On The Implicative Ideal of a BH-Algebra

BH -المثالية الإستنتـاجية في جبر

\author{
Assist.prof.Husein Hadi Abbass
 University of Kufal
 Faculty of Education for Girls\}
 Department of Mathematics
 Msc_hussien@yahoo.com

}

Suad Abdulaali Neamah
University of Kufal
Faculty of Education for Girls
Department of Mathematics
soshabib@yahoo.com
-

Abstract

In this paper, we study the implicative ideal of a BH -algebra. We state and prove some theorems which determine the relationship between this notion and the other types of ideals of a BH -algebra, also we give some properties of this ideal and link it with other types of ideals of a BH-algebra.

Introduction:

The notion of BCK-algebras was formulated first in 1966 [14] by Y.Imai and K.Iseki as a generalization of the concept of set-theoretic difference and propositional calculus, where this notion was originated from two different ways: one of the motivations was based on set theory, another motivation was from classical and non classical propositional calculi. In the same year, K.Iseki introduced the notion of a BCI-algebra [6], which was a generalization of a BCK- algebra.
K.Iseki introduced the notion of an ideal of a BCK-algebra[6]. In 1983, Q.P.Hu and X.Li introduced the notion of a BCH -algebra which was a generalization of BCK/BCI-algebras [8]. In 1998, Y.B.Jun et al introduced the notion of BH -algebra, which is a generalization of $\mathrm{BCH}-$ algebras[12]. Then, they discussed more properties on BH-algebras [4, 8, 11]. In 2009, A. B. Saeid, A. Namdar and R.A. Borzooei introduced the notions of a p-semisimple BCH-algebra, an associative BCH -algebra, atoms of a BCH -algebra, a BCH -algebra generated by I-atoms, p-ideals, implicative ideals, positive implicative ideals, normal ideals and fantastic ideals in $\mathrm{BCH}-$ algebra[2].In the same year, A. B. Saeid and A. Namdar introduced the notions of n-fold p-ideal and n-fold implicative ideal[1].

In this paper, we study the implicative ideal of a BH -algebra and the implicative BH -algebra. We study some properties of this notion and link it with some other types of ideals of a BH-algebra.

1.Preliminaries :

In this section, we give some basic concepts about BCI-algebra, BCK-algebra, BCH -algebra, $\mathrm{BH}-$ algebra, subalgebra, ideals of BH -algebra, implicative ideal of BH -algebra and implicative $\mathrm{BH}-$ algebra with some theorems, propositions.

Definition (1.1): [6]

A BCI-algebra is an algebra ($\mathrm{X}, *, 0$), where X is a nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms: $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
i. $(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})=0$,
ii. $(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y}=0$,
iii. $x * x=0$,
iv. $x * y=0$ and $y * x=0$ imply $x=y$.

Definition (1.2): [14]

A BCK-algebra is a BCI-algebra satisfying the axiom: $\quad 0 * \mathrm{x}=0, \forall \mathrm{x} \in \mathrm{X}$.

Definition (1.3): [7]

A BCH-algebra is an algebra $(\mathrm{X}, *, 0)$, where X is nonempty set, $*$ is a binary operation and 0 is a constant, satisfying the following axioms:
i. $x * x=0, \forall x \in X$.
ii. $x * y=0$ and $y * x=0$ imply $x=y, \forall x, y \in X$.
iii. $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Definition (1.4): [12]

A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:
i. $x * x=0, \forall x \in X$.
ii. $x * y=0$ and $y * x=0$ imply $x=y, \forall x, y \in X$.
iii. $x * 0=x, \forall x \in X$.

Remark (1.5): [12]

1. Every BCK-algebra is a BCH -algebra.
2. Every BCH -algebra is a BH -algebra.
3. Every BCI -algebra is a BH -algebra.

Theorem(1.6) :[12]

Every BH-algebra satisfying the condition $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z}))^{*}(\mathrm{z} * \mathrm{y})=0 ; \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ is a BCI-algebra.
Theorem (1.7): [12]
Every BCH -algebra is a BH -algebra. Every BH -algebra satisfying the condition:
$(\mathrm{x} * \mathrm{y})^{*} \mathrm{z}=(\mathrm{x} * \mathrm{z})^{*} \mathrm{y}, \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ is a BCH-algebra.

Remark(1.8):

We denote the condition
i. $\quad x=x *(y * x), \quad \forall x, y \in X \quad$ by $\left(a_{1}\right)$.
ii. $x^{*}\left(y^{*} x\right) \in I$ imply $x \in I, \forall x, y \in X \quad$ by $\left(a_{2}\right)$.
iii. $\left((\mathrm{x} * \mathrm{y}) *\left(\mathrm{x}^{*} \mathrm{z}\right)\right)^{*}(\mathrm{z} * \mathrm{y})=0, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ by $\left(\mathrm{a}_{3}\right)$.
iv. $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z})^{*} \mathrm{y}, \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X} \quad$ by $\left(\mathrm{a}_{4}\right)$.

Definition (1.9): [14]

In any BH-algebra X , we can define a partial order relation \leq by putting $\mathrm{x} \leq \mathrm{y}$ if and only if $x^{*} \mathrm{y}=0$.

Definition(1.10):[9]

A BH-algebra X is said to be a normal $\mathbf{B H}$-algebra if it satisfying the following conditions:
i. $\quad 0^{*}\left(x^{*} y\right)=(0 * x)^{*}(0 * y), \forall x, y \in X$.
ii. $\quad(x * y) * x=0 * y, \forall x, y \in X$.
iii. $(x *(x * y)) * y=0, \forall x, y \in X$.

Definition (1.11): [7]

A BCH-algebra X is called medial if $\mathrm{x} *(\mathrm{x} * \mathrm{y})=\mathrm{y}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.
We generalize the concept of medial to BH -algebra.

Definition (1.12) :

A BH-algebra X is called medial if $x *(x * y)=y, \forall x, y \in X$.
Definition (1.13) : [3]
A BH-algebra X is called an associative $\mathbf{B H}$-algebra if: $\left(\mathrm{x}^{*} \mathrm{y}\right) * \mathrm{z}=\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{z}\right), \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Theorem (1.14): [3]
Let X be an associative BH -algebra. Then the following properties are hold:
i. $\quad 0^{*} \mathrm{x}=\mathrm{x} \quad ; \quad \forall \mathrm{x} \in \mathrm{X}$
ii. $\quad x^{*} y=y^{*} x \quad ; \forall x, y \in X$
iii. $\quad x^{*}\left(x^{*} y\right)=y \quad ; \quad \forall x, y \in X$
iv. $\quad\left(\mathrm{z}^{*} \mathrm{x}\right)^{*}\left(\mathrm{z}^{*} \mathrm{y}\right)=\mathrm{x} * \mathrm{y} \quad ; \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
v. $\quad x * y=0 \Rightarrow x=y \quad ; \quad \forall x, y \in X$
vi. $\quad\left(x^{*}\left(x^{*} y\right)\right)^{*} y=0 \quad ; \quad \forall x, y \in X$
vii. $\quad(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y} \quad ; \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
viii. $\quad\left(\mathrm{x}^{*} \mathrm{z}\right) *\left(\mathrm{y}^{*} \mathrm{t}\right)=(\mathrm{x} * \mathrm{y}) *\left(\mathrm{z}^{*} \mathrm{t}\right) \quad ; \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} \in \mathrm{X}$

Definition (1.15) :[4]

Let X be a BH-algebra. Then the set $\mathrm{X}_{+}=\{\mathrm{x} \in \mathrm{X}: 0 * \mathrm{x}=0\}$ is called the BCA-part of \mathbf{X}.
Definition (1.16): [3]
Let X be a BH-algebra. Then the elements of the set $\mathbf{L}_{\mathbf{K}}(\mathbf{X})$, where
$\mathrm{L}_{\mathrm{K}}(\mathrm{X})=\left\{\mathrm{a} \in \mathrm{X}_{+} \backslash\{0\}: \mathrm{x} * \mathrm{a}=0 \Rightarrow \mathrm{x}=\mathrm{a}, \forall \mathrm{x} \in \mathrm{X} \backslash\{0\}\right\}$ is called a K-atom of \mathbf{X}.

