounds [4,5] respectively :

Compound [4] : Bis – {(6-benzoyl sulphide -2-benzamide) benzothiazol -4-benzamide methyl imine } – hetromacrocycle .

Compound [5]: Bis-{(6-benzoyl sulphide -2-benzamide)-benzothiazol} -4-benzamide – tris (methyl imine) – hetromacrocycle.

Result and Discussion:

All the synthesized compounds[1-5] have been characterized by their melting points and spectroscopic methods, such as (Uv-visible, FT.IR, H.NMR spectrum, and (C.H.N)-analysis):

FT.IR Spectra:

In FT.IR spectra ,the reaction is followed by disappearance of $(-NH_2)$ absorption band at (3420)cm⁻¹ in compound [1] , and appearance two band :at (1610)cm-1 .(1690)cm-1 due to (HC=N)of azomethine group⁽⁷⁻⁹⁾ and $\begin{pmatrix} & & \\ & HN-C \end{pmatrix}$) carbonyl of amide group , respectively in compound [2] . while FT.IR spectra of compound [3] showed disappearance of (S-H) absorption band at (2455) cm⁻¹ and appearance absorption (3455)cm⁻¹ due to (-NH₂) group⁽¹¹⁻¹⁴⁾ .In compound [4] we are observed disappearance of (-NH₂) absorption band and appearance absorption band at (1616)cm⁻¹ due to (HC=N) azomethine group and (1690)cm⁻¹ due to ($_{HN-C} \overset{H}{\subset}$)amide group⁽¹⁵⁻¹⁸⁾ . While FT.IR Spectra of compound [5] showed disappearance of (-NH₂) ,absorption band appearance absorption band at (1631)cm⁻¹ due to (HC=N) azomethine group ,other informative bands⁽¹⁹⁻²¹⁾ are listed in table (1) . The presence these bands consider as indication to formation these compounds .

H.NMR-Spectrum:

H.NMR –spectrum of compounds in figures (4-6) : showed the following characteristics chemical shift were appeared : singlet signal at 6 9.79 for one proton of azomethine^(20,21) group (-CH=N), peak at 6 9.96 for proton of amide group ($_{HN}$, $\stackrel{O}{C}$) in compound [2], signal at 6 8.5 for two proton of amine group (-NH₂), signal at 6 9.70 for proton of azomethine group (-CH=N) peak at 69.9 for proton of amide group ($_{HN}$, $\stackrel{O}{C}$) in compound [3], while the compound [4,5] are disappear the signals at 6 8.5 for protons of amine group (-NH₂) and appear signals at 6 9.71 for proton of imine^(20,21) (-CH=N) and at 6 9.9 for proton of amide group ($_{-CH=N}$) and at 6 9.9 for proton of amide group ($_{-CH=N}$), multistate leaning on each other at 6 7.5-7.8 that could be attributed to the protons of benzene ring in these compounds .

This is other evidence to formation of compounds [1-5], and other peaks⁽¹⁸⁻²¹⁾ in figures (4-6).

UV-Visible and (C.H.N)-Analysis:

UV-spectra of compounds [1-5] have electron transition $(n-\pi^*)$ due to the hetroatom (S,N) in these compounds beside of transition $(\pi-\pi^*)$ of conjugated system, the UV-spectra of these compounds show absorption maxima (315-405) nm due to oxochromic groups (-NH₂,-SH, $\overset{O}{-}_{-}^{-}$) with conjugated system of compounds [1-5].

It was found from (C.H.N) –analysis, from compared the calculated data from compounds [1-5] are in good agreement with experimentally, the results were compactable and this is other evidence for formatted compounds, the data of analysis, x_{max} and melting points are listed in table (2).

Acknowledgment :

I would like to express my thanks to Mr.Muhanad –Abu-Alsoaud in centre Lab-Institute of Earth and Environmental Science –Al-Bayt University H.J.K in Jordan for providing (C.H.N) element analytical , and H.NMR –spectrum.

Comp.	v(N-H)	v (S-H)	v (CH=N)	(0) II HN- C-	(C-S)
No.			Azomthine	carbonyl of amide	Sulphide
[1]	3420m	2470w		1685s	
[2]		2455w	1610s	1690s	
[3]	3455m		1615s	1695s	1325vs , 675s
[4]			1616s	1690s	1315vs, 682s
[5]			1631s	1690s	1323s, 682s

Table (1) :FT.IR data (cm⁻¹)of compounds[1-5]

s=strong , m=medium , w=weak , v=very

Table (2):Melting points,M.F	,م _{max} and (C.H.N)-Ana	lysis of compounds[1-5]
------------------------------	-----------------------------------	-------------------------

