On The Implicative Ideal of a BH-Algebra

المثالية الإستنتاجية في جبر - BH

Assist.prof.Husein Hadi Abbass University of Kufa\ Faculty of Education for Girls\ Department of Mathematics <u>Msc_hussien@yahoo.com</u> Suad Abdulaali Neamah University of Kufa\ Faculty of Education for Girls\ Department of Mathematics <u>soshabib@yahoo.com</u>

بحـــث مستـــل

Abstract

In this paper, we study the implicative ideal of a BH-algebra. We state and prove some theorems which determine the relationship between this notion and the other types of ideals of a BH-algebra, also we give some properties of this ideal and link it with other types of ideals of a BH-algebra.

المستخلص : في هذا البحث، درسنا المثالية الإستنتاجية في جبر - BH و أعطينا و بر هنا بعض المبر هنات التي تحدد العلاقة بين هذا المفهوم و أنواع أخرى من مثاليات جبر – BH و كذلك أعطينا بعض خصائص هذه المثالية وصلتها مع أنواع أخرى من مثاليات جبر -BH.

Introduction:

The notion of BCK-algebras was formulated first in 1966 [14] by Y.Imai and K.Iseki as a generalization of the concept of set-theoretic difference and propositional calculus, where this notion was originated from two different ways: one of the motivations was based on set theory, another motivation was from classical and non classical propositional calculi. In the same year, K.Iseki introduced the notion of a BCI–algebra [6], which was a generalization of a BCK- algebra.

K.Iseki introduced the notion of an ideal of a BCK–algebra[6]. In 1983, Q.P.Hu and X.Li introduced the notion of a BCH-algebra which was a generalization of BCK/BCI-algebras [8]. In 1998, Y.B.Jun et al introduced the notion of BH-algebra, which is a generalization of BCH-algebras[12]. Then, they discussed more properties on BH-algebras [4, 8, 11]. In 2009, A. B. Saeid, A. Namdar and R.A. Borzooei introduced the notions of a p-semisimple BCH-algebra, an associative BCH-algebra, atoms of a BCH-algebra, a BCH-algebra generated by I-atoms, p-ideals, implicative ideals, positive implicative ideals, normal ideals and fantastic ideals in BCH-algebra[2].In the same year, A. B. Saeid and A. Namdar introduced the notions of n-fold p-ideal and n-fold implicative ideal[1].

In this paper, we study the implicative ideal of a BH–algebra and the implicative BH-algebra. We study some properties of this notion and link it with some other types of ideals of a BH-algebra.

1. Preliminaries :

In this section, we give some basic concepts about BCI-algebra, BCK-algebra, BCH-algebra, BH-algebra, subalgebra, ideals of BH-algebra, implicative ideal of BH-algebra and implicative BH-algebra with some theorems, propositions.

Definition (1.1) : [6]

i. (x * y) * (x * z)) * (z * y) = 0,

A BCI-algebra is an algebra (X,*,0), where X is a nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms: $\forall x, y, z \in X$:

ii. (x * (x * y)) * y = 0, iii. x * x = 0, iv. x * y = 0 and y * x = 0 imply x = y. **Definition (1.2) :** [14] A BCK-algebra is a BCI-algebra satisfying the axiom: 0 * x = 0, $\forall x \in X$. **Definition (1.3) :** [7] A BCH-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms: i. x * x = 0, $\forall x \in X$.

ii. x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X$. iii. $(x * y) * z = (x * z) * y, \forall x, y, z \in X$.

<u>Definition (1.4) : [12]</u>

A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

- i. $x * x = 0, \forall x \in X$.
- ii. x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X$.
- iii. $x * 0 = x, \forall x \in X$.

<u>Remark (1.5) :</u> [12]

- 1. Every BCK-algebra is a BCH-algebra.
- 2. Every BCH-algebra is a BH-algebra.
- 3. Every BCI-algebra is a BH-algebra.

<u>Theorem(1.6)</u> :[12]

Every BH-algebra satisfying the condition $((x^*y)^*(x^*z))^*(z^*y)=0$; $\forall x, y, z \in X$ is a BCI-algebra. **Theorem (1.7):** [12]

Every BCH-algebra is a BH-algebra. Every BH-algebra satisfying the condition:

 $(x * y)* z = (x * z)*y, \quad \forall x, y, z \in X \text{ is a BCH-algebra.}$

<u>Remark(1.8):</u>

We denote the condition

i. $x = x^*(y^*x), \forall x, y \in X$ by (a_1) .

ii. $x^*(y^*x) \in I$ imply $x \in I, \forall x, y \in X$ by (a_2) .

- iii. $((x^*y)^*(x^*z))^*(z^*y)=0, \forall x, y, z \in X by (a_3).$
- iv. (x * y)* z = (x * z)*y, $\forall x, y, z \in X$ by (a_4) .

Definition (1.9): [14]

In any BH-algebra X, we can define a **partial order relation** \leq by putting $x \leq y$ if and only if $x^*y=0$.

Definition(1.10):[9]

A BH-algebra X is said to be a **normal BH-algebra** if it satisfying the following conditions:

- i. $0^*(x^*y) = (0^*x)^*(0^*y), \forall x, y \in X.$
- ii. $(x^*y)^*x = 0^* y, \forall x, y \in X.$
- iii. $(x^*(x^*y))^*y = 0, \forall x, y \in X.$

<u>Definition (1.11) : [7]</u>

A BCH-algebra X is called **medial** if $x * (x * y) = y, \forall x, y \in X$.

We generalize the concept of **medial** to BH-algebra.

Definition (1.12) :

A BH-algebra X is called **medial** if $x * (x * y) = y, \forall x, y \in X$.