Definition (1.17): [12]

A nonempty subset S of a $B H$-algebra X is called a Subalgebra of X if $x * y \in S, \forall x, y \in S$.

Definition(1.18): [6]

An ideal I of a BCH-algebra X satisfies the condition $x \in I$ and $a \in X \backslash I$ imply $x * a \in I$, is called a
*-ideal of X.
We generalize the concept of a *- ideal to a BH -algebra.
Definition(1.19) :
An ideal I of a BH-algebra X satisfies the condition $x \in I$ and $a \in X \backslash I$ imply $x * a \in I$, is called a
*-ideal of X.

Theorem (1.20): [2]

In a BCH -algebra X , the following conditions are equivalent:

1. Every nonzero element of X is a K-atom of X, i.e. $X=L_{K}(X) \cup\{0\}$,
2. $x^{*} y=x, \forall x, y \in X$ with $x \neq y$,
3. $\mathrm{x} *(\mathrm{x} * \mathrm{y})=0, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$,
4. every subalgebra of X is a -ideal of X .

Definition (1.21): [12]:

Let I be a nonempty subset of a BH-algebra X . Then I is called an ideal of X if it satisfies:
i. $0 \in \mathrm{I}$.
ii. $x * y \in I$ and $y \in I$ imply $x \in I$.

Proposition(1.22): [3]
Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a family of ideals of a BH-algebra X . Then $\bigcap_{i \in \Gamma} I_{i}$ is an ideal of X .

Theorem(1.23):[3]

Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a chain ideals of a BH-algebra X . Then $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is an ideal of X .
Proposition_(1.24): [3]
Let $\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}$ be a BH- epimorphism, if I is an ideal of X then $\mathrm{f}(\mathrm{I})$ is an ideal of Y .

Journal of Kerbala University , Vol. 12 No. 3 Scientific . 2014

Proposition_(1.25): [3]

Let $\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}$ be a BH-homomorphism, if I is an ideal of Y then $\mathrm{f}^{-1}(\mathrm{I})$ is an ideal of X .
Definition (1.26):[4]
An ideal I of a BH-algebra X is called a closed ideal of $\mathrm{X}, 0 * \mathrm{x} \in \mathrm{I}, \quad \forall \mathrm{x} \in \mathrm{I}$.
Definition (1.27):[4]
Let X be a BH -algebra and I be an ideal of X . Then I is called a closed ideal with respect to an element $\mathbf{b} \in \mathbf{X}$ (denoted \mathbf{b}-closed ideal) if $\mathrm{b}^{*}\left(0^{*} \mathrm{x}\right) \in \mathrm{I}, \forall \mathrm{x} \in \mathrm{I}$.
Definition (1.28):[3]
An ideal I of a BH-algebra is called a completely closed ideal if $x * y \in I, \forall x, y \in I$.
Definition (1.29) : [6]
An ideal I of a BCH-algebra X is called a normal ideal if $\mathrm{x} *(\mathrm{x} * \mathrm{y}) \in \mathrm{I} \quad$ implies $\quad y^{*}\left(y^{*} \mathrm{x}\right) \in \mathrm{I}$,
$\forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.
We generalize the concept of a normal ideal to a BH -algebra.
Definition (1.30):
An ideal I of a BH -algebra X is called a normal ideal if $\mathrm{x} *(\mathrm{x} * \mathrm{y}) \in \mathrm{I}$ implies $\mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Definition(1.31):[3]

Let X be a BH -algebra, a non-empty subset N of X is said to be normal subset of X if $(x * a) *(y * b) \in N$ for all $x * y, a * b \in N, \quad \forall x, y, a, b \in X$.

Definition (1.32):[10]

Let X be a BH-algebra. For a fixed $a \in X$, we define a map $R_{a}: X \rightarrow X$ such that $\mathbf{R}_{a}(\mathbf{x})=\mathbf{x}^{*} \mathbf{a}$, $\forall x \in X$, and call R_{a} a right map on X. The set of all right maps on X is denoted by $R(X)$. A left map L_{a} is defined by a similar way, we define a map $L_{a}: X \rightarrow X$ such that $\mathbf{L}_{\mathbf{a}}(\mathbf{x})=\mathbf{a} * \mathbf{x}, \forall x \in X$, and called L_{a} a left map on X. The set of all left maps on X is denoted by $L(X)$.

Definition (1.33): [4]

A nonempty subset I of a BH -algebra X is called an implicative ideal of X if:
i. $0 \in \mathrm{I}$.
ii. $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right) * \mathrm{z} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$ imply $\mathrm{x} \in \mathrm{I}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Proposition (1.34):[4]

Every implicative ideal of a BH -algebra X is an ideal of X .

Definition (1.35) : [5]

A BCI-algebra is said to be an implicative if it satisfies $\left(x^{*}\left(x^{*} y\right)\right)^{*}\left(y^{*} x\right)=y^{*}\left(y^{*} x\right), \forall x, y \in X$.
We generalize the concept of an implicative BCI -algebra to a $\mathbf{B H}$-algebra.

Definition (1.36):

A BH -algebra is said to be an implicative if it satisfies $\left(x^{*}\left(x^{*} y\right)\right)^{*}\left(y^{*} x\right)=y^{*}\left(y^{*} x\right), \forall x, y \in X$.
Example (1.37):
Consider the BH-algebra $\mathrm{X}=\{0,1,2\}$ with the binary operation '*' defined by the following table:

$*$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	2
$\mathbf{1}$	1	0	2
$\mathbf{2}$	2	2	0

Then ($\mathrm{X}, *, 0$) is an implicative BH -algebra.
Theorem (1.38) : [15]
A BCI-algebra is implicative if and only if every closed ideal of X is an implicative.

Journal of Kerbala University , Vol. 12 No. 3 Scientific . 2014

Definition (1.39):[10]

A BH-algebra $(\mathrm{X}, *, 0)$ is said to be a positive implicative if it satisfies the condition, $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X},\left(\mathrm{x}^{*} \mathrm{z}\right)^{*}\left(\mathrm{y}^{*} \mathrm{z}\right)=\left(\mathrm{x}^{*} \mathrm{y}\right){ }^{*} \mathrm{z}$.

Remark (1.40):[10]

Let X be a positive implicative BH -algebra and \oplus be a binary operation defined on $\mathrm{L}(\mathrm{X})$ by $\left(\mathrm{L}_{\mathrm{a}} \oplus \mathrm{L}_{\mathrm{b}}\right)(\mathrm{x})=\mathrm{L}_{\mathrm{a}}(\mathrm{x})^{*} \mathrm{~L}_{\mathrm{b}}(\mathrm{x}) \quad$ and $\quad\left(\mathrm{L}_{\mathrm{a}} \oplus \mathrm{L}_{\mathrm{b}}\right)(\mathrm{x})=\mathrm{L}_{\mathrm{a}}{ }^{*} \mathrm{~b}(\mathrm{x}) ; \quad \forall \mathrm{L}_{\mathrm{a}}, \mathrm{L}_{\mathrm{b}} \in \mathrm{L}(\mathrm{X})$ and $\forall \mathrm{x} \in \mathrm{X}$

Theorem (1.41): : 10$]$

If X is a positive implicative BH -algebra, then $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$ is a positive implicative BH -algebra.