Comp.	M.F	m.p	ک _{max}	Calc / Found		
No.	M.Wt _(g/mole)	(c °)	(nm)	C%	H%	N %
[1]	C ₁₄ H ₁₁ N ₃ O S ₂	161	310	55.813	3.654	13.953
	301			55.609	3.538	13.710
[2]	C ₃₆ H ₂₄ N ₆ O ₃ S ₄	182	335	60.335	3.351	11.731
	716			60.213	3.274	11.654
[3]	$C_{50}H_{34}N_8O_5S_4$	221	360	62.893	3.563	11.740
	954			62.648	3.571	11.599
[4]	C ₅₈ H ₃₆ N ₈ O ₆ S ₄	243	392	65.168	3.370	10.486
	1068			65.096	3.310	10.348
[5]	C ₅₈ H ₃₆ N ₈ O ₅ S ₄	247	405	66159	3.422	10.646
	1052			66.145	3.309	10.573

6

्रा

5

7

10]ŝ[

11

9

2

NUC1 P1 PL1 SF01 F2 -SI SF WDW SSB LB GB PC

INEL f 300.131 ing par 300.130

Fig (4): H.NMR -Spectra of compound (3)

3

4

Reference :

- **I**, Vinay.V ,Lakshika.K ., (2011) , **I.J.R.P.S** ,1 ,1, 17-27.
- 2. Faridbod. F, Ganjali.M, Diarvand. R , (2008) ,Sensors .,8 ,1645–1703.
- **3** Beckmann . U and Brooker . S ., (2003) , Coord . Chem. Rev ., 245 , 17 29.
- 4 Amanda .J , Yanalexander .W and Mark. M ., (2005) ,J.Org . Chem. ,70 , 7936–7946.
- 5. Rajavel .R , Senthil. M and Anitha. C ., (2008), E–Journal of Chemistry ., 5, 3 , 620–626.
- **6.** Leroy.C., (2003) , Annu.Rep.Porg.Chem., Sect., A ,99,289-347.
- **%** Nagham . M . Aljamali ., (2005), **J** . AlQadisia , 10 ,1 ,131–138.
- Mustafa.Y,Askin. K and Basaran.D .,(2007) .,J. Serb.Chem .Soc,72 ,3,215–224.
- Zolfoghar . R , Leili . R . A , Kamellia . N , and Seyed . M ., (2004) , Acta . Chem . Solv ., 51 , 675 – 686.
- 10. Harlal . S and Varshney . A . K ., (2007) ,Bioinorganic Chemistry and Applications ., 1 –7.
- **11.** Abdullah . M and Khadija . O ., (2007) , Molecules , 12 , XC.
- 12. Andrea.S, Daniel.V, Andre.L, and Lubomir.F., (2001), Arkivoc ., (Vi), 122–128.
- **13.** Jarrahpour .A , Motamedifar. M and Paskhir., (2004) , Molecule , 9,875, 1420.
- **14.** Canapolot . T ., (2004) , **Russian . J . Coord . Chem.** , 30 , 87 , 40.
- **15.** Verma . M and Stables . G ., (2004) , **Molecules**, 45 , 46.
- 16. Pandey . H and Dweiv . R ., (2005) , Molecules ,4 , 2 , 88.
- 17. Sharba . A , Al- Bayati . R , Aouad . M and Rezki . N ., (2005) , Molecules ,10 , 1161–1168.
- 18 Sharba . A , Al- Bayati . R , Aouad . M and Rezki . N ., (2005), Molecules, 10 , 1153 – 1160.

- 19. Anna . M . , Alessandra . M , Patrizia . D , Paola . B , Antonino . L , Girolama . C and Gaetano . D ., (2001) , Arkivoc , VI , 129 142
- 20. Nagham .Aljamali ., (2010) ,J .Babylon .Sci .,4 ,18,1425-1436 .
- 22. Nagham .Aljamali ., ,(2010) ,J .Babylon .Sci .,3 ,18 ,925-942.

تخليق مركبات حلقية كبيرة غير متجانسة عن طريق تفاعلات الحولقة

د . نغم محمود الجمالي

أستاذ مساعد -قسم الكيمياء -كلية التربيةللبنات -جامعةالكوفة

الخلاصة :

تم في هذه الدراسة تخليق نوع جديد لمركبات حلقية عيانية غير متجانسة [5,4]من تفاعل مجاميع الثايول و الأمين في مركبات [1-3]مع مركبات الكاريونيل (4- أمينو – كلوريد البنزويل , 4- فورمال بنزوات الأثيل , 4- فورمال بنزلديهايد) بأستخدام تفاعل التكثيف .شُخصت المركبات المحضرة بمختلف التقنيات الكيميائية تمثلت ب(طيف الاشعة فوق البنفسجية – المرئية , طيف الاشعة تحت الحمراء , طيف الرنين النووي البروتوني المغناطيسي , التحليل الكمي الدقيق للعناصر) ومن ثم قياس درجات أنصهارها.