<u>Definition (1.13) : [3]</u>

A BH-algebra X is called an **associative BH-algebra** if: $(x^*y)^*z = x^*(y^*z), \forall x, y, z \in X$.

```
<u>Theorem (1.14):</u> [3]
```

Let X be an associative BH-algebra. Then the following properties are hold:

i. 0*x=x; $\forall x \in X$

ii. $x^*y=y^*x$; $\forall x, y \in X$

iii. $x^*(x^*y)=y$; $\forall x, y \in X$

iv. $(z^*x)^*(z^*y)=x^*y$; $\forall x, y, z \in X$

v. $x^*y=0 \Rightarrow x=y$; $\forall x, y \in X$

vi. $(x^*(x^*y))^*y=0$; $\forall x, y \in X$

vii. $(x^*y)^*z = (x^*z)^*y$; $\forall x, y, z \in X$

viii. $(x^*z)^*(y^*t)=(x^*y)^*(z^*t)$; $\forall x, y, z, t \in X$

Definition (1.15) :[4]

Let X be a BH-algebra. Then the set $X_+ = \{ x \in X : 0 * x = 0 \}$ is called the **BCA-part of X**. **Definition (1.16) :** [3]

Let X be a BH-algebra. Then the elements of the set $L_K(X)$, where

 $L_{K}(X) = \{ a \in X_{+} \setminus \{0\} : x * a = 0 \implies x = a, \forall x \in X \setminus \{0\} \} \text{ is called a K-atom of } X.$

Definition (1.17) : [12]

A nonempty subset S of a BH-algebra X is called a **Subalgebra** of X if $x * y \in S$, $\forall x, y \in S$. **Definition(1.18) : [6]**

An ideal I of a BCH-algebra X satisfies the condition $x \in I$ and $a \in X \setminus I$ imply $x^*a \in I$, is called a ***-ideal** of X.

We generalize the concept of a *- ideal to a BH-algebra.

Definition(1.19) :

An ideal I of a BH-algebra X satisfies the condition $x \in I$ and $a \in X \setminus I$ imply $x^*a \in I$, is called a ***-ideal** of X.

<u>Theorem (1.20) :</u> [2]

In a BCH-algebra X, the following conditions are equivalent:

1. Every nonzero element of X is a K-atom of X, i.e. $X = L_K(X) \cup \{0\}$,

- 2. $x^*y=x, \forall x, y \in X \text{ with } x\neq y,$
- 3. $x^*(x^*y) = 0, \forall x, y \in X \text{ with } x \neq y,$
- 4. every subalgebra of X is a *-ideal of X.

<u>Definition (1.21) : [12]:</u>

Let I be a nonempty subset of a BH-algebra X. Then I is called an **ideal** of X if it satisfies: i. $0 \in I$.

ii. $x^*y \in I$ and $y \in I$ imply $x \in I$. **Proposition** (1 22) : [3]

<u>Proposition (1.22) :</u> [3]

Let { I_i, i $\in \Gamma$ } be a family of ideals of a BH-algebra X. Then $\bigcap_{i \in \Gamma} I_i$ is an ideal of X.

Theorem(1.23):[3]

Let { I_i, i $\in \Gamma$ } be a chain ideals of a BH-algebra X. Then $\bigcup_{i \in \Gamma} I_i$ is an ideal of X.

<u>Proposition (1.24) : [3]</u>

Let **f**: $X \rightarrow Y$ be a BH- epimorphism, if I is an ideal of X then f(I) is an ideal of Y.

<u>Proposition (1.25)</u>: [3]

Let $\mathbf{f}: \mathbf{X} \to \mathbf{\overline{Y}}$ be a BH- homomorphism, if I is an ideal of Y then $f^{-1}(I)$ is an ideal of X.

Definition (1.26):[4]

An ideal I of a BH-algebra X is called a **closed ideal** of X, $0^*x \in I$, $\forall x \in I$.

Definition (1.27) :[4]

Let X be a BH-algebra and I be an ideal of X. Then I is called a closed ideal with respect to an element $b \in X$ (denoted b-closed ideal) if $b^*(0^*x) \in I$, $\forall x \in I$.

Definition (1.28):[3]

An ideal I of a BH-algebra is called a **completely closed ideal** if $x * y \in I$, $\forall x, y \in I$.

Definition (1.29) : [6]

An ideal I of a BCH-algebra X is called **a normal ideal** if $x^*(x^*y) \in I$ implies $y^*(y^*x) \in I$, $\forall x, y \in X$.

We generalize the concept of a **normal ideal** to a BH-algebra.

Definition (1.30) :

An ideal I of a BH-algebra X is called **a normal ideal** if $x^*(x^*y) \in I$ implies $y^*(y^*x) \in I$, $\forall x, y \in X$.

Definition(1.31):[3]

Let X be a BH-algebra, a non-empty subset N of X is said to be **normal subset** of X if $(x^*a)^*(y^*b)\in N$ for all x^*y , $a^*b\in N$, $\forall x, y, a, b\in X$.

Definition (1.32):[10]

Let X be a BH-algebra. For a fixed $a \in X$, we define a map $R_a: X \to X$ such that $R_a(x)=x^*a$, $\forall x \in X$, and call R_a a **right map** on X. The set of all right maps on X is denoted by R(X). A left map L_a is defined by a similar way, we define a map $L_a : X \to X$ such that $L_a(x)=a^*x$, $\forall x \in X$, and called L_a a **left map** on X. The set of all left maps on X is denoted by L(X).

Definition (1.33): [4]

A nonempty subset I of a BH-algebra X is called an **implicative ideal** of X if:

i. $0 \in I$.

ii. $(x^*(y^*x))^*z \in I \text{ and } z \in I \text{ imply } x \in I, \forall x, y, z \in X.$

Proposition (1.34) :[4]

Every implicative ideal of a BH-algebra X is an ideal of X.

Definition (1.35) : [5]

A BCI-algebra is said to be an implicative if it satisfies $(x^*(x^*y))^*(y^*x) = y^*(y^*x), \forall x, y \in X$.