Remark (1.42):[13]

Let X and Y be $B H$-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism if $\mathrm{f}(\mathrm{x} * \mathrm{y})=\mathrm{f}(\mathrm{x})^{*} \mathrm{f}(\mathrm{y}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$. A homomorphism f is called a monomorphism (resp., epimorphism) if it is an injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH -algebras X and Y are said to be isomorphic, written $\mathrm{X} \cong \mathrm{Y}$, if there exists an isomorphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$. For any homomorphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, the set $\left\{\mathrm{x} \in \mathrm{X} ; \mathrm{f}(\mathrm{x})=0^{\prime}\right\}$ is called the kernel of f , denoted by $\operatorname{Ker}(\mathrm{f})$, and the set $\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in \mathrm{X}\}$ is called the image of f , denoted by $\operatorname{Im}(\mathrm{f})$. Notice that $f(0)=0$ ', for all homomorphism f.

Definition (1.43):[11]

An ideal A of a BH-algebra X is said to be a translation ideal of X if $x * y \in A \quad$ and $\quad y^{*} x \in A$ $\Rightarrow \quad\left(\mathrm{x}^{*} \mathrm{z}\right)^{*}\left(\mathrm{y}^{*} \mathrm{z}\right) \in \mathrm{A}$ and $\left(\mathrm{z}^{*} \mathrm{x}\right)^{*}\left(\mathrm{z}^{*} \mathrm{y}\right) \in \mathrm{A}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Remark (1.44):[12]

Let $\left(\mathrm{X},{ }^{*}, 0\right)$ be a BH-algebra and let A be a translation ideal of X . Define a relation \sim_{A} on X by $x \sim_{A} y$ if and only if $x * y \in A$ and $y^{*} x \in A$, where $x, y \in X$.Then \sim_{A} is an equivalence relation on X. Denote the equivalence class containing x by $[x]_{A}$, i.e., $[x]_{A}=\left\{y \in X \mid x \sim_{A} y\right\}$ and $X / A=\left\{[x]_{A} \mid x \in X\right\}$. And define $[x]_{A} \oplus[y]_{A}=\left[x^{*} y\right]_{A}$, then $\left((X / A), \oplus,[0]_{A}\right)$ is a $B H$-algebra.

Theorem(1.45):[12]

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a homomorphism of BH -algebra. Then $\operatorname{Ker}(\mathrm{f})$ is a translation ideal of X .

Definition(1.46):[3]

Let X be a BH -algebra, a non-empty subset N of X is said to be normal subalgebra of X if i. $\left(\mathrm{x}^{*} \mathrm{a}\right) *(\mathrm{y} * \mathrm{~b}) \in \mathrm{N}, \forall \mathrm{x}^{*} \mathrm{y}, \mathrm{a} * \mathrm{~b} \in \mathrm{~N}, \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
ii. $x * y \in N, \forall x, y \in N$.

Remark (1.47):

Let $\left(\mathrm{X},{ }^{*}, 0\right)$ be a BH-algebra and let N be a normal subalgebra of X . Define a relation \sim_{N} on X by $x \sim_{N} y$ if and only if $x * y \in N$ and $y * x \in N$, where $x, y \in X$.Then \sim_{N} is an equivalence relation on X. Denote the equivalence class containing x by $[x]_{A}$, i.e., $[x]_{N}=\left\{y \in X \mid x \sim_{N} y\right\}$ and $X / N=\left\{[x]_{N} \mid x \in X\right\}$.
And define $[x]_{N} \oplus[y]_{N}=[x * y]_{N}$, then $\left((X / N), \oplus,[0]_{N}\right)$ is a BH-algebra.

Remark (1.48):[3]

The BH-algebra X / N is called the quotient BH -algebra of X by N .
Theorem(1.49):[3]
Let N be a normal subalgebra of a BH -algebra X . Then X / N is a BH -algebra.

Definition (1.50) :[4]

Let X be a $B H$-algebra and $a \in \operatorname{med}(X) . B(a)=\left\{x \in X: a^{*} x=0\right\}$ is called a branch subset of X determined by a.

2. The Main Results:

Proposition(2.1):

Let $\mathrm{X}=\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \cup\{0\}$ be a BH -algebra. Then every ideal of X is an implicative ideal.

Proof:

i. Since I is an ideal of X, so $0 \in I$
ii. Let I be an ideal of X and $x, y, z \in X$ such that $\left(x^{*}\left(y^{*} x\right)\right)^{*} z \in I$ and $z \in I$.
$\Rightarrow \mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I} \quad$ [Since I is an ideal]
We have two cases:
Case1: if $x=y$, we will have $x *(y * x)=x *(x * x)=x * 0=x$
[Since X is a BH-algebra; $x * x=0$ and $x * 0=x$]
$\Rightarrow \mathrm{x} \in \mathrm{I} \quad\left[\right.$ Since $\left.\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}\right]$. Then I is an implicative ideal of X .
Case2 : if $x \neq y$, then $x *(y * x)=x * y=x$
[Since $X=L_{K}(X) \cup\{0\}$, then $y^{*} x=y, \forall x, y \in X$ with $x \neq y$; by Theorem (1.20,2)]
$\Rightarrow \mathrm{x} \in \mathrm{I} \quad\left[\right.$ Since $\left.\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}\right]$.
Then I is an implicative ideal of X.

Proposition(2.2):

If X is a BH -algebra satisfies the condition, $\forall \mathrm{x}, \mathrm{y} \in \mathrm{X} ; \quad \mathrm{x}=\mathrm{x} *(\mathrm{y} * \mathrm{x}) \quad\left(\mathrm{a}_{1}\right)$, then every ideal is an implicative ideal of X .

Proof:

Let I be an ideal of X and $x, y, z \in X$ such that $(x *(y * x))^{*} z \in I$ and $z \in I$
$\Rightarrow x^{*}\left(y^{*} x\right) \in \mathrm{I}$. [Since I is an ideal of X .]
$\Rightarrow \mathrm{x} \in \mathrm{I}$. [By ($\left.\left.\mathrm{a}_{1}\right)\right]$
Then I is an implicative ideal of X.

Remark (2.3):

In any BH -algebra, the set $\mathrm{I}=\mathrm{X}$ is an implicative ideal of X , but the set $\mathrm{I}=\{0\}$ may not be an implicative ideal of X , as in the following example,

Example (2.4):

Consider the BH -algebra $\mathrm{X}=\{0,1,2,3\}$ with the binary operation $' *$ 'defined by the following table:

$*$	0	1	2	3
0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$
2	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
3	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{0}$

Then $\left(X,{ }^{*}, 0\right)$ is a $B H$-algebra. The subset $\mathbf{I}=\{0\}$ is not an implicative ideal of X. Since
if $\mathrm{x}=2, \mathrm{y}=0, \mathrm{z}=0$, then $(2 *(0 * 2))^{*} 0=0 * 0=0 \in \mathrm{I}$ and $0 \in \mathrm{I}$ but $\mathrm{x}=2 \notin \mathrm{I}$.

Journal of Kerbala University , Vol. 12 No. 3 Scientific . 2014

Theorem (2.5):

Let X be BH-algebra and let I be an ideal of X . Then I is an implicative ideal of X if and only if $x *(y * x) \in I$ imply $\quad x \in I \quad\left(a_{2}\right)$.