We generalize the concept of an **implicative** BCI-algebra to a **BH-algebra**.

Definition (1.36):

A BH -algebra is said to be an implicative if it satisfies $(x^*(x^*y))^*(y^*x) = y^*(y^*x), \forall x, y \in X$. Example (1.37):

Consider the BH-algebra $X = \{0, 1, 2\}$ with the binary operation '*' defined by the following table:

*	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Then (X,*,0) is an implicative BH-algebra.

<u>Theorem (1.38)</u> : [15]

A BCI-algebra is implicative if and only if every closed ideal of X is an implicative.

Definition (1.39):[10]

A BH-algebra (X,*, 0) is said to be **a positive implicative** if it satisfies the condition, $\forall x, y, z \in X$, $(x^*z)^*(y^*z) = (x^*y)^*z$.

Remark (1.40):[10]

Let X be a positive implicative BH-algebra and \oplus be a binary operation defined on L(X) by $(L_a \oplus L_b)(x) = L_a(x)^* L_b(x)$ and $(L_a \oplus L_b)(x) = L_{a*b}(x); \forall L_a, L_b \in L(X)$ and $\forall x \in X$

Theorem (1.41) :[10]

If X is a positive implicative BH-algebra, then $(L(X), \oplus, L_0)$ is a positive implicative BH-algebra.

Remark (1.42):[13]

Let X and Y be BH-algebras. A mapping f: $X \rightarrow Y$ is called a **homomorphism** if $f(x^*y)=f(x)^*f(y)$, $\forall x, y \in X$. A homomorphism f is called a **monomorphism** (resp., **epimorphism**) if it is an injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras X and Y are said to be **isomorphic**, written $X \cong Y$, if there exists an isomorphism f: $X \rightarrow Y$. For any homomorphism f: $X \rightarrow Y$, the set $\{x \in X ; f(x)=0'\}$ is called the **kernel** of f, denoted by Ker(f), and the set $\{f(x):x \in X\}$ is called the **image** of f, denoted by Im(f). Notice that f(0)=0', for all homomorphism f.

Definition (1.43):[11]

An ideal A of a BH-algebra X is said to be **a translation ideal** of X if $x * y \in A$ and $y * x \in A$ $\Rightarrow (x*z)*(y*z) \in A$ and $(z*x)*(z*y) \in A, \forall x, y, z \in X.$

Remark (1.44):[12]

Let (X,*,0) be a BH-algebra and let A be a translation ideal of X. Define a relation \sim_A on X by $x \sim_A y$ if and only if $x^*y \in A$ and $y^*x \in A$, where x, $y \in X$. Then \sim_A is an equivalence relation on X. Denote the equivalence class containing x by $[x]_A$, i.e., $[x]_A = \{y \in X | x \sim_A y\}$ and $X/A = \{[x]_A | x \in X\}$. And define $[x]_A \oplus [y]_A = [x^*y]_A$, then $((X/A), \oplus, [0]_A)$ is a BH-algebra.

Theorem(1.45):[12]

Let f: $X \rightarrow Y$ be a homomorphism of BH-algebra. Then Ker(f) is a translation ideal of X.

Definition(1.46):[3]

Let X be a BH-algebra, a non-empty subset N of X is said to be **normal subalgebra** of X if i. $(x*a)*(y*b)\in N, \forall x*y, a*b\in N, \forall x, y, a, b\in X$. ii. $x*y \in N, \forall x, y \in N$.

Remark (1.47):

Let (X, *, 0) be a BH-algebra and let N be a normal subalgebra of X. Define a relation \sim_N on X by $x \sim_N y$ if and only if $x^*y \in N$ and $y^*x \in N$, where $x, y \in X$. Then \sim_N is an equivalence relation on X. Denote the equivalence class containing x by $[x]_A$, i.e., $[x]_N=\{y \in X | x \sim_N y\}$ and $X/N=\{[x]_N | x \in X\}$. And define $[x]_N \oplus [y]_N = [x^*y]_N$, then $((X/N), \oplus, [0]_N)$ is a BH-algebra.

Remark (1.48):[3]

The BH-algebra X/N is called the quotient BH-algebra of X by N.

Theorem(1.49):[3]

Let N be a normal subalgebra of a BH-algebra X. Then X/N is a BH-algebra.

Definition (1.50) :[4]

Let X be a BH-algebra and $a \in med(X)$. $B(a) = \{x \in X : a^*x = 0\}$ is called **a branch subset** of X **determined by a.**

2. The Main Results: Proposition (2,1):

Proposition(2.1):

Let $X = L_K(X) \cup \{0\}$ be a BH-algebra. Then every ideal of X is an implicative ideal.

Proof:

i. Since I is an ideal of X, so $0 \in I$

ii. Let I be an ideal of X and x, y, $z \in X$ such that $(x^*(y^*x))^*z \in I$ and $z \in I$.

 $\Rightarrow x^*(y^*x) \in I$ [Since I is an ideal]

We have two cases:

Case1: if x=y, we will have $x^{*}(y^{*}x) = x^{*}(x^{*}x) = x^{*}0=x$

[Since X is a BH-algebra; x*x=0 and x*0=x]

 $\Rightarrow x \in I$ [Since $x^*(y^*x) \in I$]. Then I is an implicative ideal of X.

Case2 : if $x \neq y$, then $x^*(y^*x) = x^*y = x$

[Since $X = L_K(X) \cup \{0\}$, then $y^*x = y$, $\forall x, y \in X$ with $x \neq y$; by Theorem (1.20,2)]

 $\Rightarrow x \in I \qquad [Since x^*(y^*x) \in I].$

Then I is an implicative ideal of X.

Proposition(2.2):

If X is a BH-algebra satisfies the condition, $\forall x , y \in X$; $x = x^*(y^*x)^{-1}(a_1)$, then every ideal is an implicative ideal of X.

Proof :

Let I be an ideal of X and x, y, $z \in X$ such that $(x^*(y^*x))^*z \in I$ and $z \in I$

 \Rightarrow x*(y*x) \in I. [Since I is an ideal of X.]

 $\Rightarrow x \in I. \qquad [By (a_1)]$

Then I is an implicative ideal of X. ■

Remark (2.3) :

In any BH-algebra, the set I=X is an implicative ideal of X, but the set $I=\{0\}$ may not be an implicative ideal of X, as in the following example,

Example (2.4):

Consider the BH-algebra $X = \{0, 1, 2, 3\}$ with the binary operation '*'defined by the following table:

*	0	1	2	3
0	0	0	2	3
1	1	0	2	2
2	2	1	0	1
3	3	2	3	0

Then (X,*,0) is a BH-algebra. The subset $I=\{0\}$ is not an implicative ideal of X. Since if x=2, y=0, z=0, then $(2^*(0^*2))^*0 = 0^*0 = 0 \in I$ and $0 \in I$ but $x=2 \notin I$.

Theorem (2.5):

Let X be BH-algebra and let I be an ideal of X. Then I is an implicative ideal of X if and only if $x^*(y^*x) \in I$ imply $x \in I$ (a₂).

Proof:

Let I be an implicative ideal of X and x, $y \in X$ such that $x^*(y^*x) \in I$. Then $(x^*(y^*x))^*0 \in I$.

[Since X is a BH-algebra;
$$x^{*}(y^{*}x) = (x^{*}(y^{*}x))^{*}0$$
]

Now, we have $(x^*(y^*x))^*0 \in I$ and $0 \in I$. Then $x \in I$. [Since I is an implicative ideal of X] Conversely,

Let I be an ideal of X and x, y, $z \in X$ such that $(x^*(y^*x))^*z \in I$ and $z \in I$.

 $\Rightarrow x^*(y^*x) \in I.$ [Since I is an ideal of X.]

 $\Rightarrow x \in I. \qquad [By (a2)]$

Then I is an implicative ideal of X.■

Proposition(2.6):

Let X be BH-algebra. If $\{0\}$ is an implicative ideal of X, then $0^*x \neq x$, $\forall x \in X/\{0\}$.

Proof:

Suppose I = {0} be an implicative ideal of X and $x \in X/\{0\}$ such that 0*x=x.

Now,

```
\Rightarrow x*(0*x) =x*x=0 [Since X is an associative BH-algebra; x*x=0 and 0*x=x].
```

We have $(x^*(0^*x))^*0=0\in I \text{ and } 0\in I$

 $\Rightarrow x \in I$ [Since I is an implicative ideal]

 \Rightarrow x=0 [Since I = {0}],

we get a contradiction . [Since $x \in X/\{0\}$]

Then $0^*x \neq x$.

<u>Remark (2.7)</u>:

The converse of proposition (2.6) is not correct in general, as in the following example:

Example (2.8):

Consider the BH-algebra $X = \{0, 1, 2, 3, 4\}$ with the binary operation '*' defined by the following table:

*	0	1	2	3	4
0	0	2	1	0	3
1	1	0	2	1	1
2	2	1	0	2	2
3	3	2	3	0	3
4	4	4	4	4	0

 $0^*x \neq x, \forall x \in X/\{0\}$, but the set I= $\{0\}$ is not an implicative ideal of X. Since

If x=1, y=2, z=0, then $(1^{*}(2^{*}1))^{*}0 = 1^{*}1 = 0 \in I$, but x=1 $\notin I$.

<u>Theorem(2.9) :</u>

Every associative BH- algebra is an implicative BH-algebra.

Proof :

Let X be an associative BH- algebra. Then

 $(x^{*}(x^{*}y))^{*}(y^{*}x)=((x^{*}x)^{*}y)^{*}(y^{*}x)$ [Since X is an associative BH-algebra]

=(0*y)*(y*x) [Since X is a BH-algebra; x*x=0]

 $= y^{*}(y^{*}x)$ [Since X is an associative BH-algebra; $0^{*}y=y$, by Theorem (1.14,i)]

Then X is an implicative BH-algebra.

<u>Theorem(2.10)</u> :

Let X be a BH-algebra and satisfies the condition, $((x^*y)^*(x^*z))^*(z^*y)=0, \forall x, y, z \in X (a_3)$. Then X is an implicative if and only if every closed ideal of X is an implicative ideal of X. **Proof:** Directly from Theorem (1.6) and (1.38).

Lemma (2.11): Every medial BH- algebra is an implicative BH-algebra.

Proof : Let X be a medial BH- algebra. Then

 $(x^*(x^*y))^*(y^*x) = y^*(y^*x)$ [Since X is medial; $x^*(x^*y)=y$].

Then X is an implicative BH-algebra.

Theorem (2.12) :

Let X be an implicative BH-algebra satisfies (a₃) and let I be an ideal of X. Then

- i. If $I \subseteq X_+$, then I is an implicative ideal of X.
- ii. If $L_0(I) \subseteq I$, then I is an implicative ideal of X.
- iii. If X is equal to a branch subset of X determined by "0", then I is an implicative ideal of X.

Proof :

i. Let $I \subseteq X_+$ and I be an ideal of X.

- $\Rightarrow 0 * x = 0 \in I, \ \forall x \in X.$
- $\Rightarrow 0 * x = 0 \in I, \forall x \in I. [Since I \subseteq X_+]$
- \Rightarrow every ideal of X is a closed ideal of X. [by Definition (1.26)]
- \Rightarrow X is a BCI-algebra. [Since X is BH-algebra and satisfies (a3), By Theorem(1.6)]
- \Rightarrow I is an implicative ideal of X.