Proof:

Let I be an implicative ideal of X and $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}$. Then $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} 0 \in \mathrm{I}$.
[Since X is a BH-algebra; $x^{*}\left(y^{*} x\right)=\left(x^{*}\left(y^{*} x\right)\right)^{*} 0$]
Now, we have $\left(x^{*}\left(y^{*} x\right)\right)^{*} 0 \in I$ and $0 \in I$. Then $x \in I$. [Since I is an implicative ideal of X] Conversely,

Let I be an ideal of X and $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ such that $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$.
$\Rightarrow x^{*}\left(y^{*} x\right) \in \mathrm{I}$. [Since I is an ideal of X .]
$\Rightarrow \mathrm{x} \in \mathrm{I} . \quad[\mathrm{By}$ (a2)]
Then I is an implicative ideal of X

Proposition(2.6):

Let X be BH -algebra. If $\{0\}$ is an implicative ideal of X , then $0 * x \neq \mathrm{x}, \forall \mathrm{x} \in \mathrm{X} /\{0\}$.

Proof:

Suppose $\mathrm{I}=\{0\}$ be an implicative ideal of X and $\mathrm{x} \in \mathrm{X} /\{0\}$ such that $0^{*} \mathrm{x}=\mathrm{x}$.
Now,
$\Rightarrow \quad x^{*}(0 * x)=x^{*} x=0 \quad\left[\right.$ Since X is an associative BH-algebra; $x^{*} x=0$ and $\left.0 * x=x\right]$.
We have $\left(\mathrm{x}^{*}\left(0^{*} \mathrm{x}\right)\right) * 0=0 \in \mathrm{I}$ and $0 \in \mathrm{I}$
$\Rightarrow \mathrm{x} \in \mathrm{I} \quad$ [Since I is an implicative ideal]
$\Rightarrow \mathrm{x}=0 \quad[$ Since $\mathrm{I}=\{0\}]$,
we get a contradiction. [Since $x \in X /\{0\}]$
Then $0 * x \neq x$.

Remark (2.7):

The converse of proposition (2.6) is not correct in general, as in the following example:

Example (2.8):

Consider the BH-algebra $\mathrm{X}=\{0,1,2,3,4\}$ with the binary operation '*' defined by the following table:

$*$	0	1	2	3	4
0	0	2	1	0	3
1	1	0	2	1	1
2	2	1	0	2	2
3	3	2	3	0	3
4	4	4	4	4	0

$0 * x \neq x, \forall x \in X /\{0\}$, but the set $\mathrm{I}=\{0\}$ is not an implicative ideal of X . Since
If $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=0$, then $\left(1^{*}\left(2^{*} 1\right)\right)^{*} 0=1^{*} 1=0 \in \mathrm{I}$, but $\mathrm{x}=1 \notin \mathrm{I}$.

Theorem(2.9):

Every associative BH - algebra is an implicative BH -algebra.

Proof:

Let X be an associative BH- algebra. Then
$\left(x^{*}\left(x^{*} y\right)\right) *(y * x)=\left(\left(x^{*} x\right) * y\right) *(y * x)$ [Since X is an associative BH-algebra]
$=\left(0^{*} y\right) *\left(y^{*} x\right)$ [Since X is a BH-algebra; $\mathrm{x}^{*} \mathrm{x}=0$]
$=y^{*}\left(y^{*} x\right)$ [Since X is an associative BH-algebra; $0^{*} y=y$, by Theorem $\left.(1.14, i)\right]$
Then X is an implicative BH -algebra.
Theorem(2.10) :
Let X be a BH-algebra and satisfies the condition, $\quad\left((\mathrm{x} * \mathrm{y})^{*}\left(\mathrm{x}^{*} \mathrm{z}\right)\right)^{*}\left(\mathrm{z}^{*} \mathrm{y}\right)=0, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}\left(\mathrm{a}_{3}\right)$. Then X is an implicative if and only if every closed ideal of X is an implicative ideal of X.
Proof: Directly from Theorem (1.6) and (1.38).
Lemma (2.11): Every medial BH- algebra is an implicative BH-algebra.
Proof: Let X be a medial BH- algebra. Then
$(x *(x * y)) *\left(y^{*} x\right)=y^{*}\left(y^{*} x\right) \quad\left[\right.$ Since X is medial ; $\left.x^{*}\left(x^{*} y\right)=y\right]$.
Then X is an implicative BH-algebra.

Theorem (2.12) :

Let X be an implicative BH -algebra satisfies $\left(\mathrm{a}_{3}\right)$ and let I be an ideal of X . Then
i. If $\mathrm{I} \subseteq \mathrm{X}_{+}$, then I is an implicative ideal of X .
ii. If $\mathrm{L}_{0}(\mathrm{I}) \subseteq \mathrm{I}$, then I is an implicative ideal of X .
iii. If X is equal to a branch subset of X determined by " 0 ", then I is an implicative ideal of X.

Proof:

i. Let $\mathrm{I} \subseteq \mathrm{X}_{+}$and I be an ideal of X .
$\Rightarrow 0 * x=0 \in \mathrm{I}, \forall \mathrm{x} \in \mathrm{X}$.
$\Rightarrow 0 * x=0 \in \mathrm{I}, \forall \mathrm{x} \in \mathrm{I}$. $\quad\left[\right.$ Since $\left.\mathrm{I} \subseteq \mathrm{X}_{+}\right]$
\Rightarrow every ideal of X is a closed ideal of X . [by Definition (1.26)]
$\Rightarrow \mathrm{X}$ is a BCI-algebra. $\quad[$ Since X is BH-algebra and satisfies (a3), By Theorem(1.6)]
$\Rightarrow I$ is an implicative ideal of X.
[Since every closed ideal of X is an implicative ideal of X . By Theorem (1.38)].
ii. Let $\mathrm{x} \in \mathrm{I}$. Then $\mathrm{L}_{0}(\mathrm{x}) \in \mathrm{I}$. [Since $\left.\mathrm{L}_{0}(\mathrm{I}) \subseteq \mathrm{I}\right]$
$\Rightarrow 0^{*} \mathrm{x} \in \mathrm{I} \quad\left[\right.$ Since $\left.\mathrm{L}_{0}(\mathrm{x})=0^{*} \mathrm{x}\right]$
\Rightarrow I is a closed ideal of X . [By Definition (1.26)]
$\Rightarrow \mathrm{X}$ is a BCI-algebra.[Since X is BH-algebra and satisfies (a3), By Theorem (1.6)]
$\Rightarrow I$ is an implicative ideal of X.
[Since every closed ideal of X is an implicative ideal of X . By Theorem (1.38)].
iii. Let X is equal to a branch subset of X determined by " 0 " and let I be an ideal of X .
$\Rightarrow \mathrm{X}=\mathrm{B}(0)$
$\Rightarrow 0 * x=0 \in I, \forall x \in X$. [Since $X=B(0)$]
$\Rightarrow 0 * x=0 \in I, \forall x \in I$. $[$ Since $I \subseteq X]$
$\Rightarrow I$ is a closed ideal of X . [By Definition (1.26)]
$\Rightarrow I$ is an implicative ideal of X.
[Since every closed ideal of X is an implicative ideal of X . By Theorem (2.10)].

Theorem (2.13) :

Let X be an associative BH-algebra. Then
i. every proper subset of X is not an implicative ideal of X .

Journal of Kerbala University , Vol. 12 No. 3 Scientific . 2014

ii. $\quad X_{+}$is not an implicative ideal of X .
iii. a branch subset of X determined by " 0 " is not an implicative ideal of X .