[Since every closed ideal of X is an implicative ideal of X. By Theorem (1.38)]. ■

ii. Let $x \in I$. Then $L_0(x) \in I$. [Since $L_0(I) \subseteq I$]

- $\Rightarrow 0^* x \in I \qquad [Since L_0(x) = 0^* x]$
- \Rightarrow I is a closed ideal of X. [By Definition (1.26)]
- \Rightarrow X is a BCI-algebra.[Since X is BH-algebra and satisfies (a3), By Theorem (1.6)]
- \Rightarrow I is an implicative ideal of X.

[Since every closed ideal of X is an implicative ideal of X. By Theorem (1.38)].

iii. Let X is equal to a branch subset of X determined by "0" and let I be an ideal of X. $\Rightarrow X=B(0)$

- $\Rightarrow 0 * x = 0 \in I, \forall x \in X.$ [Since X=B(0)]
- $\Rightarrow 0 * x = 0 \in I, \forall x \in I. [Since I \subseteq X]$
- \Rightarrow I is a closed ideal of X. [By Definition (1.26)]
- \Rightarrow I is an implicative ideal of X.

[Since every closed ideal of X is an implicative ideal of X. By Theorem (2.10)].

Theorem (2.13):

Let X be an associative BH-algebra. Then

i. every proper subset of X is not an implicative ideal of X.

 X_+ is not an implicative ideal of X. ii. iii. a branch subset of X determined by "0" is not an implicative ideal of X. **Proof**: i. Suppose I is an implicative ideal of X and I is a proper subset of X. Then There exist $x \in X$ such that $x \notin I$ [Since $I \subset X$] Now, Since X is a BH-algebra, we have x*0=x. So (x*(0*x))*0 = x*(0*x) $= x^*x$ [Since 0*x=x; by Theorem (1.14,i)] $= 0 \in I$ [since X is a BH- algebra; x*x=0] We have $(x^*(0^*x))^* 0 \in I$ and $0 \in I$. [since I is an implicative ideal of X] $\Rightarrow x \in I$ We get a contradiction (By assumption $I \subset X, x \notin I$] \Rightarrow I is not an implicative ideal of X. Then every proper subset of X is not an implicative ideal of X. To prove X_+ is not an implicative ideal of X. ii. $X_{+}=\{x \in X ; 0*x=0\} = \{0\}$ [since X is an associative ; 0*x=x ; by Theorem (1.14,i)] Now. Since $X_+ \subset X$ Then X_+ is not an implicative ideal of X [by (i)]. To prove a branch subset of X determined by "0" is not an implicative ideal of X. iii.

 $B(0)=\{x \in X ; 0*x=0\} = \{0\}$ [since X is an associative ; 0*x=x ; by Theorem (1.14,i)] Now,

Since $B(0) = X_+$.

 \Rightarrow B(0) is not an implicative ideal of X [by (ii)].

Then a branch subset of X determined by "0" is not an implicative ideal of X.

<u>Corrolary (2.14)</u>: Let X be an associative BH-algebra. Then X is a unique implicative ideal of X. <u>Proof</u>: Directly by Theorem (2.13, i) and Remark (2.3). \blacksquare

Theorem (2.15) :

Let X be a medial BH-algebra and satisfies (a_3) . Then every normal ideal of X is an implicative ideal of X.

Proof :

Let I be a normal ideal of X and let $x \in X$. Then

 $(0^*x)^*((0^*x)^*0)=(0^*x)^*(0^*x)=0 \in I$ [Since X is s BH-algebra; x*0=x and x*x=0]

 $\Rightarrow 0^*(0^*(0^*x)) \in I$ [Since I is a normal ideal]

 $\Rightarrow 0^*x \in I \quad ; \quad \forall \ x \in X \quad [Since \ X \ is \ a \ medial \ ; \ x^*(x^*y) = y \]$

$$\Rightarrow 0^* x \in I \quad ; \quad \forall \ x \in I$$

 \Rightarrow I is a closed ideal of X. [By Definition (1.26)]

 \Rightarrow I is an implicative ideal of X. [Since every closed ideal of X is an implicative ideal of X. By Theorem(2.10)].

Theorem (2.16):

Let X be an implicative BH-algebra and satisfies (a_3) . Then every completely closed ideal of X is an implicative ideal of X.

Proof :

Let I be a completely closed ideal of X. Then I is an ideal of X. [By definition (1.28)]

Let $y \in X$, if x=0

 $\Rightarrow 0^* y \in I, \forall y \in X.$

 $\Rightarrow 0^* y \in I, \forall y \in I.$

Then I is a closed ideal of X.

⇒ I is an implicative ideal of X. [Since every closed ideal of X is an implicative ideal of X. By Theorem (2.10)].■

Proposition (2.17):

Let X be a normal BH-algebra such that $X=X_+$ and let I be an implicative ideal of X. Then I is a completely closed ideal of X.

Proof:

Let I be a an implicative ideal of X. Then I is an ideal of X. [By proposition(1.34)] Let x, $y \in I$. Then

 $\begin{array}{ll} ((x^*y)^*(0^*(x^*y)))^*x = ((x^*y)^*0)^*x & [Since \ 0^*(x^*y) = 0 \ ; \ X = X_+. \ By \ Definition \ (1.15)] \\ = (x^*y)^*x & [Since \ X \ is \ a \ BH-algebra \ . \ x^*0 = x] \\ = \ 0^*y & [Since \ X \ is \ a \ normal, \ By \ Definition \ (1.10, \ ii)] \\ = \ 0 \in I & [Since \ X = X_+. \ By \ Definition \ (1.15) \] \end{array}$

 $\Rightarrow ((x^*y)^*(0^*(x^*y)))^*x \in I \text{ and } x \in I \Rightarrow x^*y \in I.$ [Since I is an implicative ideal of X] Therefore, I is a completely closed ideal of X.

Theorem (2.18):

Let { I_i , $i \in \Gamma$ } be a family of implicative ideals of a BH-algebra X. Then $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X.

Proof:

To prove that $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X. i. $0 \in I_i, \forall i \in \Gamma$ [Since each I_i is an implicative ideal of X, $\forall i \in \Gamma$. By Definition(1.33)] $\Rightarrow 0 \in \bigcap_{i \in \Gamma} I_i$ ii. Let $(x^*(y^*x))^*z \in \bigcap_{i \in \Gamma} I_i$ and $z \in \bigcap_{i \in \Gamma} I_i$ $\Rightarrow (x^*(y^*x))^*z \in I_i$ and $z \in I_i, \forall i \in \Gamma$ $\Rightarrow x \in I_i, \forall i \in \Gamma$ [Since each I_i is Implicative ideal of X, $\forall i \in \Gamma$. By Definition(1.33)] $\Rightarrow x \in \bigcap_{i \in \Gamma} I_i$. Therefore, $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X. • **Corollary (2.19):** Let X=L_K(X)\cup\{0\} and let { $I_i, i \in \Gamma$ } be a family of ideals of a BH-algebra X. Then $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X.

<u>Proof</u>: Let $\{I_i, i \in \Gamma\}$ be a family of ideals of X. Then $\bigcap_{i \in \Gamma} I_i$ is an ideal of X. [By Theorem(1.22)].

Therefore, $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X. [Since $X = L_K(X) \cup \{0\}$, by Proposition (2.1)].

Theorem (2.20):

Let { I_i, i $\in \Gamma$ } be a chain implicative ideals of a BH-algebra X. Then $\bigcup_{i \in \Gamma} I_i$ is an implicative ideal of X.

<u>Proof</u>: To prove that $\bigcup_{i\in\Gamma} I_i$ is an implicative ideal of X.

i. $0 \in I_i$, $\forall i \in \Gamma$

[Since each I_i is an implicative ideal of X, $\forall i \in \Gamma$. By Definition(1.33)]

 $\Rightarrow 0 \in \bigcup_{i \in \Gamma} I_{i}$ ii. Let $(x^{*}(y^{*}x))^{*}z \in \bigcup_{i \in \Gamma} I_{i}$ and $z \in \bigcup_{i \in \Gamma} I_{i}$ $\exists I_{j}, I_{k} \in \{I_{i}\}_{i \in \Gamma}, \text{ such that } (x^{*}(y^{*}x))^{*}z \in I_{j} \text{ and } z \in I_{k},$ $\Rightarrow \text{ either } I_{j} \subseteq I_{k} \text{ or } I_{k} \subseteq I_{j} \qquad [\text{ Since } \{I_{i}\}_{i \in \Gamma} \text{ is a chain }]$ $\Rightarrow \text{ either } (x^{*}(y^{*}x))^{*}z \in I_{j} \text{ and } z \in I_{j} \qquad (x^{*}(y^{*}x))^{*}z \in I_{k} \text{ and } z \in I_{k}$ $\Rightarrow \text{ either } x \in I_{j} \text{ or } x \in I_{k}$ $[\text{ Since } I_{j} \text{ and } I_{k} \text{ are implicative ideals of } X. \text{ By Definition(1.33)}]$ $\Rightarrow x \in \bigcup_{i \in \Gamma} I_{i} \text{ . Therefore } \bigcup_{i \in \Gamma} I_{i} \text{ is an implicative ideal of } X. \bullet$ $Corollarv (2.21): \text{ Let } X = L_{K}(X) \cup \{0\} \text{ and let } \{I_{i}, i \in \Gamma\} \text{ be a Chain of ideals of a BH-algebra } X.$ Then $\bigcup_{i \in \Gamma} I_{i} \text{ is an implicative ideal of } X.$ Proof: Let $\{I_{i}, i \in \Gamma\}$ be a chain of ideals of X. Then $\bigcup_{i \in \Gamma} I_{i}$ is an ideal of X. [by Theorem(1.23)]

Therefore, $\bigcup_{i \in \Gamma} I_i$ is an implicative ideal of X.[Since $X = L_K(X) \cup \{0\}$, by Proposition (2.1)].

Proposition (2.22) :

Let f: $(X,*,0) \rightarrow (Y,*',0')$ be a BH- epimorphism. If I is an implicative ideal of X, then f(I) is an implicative ideal of Y.

Proof :

Let I be an implicative ideal of X. Then

i. f(0) = 0', [Since f is an epimorphism, by Remark(1.42)]

 $\Rightarrow 0' \in f(I)$

ii. Let $(x^{*'}(y^{*'}x))^{*'}z \in f(I)$ and $z \in f(I)$

 $\Rightarrow \exists a, b \in I \text{ and } c \in I \text{ such that } f(a)=x, f(b)=y \text{ and } f(c)=z$

 \Rightarrow (x*'(y*'x))*'z =[f(a)*'(f(b)*'f(a))]*'f(c)=f((a*(b*a))*c) \in f(I) [Since f is an epimorphism]

 $\Rightarrow (a^*(b^*a))^*c \in I \text{ and } c \in I \text{ [Since } f(I)=\{f(x) ; x \in I\}\text{]}$ $\Rightarrow a \in I \text{ [Since I is an implicative ideal of X]}$ $\Rightarrow f(a) \in f(I).$

Then f(I) is an implicative ideal of Y. ■

Proposition (2.23) :

Let **f**: $(X,*,0) \rightarrow (Y,*',0')$ be a BH- homomorphism and I is an implicative ideal of Y. Then f⁻¹(I) is an implicative ideal of X.