Proof:

i. Suppose I is an implicative ideal of X and I is a proper subset of X . Then

There exist $\mathrm{x} \in \mathrm{X}$ such that $\mathrm{x} \notin \mathrm{I} \quad[$ Since $\mathrm{I} \subset \mathrm{X}$]
Now, Since X is a BH-algebra, we have $\mathrm{x} * 0=\mathrm{x}$. So $\left(\mathrm{x}^{*}(0 * \mathrm{x})\right)^{*} 0=\mathrm{x}^{*}(0 * \mathrm{x})$
$=\mathrm{x}^{*} \mathrm{x} \quad[$ Since $0 * \mathrm{x}=\mathrm{x}$; by Theorem (1.14,i)]
$=0 \in \mathrm{I} \quad[$ since X is a BH- algebra; $\mathrm{x} * \mathrm{x}=0$]
We have

$$
\left(\mathrm{x}^{*}\left(0^{*} \mathrm{x}\right)\right)^{*} 0 \in \mathrm{I} \quad \text { and } \quad 0 \in \mathrm{I} .
$$

$\Rightarrow \mathrm{x} \in \mathrm{I} \quad[$ since I is an implicative ideal of X]
We get a contradiction (By assumption $\mathrm{I} \subset \mathrm{X}, \mathrm{x} \notin \mathrm{I}$]
$\Rightarrow I$ is not an implicative ideal of X.
Then every proper subset of X is not an implicative ideal of X .
ii. To prove X_{+}is not an implicative ideal of X .
$X_{+}=\{x \in X ; 0 * x=0\}=\{0\} \quad$ [since X is an associative ; $0^{*} x=x$; by Theorem (1.14,i)]
Now,
Since $X_{+} \subset X$
Then X_{+}is not an implicative ideal of X [by (i)].
iii. To prove a branch subset of X determined by " 0 " is not an implicative ideal of X .
$B(0)=\{x \in X ; 0 * x=0\}=\{0\} \quad[$ since X is an associative ; $0 * x=x$; by Theorem (1.14,i)]
Now,
Since $B(0)=X_{+}$.
$\Rightarrow \mathrm{B}(0)$ is not an implicative ideal of $\mathrm{X}[$ by (ii)].
Then a branch subset of X determined by " 0 " is not an implicative ideal of X.
Corrolary (2.14): Let X be an associative BH -algebra. Then X is a unique implicative ideal of X . Proof: Directly by Theorem (2.13 ,i) and Remark (2.3).

Theorem (2.15) :

Let X be a medial BH -algebra and satisfies (a_{3}). Then every normal ideal of X is an implicative ideal of X.

Proof:

Let I be a normal ideal of X and let $\mathrm{x} \in \mathrm{X}$. Then
$\left(0^{*} \mathrm{x}\right)^{*}\left(\left(0^{*} \mathrm{x}\right) * 0\right)=\left(0^{*} \mathrm{x}\right)^{*}\left(0^{*} \mathrm{x}\right)=0 \in \mathrm{I} \quad[$ Since X is s BH-algebra ; $\mathrm{x} * 0=\mathrm{x}$ and $\mathrm{x} * \mathrm{x}=0$]
$\Rightarrow 0^{*}\left(0^{*}\left(0^{*} \mathrm{x}\right)\right) \in \mathrm{I} \quad[$ Since I is a normal ideal]
$\Rightarrow 0^{*} \mathrm{x} \in \mathrm{I} ; \quad \forall \mathrm{x} \in \mathrm{X} \quad\left[\right.$ Since X is a medial $\left.; \mathrm{x} *\left(\mathrm{x}^{*} \mathrm{y}\right)=\mathrm{y}\right]$
$\Rightarrow 0^{*} \mathrm{x} \in \mathrm{I} ; \quad \forall \mathrm{x} \in \mathrm{I}$
\Rightarrow I is a closed ideal of X . [By Definition (1.26)]
$\Rightarrow I$ is an implicative ideal of X. [Since every closed ideal of X is an implicative ideal of X.
By Theorem(2.10)]].

Theorem (2.16):

Let X be an implicative BH -algebra and satisfies $\left(\mathrm{a}_{3}\right)$.Then every completely closed ideal of X is an implicative ideal of X .

Proof:

Let I be a completely closed ideal of X . Then I is an ideal of X . [By definition (1.28)]
Let $\mathrm{y} \in \mathrm{X}$, if $\mathrm{x}=0$
$\Rightarrow 0^{*} y \in I, \forall y \in X$.
$\Rightarrow 0^{*} \mathrm{y} \in \mathrm{I}, \forall \mathrm{y} \in \mathrm{I}$.
Then I is a closed ideal of X.
$\Rightarrow I$ is an implicative ideal of X. [Since every closed ideal of X is an implicative ideal of X.
By Theorem (2.10)]

Proposition (2.17):

Let X be a normal BH -algebra such that $\mathrm{X}=\mathrm{X}_{+}$and let I be an implicative ideal of X . Then I is a completely closed ideal of X.

Proof:

Let I be a an implicative ideal of X . Then I is an ideal of X . [By proposition(1.34)]
Let $\mathrm{x}, \mathrm{y} \in \mathrm{I}$. Then
$\begin{aligned}\left(\left(\mathrm{x}^{*} \mathrm{y}\right) *(0 *(\mathrm{x} * \mathrm{y}))\right)^{*} \mathrm{x} & =\left(\left(\mathrm{x}^{*} \mathrm{y}\right) * 0\right) * \mathrm{x} & & {\left[\text { Since } 0 *(\mathrm{x} * \mathrm{y})=0 ; \mathrm{X}=\mathrm{X}_{+} . \text {By Definition (1.15)] }\right.} \\ & =\left(\mathrm{x}^{*} \mathrm{y}\right)^{*} \mathrm{x} & & {[\text { Since } \mathrm{X} \text { is a BH-algebra. } \mathrm{x} * 0=\mathrm{x}] } \\ & =0 * \mathrm{y} & & {[\text { Since } \mathrm{X} \text { is a normal, By Definition (1. 10, ii) }] } \\ & =0 \in \mathrm{I} & & {\left[\text { Since } \mathrm{X}=\mathrm{X}_{+} . \text {By Definition(1.15) }\right] }\end{aligned}$
$\Rightarrow\left(\left(\mathrm{x}^{*} \mathrm{y}\right) *\left(0^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)\right)\right) * \mathrm{x} \in \mathrm{I}$ and $\mathrm{x} \in \mathrm{I} \Rightarrow \mathrm{x}^{*} \mathrm{y} \in \mathrm{I}$. [Since I is an implicative ideal of X]
Therefore, I is a completely closed ideal of X.

Theorem (2.18):

Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a family of implicative ideals of a BH-algebra X. Then $\bigcap_{i \in \Gamma} I_{\mathrm{i}}$ is an implicative ideal of X .

Proof:

To prove that $\bigcap_{i \in \Gamma} I_{i}$ is an implicative ideal of X.
i. $0 \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma \quad$ [Since each I_{i} is an implicative ideal of $\mathrm{X}, \forall \mathrm{i} \in \Gamma$.By Definition(1.33)]
$\Rightarrow 0 \in \bigcap_{i \in \Gamma} I_{\mathrm{i}}$
ii. Let $\quad\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \bigcap_{i \in \Gamma} I_{\mathrm{i}} \quad$ and $\mathrm{z} \in \bigcap_{i \in \Gamma} I_{\mathrm{i}}$
$\Rightarrow\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}_{\mathrm{i}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma$
$\Rightarrow \mathrm{x} \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma \quad$ [Since each I_{i} is Implicative ideal of $\mathrm{X}, \forall \mathrm{i} \in \Gamma$. By Definition(1.33)]
$\Rightarrow \mathrm{x} \in \bigcap_{i \in \Gamma} I_{\mathrm{i}}$. Therefore, $\bigcap_{i \in \Gamma} I_{\mathrm{i}}$ is an implicative ideal of X .
Corollary (2.19): Let $X=L_{K}(X) \cup\{0\}$ and let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a family of ideals of a BH-algebra X . Then $\bigcap_{i \in \Gamma} I_{\mathrm{i}}$ is an implicative ideal of X .