Proof :

Let I be an implicative ideal of Y. Then

i. f(0) = 0' [Since f is a homomorphism, by Remark(1.42)]

 $\Rightarrow 0=f^{1}(0')\in f^{1}(I)$

ii. Let x, y, $z \in X$ such that $(x^*(y^*x))^*z \in f^{-1}(I)$ and $z \in f^{-1}(I)$

 \Rightarrow f((x*(y*x))*z) \in I and f(z) \in I

 $\Rightarrow f((x^*(y^*x))^*z)=(f(x)^*'(f(y)^*f(x)))^*'f(z)\in I$ and $f(z) \in I$ [Since f is a homomorphism, by Remark(1.42)]

 \Rightarrow f(x) \in I [Since I is an implicative ideal of Y]

 $\Rightarrow x \in f^{-1}(I).$

Then $f^{-1}(I)$ is an implicative ideal of X.

Theorem (2.24):

Let X be a BH-algebra and N be a normal subalgebra. If I is an ideal of X, then I/N is an ideal of X/N.

Proof :

Let I be an ideal of X. Then i. Since $0 \in I \Rightarrow [0]_N \in I/N$. ii. Let $[x]_N, [y]_N \in X/N$. $\Rightarrow [x]_N * [y]_N \in I/N$ and $[y]_N \in I/N$ [Since $[x]_N * [y]_N = [x*y]_N$, By remark(1.47)]. $\Rightarrow [x*y]_N \in I/N$ and $[y]_N \in I/N$ $\Rightarrow x*y \in I$ and $y \in I$ [Since I/N={ $[x]_N | x \in I$ }, By remark(1.47)] $\Rightarrow x \in I$ [Since I is an ideal of X]. $\Rightarrow [x]_N \in I/N$. Then I/N is an ideal of X/N.

Theorem (2.25):

Let X be a BH-algebra and N be a normal subalgebra. If I is an implicative ideal of X, then I/N is an implicative of X/N.

Proof:

Let I be an implicative ideal of X. To prove I/N is an implicative ideal of X/N. \Rightarrow I is an ideal of X. [By proposition(1.34)] \Rightarrow I/N is an ideal of X/N. [By proposition(2.24)] i. Since $0 \in I \Rightarrow [0]_N \in I/N$. ii. Let $[x]_N, [y]_N, [z]_N \in X/N$. $\Rightarrow ([x]_N^*([y]_N * [x]_N)) * [z]_N \in I/N$ and $[z]_N \in I/N$ $\Rightarrow ([x]_N^*[y^*x]_N) * [z]_N \in I/N$ and $[z]_N \in I/N$ [Since $[x]_N^*[y]_N = [x^*y]_N$, By remark(1.47)] $\Rightarrow [x^*(y^*x)]_N * [z]_N \in I/N$ and $[z]_N \in I/N$

 $\Rightarrow [(x^*(y^*x))^*z]_N \in I/N \text{ and } [z]_N \in I/N$

 $\Rightarrow (x^*(y^*x))^*z \in I \text{ and } z \in I \text{ [Since I/N=}\{[x]_N | x \in I\}, \text{ By remark}(1.47)]$

 $\Rightarrow x \in I$ [Since I is an implicative ideal of X]

 $\Rightarrow [x]_N \in I/N.$

Then I/N is an implicative ideal of X/N.■

Theorem (2.26):

Let X be a BH-algebra and A be a translation ideal of X. If I is an ideal of X, then I/A is an ideal of X/A.

Proof:

Let I be an ideal of X. To prove I/A is an ideal of X/A.

i. Since $0 \in I \Longrightarrow [0] \in I/A$.

ii. Let $[x]_A, [y]_A \in X/A$.

 \Rightarrow [x]_A \oplus [y]_A \in I/A and [y]_A \in I/A [Since[x]_A \oplus [y]_A=[x*y]_A. By remark(1.44)]

 $\Rightarrow [x^*y]_A \in I\!/A \ \text{and} \ [y]_A \in I\!/A$

 $\Rightarrow x^*y \in I \text{ and } y \in I \text{ [Since I/A=}{[x]_A | x \in I}. By Remark(1.44)]$

 $\Rightarrow x \in I \qquad [Since I is an ideal of X]$

 \Rightarrow [x]_A \in I/A

Then I/A is an ideal of X/A.

Proposition(2.27):

Let X be a BH-algebra and A be a translation ideal. If I is an implicative ideal of X, then I/A is an implicative of X/A.

Proof:

Let I be an implicative ideal of X. To prove I/A is an implicative ideal of X/A.

i. Since $0 \in I \Longrightarrow [0] \in I/A$.

ii. Let $[x]_A, [y]_A, [z]_A \in X/A$.

 $\Rightarrow ([x]_A \oplus ([y]_A \oplus [x]_A)) \oplus [z]_A \in I/A \text{ and } [z]_A \in I/A$

 $\Rightarrow ([x]_A \oplus [y^*x]_A) \oplus [z]_A \in I/A \text{ and } [z]_A \in I/A \qquad [Since[x]_A \oplus [y]_A = [x^*y]_A .By \text{ remark}(1.44)]$

 $\Rightarrow [x^*(y^*x)]_A \oplus [z]_A \in I/A \text{ and } [z]_A \in I/A$

 $\Rightarrow [(x^*(y^*x))^*z]_A \in I/A \text{ and } [z]_A \in I/A$

 \Rightarrow (x*(y*x))*z \in I and z \in I [Since I/A={[x]_A | x \in I}. By Remark(1.44)]

 $\Rightarrow x \in I$ [Since I is an ideal of X]

 \Rightarrow [x]_A \in I/A .Then I/A is an implicative ideal of X/A.

Corollary (2.28):

Let X be a BH-algebra. If I is an implicative ideal of X,then I/Ker(f) is an implicative of X/ Ker(f).