Proof: Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a family of ideals of X . Then $\bigcap_{i \in \Gamma} I_{\mathrm{i}}$ is an ideal of X . [By Theorem(1.22)]. Therefore, $\bigcap_{i \in \Gamma} I_{i}$ is an implicative ideal of X. [Since $X=L_{K}(X) \cup\{0\}$, by Proposition (2.1)].

Theorem (2.20):

Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a chain implicative ideals of a BH-algebra X . Then $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is an implicative ideal of X .
Proof: To prove that $\bigcup_{i \in \Gamma} I_{i}$ is an implicative ideal of X.
i. $0 \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \Gamma$
[Since each I_{i} is an implicative ideal of $\mathrm{X}, \forall \mathrm{i} \in \Gamma$. By Definition(1.33)]
$\Rightarrow 0 \in \bigcup_{i \in \Gamma} I_{\mathrm{i}}$
ii. Let $\quad\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z} \in \bigcup_{i \in \Gamma} I_{\mathrm{i}} \quad$ and $\mathrm{z} \in \bigcup_{i \in \Gamma} I_{\mathrm{i}}$
$\exists \mathrm{I}_{\mathrm{j}}, \mathrm{I}_{\mathrm{k}} \in\left\{\mathrm{I}_{\mathrm{i}}\right\}_{\mathrm{i} \in \mathrm{C}}$, such that $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}_{\mathrm{j}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{k}}$,
\Rightarrow either $\mathrm{I}_{\mathrm{j}} \subseteq \mathrm{I}_{\mathrm{k}}$ or $\mathrm{I}_{\mathrm{k}} \subseteq \mathrm{I}_{\mathrm{j}} \quad$ [Since $\left\{\mathrm{I}_{\mathrm{i}}\right\}_{\mathrm{i} \in \Gamma}$ is a chain]
\Rightarrow either $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}_{\mathrm{j}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{j}} \quad$ or $\quad\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}_{\mathrm{k}}$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{k}}$
\Rightarrow either $\mathrm{x} \in \mathrm{I}_{\mathrm{j}}$ or $\mathrm{x} \in \mathrm{I}_{\mathrm{k}}$
[Since I_{j} and I_{k} are implicative ideals of X. By Definition(1.33)]
$\Rightarrow \mathrm{x} \in \bigcup_{i \in \Gamma} I_{\mathrm{i}}$. Therefore $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is an implicative ideal of X .
Corollary (2.21): Let $X=L_{K}(X) \cup\{0\}$ and let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a Chain of ideals of a BH-algebra X .
Then $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is an implicative ideal of X .
Proof: Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \Gamma\right\}$ be a chain of ideals of X . Then $\bigcup_{i \in \Gamma} I_{\mathrm{i}}$ is an ideal of X . [by Theorem(1.23)] Therefore, $\bigcup_{i \in \Gamma} I_{i}$ is an implicative ideal of $\mathrm{X} .\left[\right.$ Since $\mathrm{X}=\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \cup\{0\}$, by Proposition (2.1)] .

Proposition(2.22):

Let $\mathbf{f}:\left(\mathbf{X},{ }^{*}, \mathbf{0}\right) \rightarrow\left(\mathbf{Y}, *^{\prime}, \mathbf{0}^{\prime}\right)$ be a BH- epimorphism. If I is an implicative ideal of X , then $\mathrm{f}(\mathrm{I})$ is an implicative ideal of Y.

Proof:

Let I be an implicative ideal of X . Then
i. $f(0)=0$ ', [Since f is an epimorphism, by Remark(1.42)]
$\Rightarrow 0^{\prime} \in \mathrm{f}(\mathrm{I})$
ii. Let $\left(x^{*}\left(y^{*} ' x\right)\right){ }^{*} z \in f(I)$ and $z \in f(I)$
$\Rightarrow \exists \mathrm{a}, \mathrm{b} \in \mathrm{I}$ and $\mathrm{c} \in \mathrm{I}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{x}, \mathrm{f}(\mathrm{b})=\mathrm{y}$ and $\mathrm{f}(\mathrm{c})=\mathrm{z}$
$\Rightarrow\left(\mathrm{x}^{*}\left(\mathrm{y}{ }^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}=\left[\mathrm{f}(\mathrm{a})^{* \prime}\left(\mathrm{f}(\mathrm{b})^{*} \mathrm{f}(\mathrm{a})\right)\right]^{*} \mathrm{f}(\mathrm{c})=\mathrm{f}\left(\left(\mathrm{a}^{*}(\mathrm{~b} * \mathrm{a})\right)^{*} \mathrm{c}\right) \in \mathrm{f}(\mathrm{I}) \quad$ [Since f is an epimorphism]
$\Rightarrow\left(a^{*}\left(b^{*} a\right)\right)^{*} c \in I$ and $c \in I \quad[$ Since $f(I)=\{f(x) ; x \in I\}]$
$\Rightarrow \mathrm{a} \in \mathrm{I}$
[Since I is an implicative ideal of X]
$\Rightarrow \mathrm{f}(\mathrm{a}) \in \mathrm{f}(\mathrm{I})$.
Then $f(I)$ is an implicative ideal of Y.

Proposition (2.23):

Let $\mathbf{f}:(\mathbf{X}, *, \mathbf{0}) \rightarrow\left(\mathbf{Y}, *^{\prime}, \mathbf{0}^{\prime}\right)$ be a BH- homomorphism and I is an implicative ideal of Y. Then $\mathrm{f}^{-1}(\mathrm{I})$ is an implicative ideal of X .

Proof:

Let I be an implicative ideal of Y. Then
i. $\quad f(0)=0^{\prime} \quad[$ Since f is a homomorphism, by Remark(1.42 $)$]
$\Rightarrow 0=\mathrm{f}^{-1}\left(0^{\prime}\right) \in \mathrm{f}^{-1}(\mathrm{I})$
ii. Let $x, y, z \in X$ such that $\left(x^{*}\left(y^{*} x\right)\right)^{*} z \in f^{-1}(\mathrm{I})$ and $z \in f^{-1}(\mathrm{I})$
$\Rightarrow \mathrm{f}\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right) \in \mathrm{I}$ and $\mathrm{f}(\mathrm{z}) \in \mathrm{I}$
$\left.\Rightarrow \mathrm{f}\left(\left(\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{x}\right)\right)\right)^{*} \mathrm{z}\right)=\left(\mathrm{f}(\mathrm{x})^{*}\left(\mathrm{f}(\mathrm{y})^{*} \mathrm{f}(\mathrm{x})\right)\right)^{*} \mathrm{f}(\mathrm{z}) \in \mathrm{I}$ and $\mathrm{f}(\mathrm{z}) \in \mathrm{I}$ [Since f is a homomorphism, by $\operatorname{Remark}(1.42)]$
$\Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{I} \quad$ [Since I is an implicative ideal of Y]
$\Rightarrow \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{I})$.
Then f^{-1} (I) is an implicative ideal of X .

Theorem (2.24):

Let X be a BH -algebra and N be a normal subalgebra. If I is an ideal of X , then I / N is an ideal of X / N.

Proof:

Let I be an ideal of X. Then
i. Since $0 \in I \Rightarrow[0]_{N} \in I / N$.
ii. Let $[x]_{N},[y]_{N} \in X / N$.
$\Rightarrow[\mathrm{x}]_{\mathrm{N}} *[y]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$ and $[\mathrm{y}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N} \quad\left[\right.$ Since $[\mathrm{x}]_{\mathrm{N}} *[\mathrm{y}]_{\mathrm{N}}=[\mathrm{x} * \mathrm{y}]_{\mathrm{N}}$, By remark(1.47)].
$\Rightarrow[\mathrm{x} * \mathrm{y}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$ and $[\mathrm{y}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$
$\Rightarrow x * y \in I$ and $y \in I \quad\left[\right.$ Since $I / N=\left\{[x]_{N} \mid x \in I\right\}$, By remark(1.47)]
$\Rightarrow \mathrm{x} \in \mathrm{I} \quad$ [Since I is an ideal of X$]$.
$\Rightarrow[\mathrm{x}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$. Then I / N is an ideal of X / N.

Theorem (2.25):

Let X be a BH -algebra and N be a normal subalgebra. If I is an implicative ideal of X , then I / N is an implicative of X / N.

Proof:

Let I be an implicative ideal of X . To prove I / N is an implicative ideal of X / N.
$\Rightarrow \mathrm{I}$ is an ideal of $\mathrm{X} . \quad$ [By proposition(1.34)]
$\Rightarrow \mathrm{I} / \mathrm{N}$ is an ideal of X / N. [By proposition(2.24)]
i. Since $0 \in I \Rightarrow[0]_{N} \in I / N$.
ii. Let $[x]_{N},[y]_{N},[z]_{N} \in X / N$.
$\Rightarrow\left([\mathrm{x}]_{\mathrm{N}} *\left([\mathrm{y}]_{\mathrm{N}} *[\mathrm{x}]_{\mathrm{N}}\right)\right) *[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$ and $[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$
$\Rightarrow\left([x]_{N} *[y * x]_{N}\right) *[z]_{N} \in I / N$ and $\quad[z]_{N} \in I / N \quad\left[S i n c e[x]_{N} *[y]_{N}=[x * y]_{N}\right.$, By remark(1.47)]
$\Rightarrow\left[x^{*}\left(y^{*} x\right)\right]_{\mathrm{N}} *[z]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$ and $[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$
$\Rightarrow\left[\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right) * \mathrm{z}\right]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$ and $[\mathrm{z}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$
$\Rightarrow\left(x^{*}\left(y^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$ [Since $\mathrm{I} / \mathrm{N}=\left\{[\mathrm{x}]_{\mathrm{N}} \mid \mathrm{x} \in \mathrm{I}\right\}$, By $\left.\operatorname{remark}(1.47)\right]$
$\Rightarrow \mathrm{x} \in \mathrm{I} \quad$ [Since I is an implicative ideal of X$]$
$\Rightarrow[\mathrm{x}]_{\mathrm{N}} \in \mathrm{I} / \mathrm{N}$.
Then I / N is an implicative ideal of $\mathrm{X} / \mathrm{N} . \square$

Theorem (2.26):

Let X be a BH -algebra and A be a translation ideal of X . If I is an ideal of X , then I / A is an ideal of X/A.

Proof:

Let I be an ideal of X . To prove I/A is an ideal of X/A.
i. Since $0 \in I \Rightarrow[0] \in I / A$.
ii. Let $[x]_{A},[y]_{A} \in X / A$.
$\Rightarrow[\mathrm{x}]_{\mathrm{A}} \oplus[\mathrm{y}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$ and $[\mathrm{y}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A} \quad\left[\right.$ Since $[\mathrm{x}]_{\mathrm{A}} \oplus[\mathrm{y}]_{\mathrm{A}}=[\mathrm{x} * \mathrm{y}]_{\mathrm{A}}$. By remark(1.44)]
$\Rightarrow[\mathrm{x} * \mathrm{y}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$ and $[\mathrm{y}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$
$\Rightarrow x^{*} y \in I$ and $y \in I \quad\left[\right.$ Since $I / A=\left\{[x]_{A} \mid x \in I\right\}$. By Remark(1.44)]
$\Rightarrow \mathrm{x} \in \mathrm{I} \quad$ [Since I is an ideal of X]
$\Rightarrow[\mathrm{x}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$
Then I/A is an ideal of X/A.

Proposition(2.27):

Let X be a BH -algebra and A be a translation ideal. If I is an implicative ideal of X , then I / A is an implicative of X/A.

Proof:

Let I be an implicative ideal of X . To prove I/A is an implicative ideal of X/A.
i. Since $0 \in I \Rightarrow[0] \in I / A$.
ii. Let $[x]_{A},[y]_{A},[z]_{A} \in X / A$.
$\Rightarrow\left([\mathrm{x}]_{\mathrm{A}} \oplus\left([\mathrm{y}]_{\mathrm{A}} \oplus[\mathrm{x}]_{\mathrm{A}}\right)\right) \oplus[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$ and $\quad[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$
$\Rightarrow\left([x]_{A} \oplus[y * x]_{A}\right) \oplus[z]_{A} \in I / A$ and $[z]_{A} \in I / A \quad\left[\right.$ Since $[x]_{A} \oplus[y]_{A}=[x * y]_{A} . \operatorname{By}$ remark(1.44)]
$\Rightarrow\left[x^{*}\left(y^{*} \mathrm{x}\right)\right]_{\mathrm{A}} \oplus[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$ and $[\mathrm{z}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$
$\Rightarrow[(x *(y * x)) * z]_{A} \in I / A$ and $[z]_{A} \in I / A$
$\Rightarrow\left(x^{*}\left(y^{*} x\right)\right)^{*} z \in I$ and $z \in I \quad\left[\right.$ Since $I / A=\left\{[x]_{A} \mid x \in I\right\}$. By Remark(1.44)]
$\Rightarrow \mathrm{x} \in \mathrm{I} \quad$ [Since I is an ideal of X]
$\Rightarrow[\mathrm{x}]_{\mathrm{A}} \in \mathrm{I} / \mathrm{A}$. Then I/A is an implicative ideal of X/A.

Corollary (2.28):

Let X be a $B H$-algebra. If I is an implicative ideal of X,then $I / \operatorname{Ker}(f)$ is an implicative of $\mathrm{X} / \operatorname{Ker}(\mathrm{f})$.

Proof:

Let I be an implicative ideal of X . To prove $\mathrm{I} / \operatorname{Ker}(\mathrm{f})$ is an implicative ideal of $\mathrm{X} / \operatorname{Ker}(\mathrm{f})$.
Since $\operatorname{Ker}(\mathrm{f})$ is translation ideal. [By Theorem(1.45)]
$\Rightarrow \mathrm{I} / \operatorname{Ker}(\mathrm{f})$ is an implicative ideal of $\mathrm{X} / \operatorname{Ker}(\mathrm{f})$. [By Theorem(2.27)].

Remark (2.29) :

Let X be a BH-algebra and let I be a subset of X. we will define to the set $\left\{L_{a} \in L(X) ; a \in I\right\}$ by L(I).

Theorem (2.30) :

Let X be a positive implicative BH -algebra. If I is an ideal of X . Then $\mathrm{L}(\mathrm{I})$ is an ideal of $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$.

Proof:

Let I be an ideal of X . To prove $\mathrm{L}(\mathrm{I})$ is an ideal of $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$.
i. $0 \in \mathrm{I} \Rightarrow \mathrm{L}_{0} \in \mathrm{~L}(\mathrm{I}) \quad$ [By Remark (2.29)]
ii. Let $\mathrm{L}_{\mathrm{a}} \oplus \mathrm{L}_{\mathrm{b}}, \mathrm{L}_{\mathrm{b}} \in \mathrm{L}(\mathrm{I})$.

We have $\quad L_{a} \oplus L_{b}=L_{a} * b$, where $a, b \in I$
$\Rightarrow \mathrm{a} * \mathrm{~b} \in \mathrm{I}$ and $\mathrm{b} \in \mathrm{I}$
$\Rightarrow \mathrm{a} \in \mathrm{I} \quad$ [Since I is an ideal of X]
$\Rightarrow \mathrm{L}_{\mathrm{a}} \in \mathrm{L}(\mathrm{I})$.Then $\mathrm{L}(\mathrm{I})$ is an ideal of $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$.

Corollary (2.31):

Let X be a positive implicative BH -algebra. If I is an implicative ideal of X . Then $\mathrm{L}(\mathrm{I})$ is an implicative ideal of $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$.

Proof:

Let I be an implicative ideal of X . Then I is an ideal of X .
$\Rightarrow L(I)$ is an ideal of $L(X) \quad[B y$ Theorem(2.30)]
i. $0 \in \mathrm{I} \Rightarrow \mathrm{L}_{0} \in \mathrm{~L}(\mathrm{I}) \quad$ [Since I is an ideal of X]
ii. Let $\left(\mathrm{L}_{\mathrm{a}} \oplus\left(\mathrm{L}_{\mathrm{b}} \oplus \mathrm{L}_{\mathrm{a}}\right)\right) \oplus \mathrm{L}_{\mathrm{c}} \in \mathrm{L}(\mathrm{I})$ and $\mathrm{L}_{\mathrm{c}} \in \mathrm{L}(\mathrm{I})$
$\Rightarrow(\mathrm{a} *(\mathrm{~b} * \mathrm{a})) * \mathrm{c} \in \mathrm{I} \quad$ and $\mathrm{c} \in \mathrm{I} \quad\left[\right.$ Since $\left.\left(\mathrm{L}_{\mathrm{a}} \oplus\left(\mathrm{L}_{\mathrm{b}} \oplus \mathrm{L}_{\mathrm{a}}\right)\right) \oplus \mathrm{L}_{\mathrm{c}}=\mathrm{L}_{(\mathrm{a} *(\mathrm{~b} * \mathrm{a})) * \mathrm{c}} \in \mathrm{L}(\mathrm{I})\right]$
$\Rightarrow \mathrm{a} \in \mathrm{I}$
[Since I is an implicative ideal of X]
$\Rightarrow \mathrm{L}_{\mathrm{a}} \in \mathrm{L}(\mathrm{I})$. Then $\mathrm{L}(\mathrm{I})$ is an implicative ideal of $\left(\mathrm{L}(\mathrm{X}), \oplus, \mathrm{L}_{0}\right)$.

Theorem (2.31):

If $\mathrm{X}=\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \cup\{0\}$ be a BH -algebra satisfies $\left(\mathrm{a}_{4}\right)$ and S be a subalgebra of X , then S is an implicative ideal of X .

Proof:

Since X be a BH-algebra satisfies (a_{4}), then X is a BCH-algebra. [by Theorem(1.7)]
Let S is a subalgebra of X. Then S is a *-ideal.
[By Theorem(1.20,4)]
$\Rightarrow \mathrm{S}$ is an ideal.
[every *-ideal is an ideal. By Definition (1.19)]
To prove S is an implicative ideal of X .
i) $\quad 0 \in S \quad[$ Since S is an ideal]
ii) Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ such that $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{S}$ and $\mathrm{z} \in \mathrm{S}$.
$\Rightarrow x^{*}\left(y^{*} x\right) \in S$. [Since S is an ideal of $\left.X\right]$
We have two cases:
Case 1: if $x=y$, then $x *(x * x) \in S$
$\Rightarrow x * 0 \in S \quad[$ Since X is a BH-algebra ; $x * x=0$]
$\Rightarrow \mathrm{x} \in \mathrm{S} \quad\left[\right.$ Since X is a BH-algebra; $\left.\mathrm{x}^{*} 0=\mathrm{x}\right]$
Then S is an implicative ideal of X .

Journal of Kerbala University , Vol. 12 No. 3 Scientific . 2014

Case 2: if $\mathrm{x} \neq \mathrm{y}$, then $\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{x}\right)=\mathrm{x} * \mathrm{y}=\mathrm{x}$
$\Rightarrow x^{*} y \in S \quad\left[\right.$ Since $X=L_{K}(X) \cup\{0\}$, then $y^{*} x=y ; \forall x, y \in X$ with $x \neq y$, by Theorem $(1.20,2)$]
$\Rightarrow \mathrm{x} \in \mathrm{S} \quad[$ Since $\mathrm{x} * \mathrm{y}=\mathrm{x}]$
Then S is an implicative ideal of X.■

References:

[1] A. B. Saeid and A. Namdar, "On n-fold Ideals in BCH-algebras and Computation Algorithms", World Applied Sciences Journal 7 (Special Issue for Applied Math): 64-69, 2009.
[2]A. B. Saeid, A. Namdar and R.A. Borzooei, "Ideal Theory of BCH-Algebras", World Applied Sciences Journal 7 (11): 1446-1455, 2009.
[3]H. H. Abbass and H. A. Dahham," Some Types of Fuzzy Ideals with Respect to an Element of a BG-algebra", Kufa University,M.s.cthesis, 2012.
[4]H. H. Abbass and H. M. A. Saeed, "The Fuzzy Closed BCH-algebra with Respect to an Element of a BH-algebra", Kufa University,M.s.cthesis, 2011.
[5]J. Meng and X.L.X , "Implicative BCI-algebra" , Pure Apple , In China : 8:2, 99-103, 1992
[6]K. ISEKI, "An Algebra Related with a Propositional Calculus", Proc. Japan Acad. 42, 26-29, 1966.
[7] M.A. Chaudhry and H. Fakhar-Ud-Din, " Ideals and Filters in BCH-algebra", Math. japonica 44, No. 1, 101-112, 1996.
[8]Q. P. Hu and X. Li, "On BCH-algebras", Math. Seminar Notes Kobe University No. 2, Part 2, 11:313-320, 1983.
[9]Q. Zhang, Y. B. Jun and E. H. Roh, "On the Branch of BH-algebras", Scientiae Mathematicae Japonicae 54(2), 363-367, 2001.
[10]S. S. Ahn and H. S. Kim, "R-maps and L-maps in BH-algebras", Journal of the Chungcheong Mathematical Society, Vol.13, No. 2, pp.53-59, 2000.
[11]S. S . Ahn and J. H. Lee, "Rough Strong Ideals in BH-algebras", HonamMath. Journal,32, pp.203-215,2010.
[12]Y. B . Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), 347354, 1998.
[13]Y. B . Jun, H. S. Kim and M. Kondo "On BH-relations in BH-algebras", Scientiae Mathematice Japonice Online, Vol.9,pp.91-94,2003.
[14]Y. IMAI and K. ISEKI, "On Axiom System of Propositional Calculi XIV, Proc. Japan Acad. 42, 19-20, 1966.
[15]Y. L . Liu , J. Meng ,"Fuzzy Ideals in BCI-algebra" Fuzzy sets and Systems ,123, 227237.2001.