Proof:

Let I be an implicative ideal of X. To prove I/Ker(f) is an implicative ideal of X/Ker(f). Since Ker(f) is translation ideal. [By Theorem(1.45)]

Since $\operatorname{Ker}(1)$ is translation ideal. [By Theorem(1.45)]

Remark (2.29) :

Let X be a BH-algebra and let I be a subset of X. we will define to the set $\{ L_a \in L(X) ; a \in I \}$ by L(I).

Theorem (2.30) :

Let X be a positive implicative BH-algebra. If I is an ideal of X. Then L(I) is an ideal of $(L(X), \oplus, L_0)$.

Proof:

Let I be an ideal of X. To prove L(I) is an ideal of $(L(X), \oplus, L_0)$.

i. $0 \in I \Rightarrow L_0 \in L(I)$ [By Remark (2.29)]

ii. Let $L_a \oplus L_b$, $L_b \in L(I)$.

We have $L_a \oplus L_b = L_{a*b}$, where $a, b \in I$

 $\Rightarrow a^*b \in I \text{ and } b \in I$

 $\Rightarrow a \in I$ [Since I is an ideal of X]

 \Rightarrow L_a \in L(I). Then L(I) is an ideal of (L(X), \oplus ,L₀).

Corollary (2.31):

Let X be a positive implicative BH-algebra. If I is an implicative ideal of X. Then L(I) is an implicative ideal of $(L(X), \oplus, L_0)$.

Proof:

Let I be an implicative ideal of X. Then I is an ideal of X.

 $\Rightarrow L(I) \text{ is an ideal of } L(X). \qquad [By Theorem(2.30)]$ i. $0 \in I \Rightarrow L_0 \in L(I) \qquad [Since I \text{ is an ideal of } X]$ ii. Let $(L_a \oplus (L_b \oplus L_a)) \oplus L_c \in L(I)$ and $L_c \in L(I)$ $\Rightarrow (a* (b*a)) * c \in I \quad \text{and } c \in I \qquad [Since (L_a \oplus (L_b \oplus L_a)) \oplus L_c = L_{(a*(b*a))*c} \in L(I)]$ $\Rightarrow a \in I \qquad [Since I \text{ is an implicative ideal of } X]$

⇒ $L_a \in L(I)$. Then L(I) is an implicative ideal of $(L(X), \oplus, L_0)$. ■

Theorem (2.31):

If $X = L_K(X) \cup \{0\}$ be a BH-algebra satisfies (a₄) and S be a subalgebra of X, then S is an implicative ideal of X.

Proof:

Since X be a BH-algebra satisfies (a₄), then X is a BCH-algebra. [by Theorem(1.7)] Let S is a subalgebra of X. Then S is a *-ideal. [By Theorem(1.20,4)] \Rightarrow S is an ideal. [every *-ideal is an ideal. By Definition (1.19)] To prove S is an implicative ideal of X.

i) $0 \in S$ [Since S is an ideal]

ii) Let x, y, $z \in X$ such that $(x^*(y^*x))^*z \in S$ and $z \in S$.

 $\Rightarrow x^*(y^*x) \in S.$ [Since S is an ideal of X]

We have two cases:

Case 1: if x=y, then $x^*(x^*x) \in S$

 $\Rightarrow x^*0 \in S$ [Since X is a BH-algebra; $x^*x=0$]

 $\Rightarrow x \in S$ [Since X is a BH-algebra; x*0=x]

Then S is an implicative ideal of X.

Case 2: if $x \neq y$, then $x^*(y^*x) = x^*y = x$ $\Rightarrow x^*y \in S$ [Since $X = L_K(X) \cup \{0\}$, then $y^*x=y$; $\forall x, y \in X$ with $x \neq y$, by Theorem (1.20, 2)] $\Rightarrow x \in S$ [Since $x^*y=x$] Then S is an implicative ideal of X.

References:

- A. B. Saeid and A. Namdar, "On n-fold Ideals in BCH-algebras and Computation Algorithms", World Applied Sciences Journal 7 (Special Issue for Applied Math): 64-69, 2009.
- [2]A. B. Saeid, A. Namdar and R.A. Borzooei, "Ideal Theory of BCH-Algebras", World Applied Sciences Journal 7 (11): 1446-1455, 2009.
- [3]H. H. Abbass and H. A. Dahham," Some Types of Fuzzy Ideals with Respect to an Element of a BG-algebra", Kufa University, M.s. cthesis, 2012.
- [4]H. H. Abbass and H. M. A. Saeed, "The Fuzzy Closed BCH-algebra with Respect to an Element of a BH-algebra", Kufa University, M.s. cthesis, 2011.
- [5]J. Meng and X.L.X, "Implicative BCI-algebra", Pure Apple, In China: 8:2,99-103,1992
- [6]K. ISEKI, "An Algebra Related with a Propositional Calculus", Proc. Japan Acad. 42, 26-29, 1966.
- [7] M.A. Chaudhry and H. Fakhar-Ud-Din, "Ideals and Filters in BCH-algebra", Math. japonica 44, No. 1, 101-112, 1996.
- [8]Q. P. Hu and X. Li, "On BCH-algebras", Math. Seminar Notes Kobe University No. 2, Part 2, 11: 313-320, 1983.
- [9]Q. Zhang, Y. B. Jun and E. H. Roh, "On the Branch of BH-algebras", Scientiae Mathematicae Japonicae 54(2), 363–367, 2001.
- [10]S. S. Ahn and H. S. Kim, "R-maps and L-maps in BH-algebras", Journal of the Chungcheong Mathematical Society, Vol.13, No. 2, pp.53-59, 2000.
- [11]S. S. Ahn and J. H. Lee, "Rough Strong Ideals in BH-algebras", HonamMath. Journal, 32, pp.203-215,2010.
- [12]Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), 347– 354, 1998.
- [13]Y. B. Jun, H. S. Kim and M. Kondo "On BH-relations in BH-algebras", Scientiae Mathematice Japonice Online, Vol.9,pp.91–94,2003.
- [14]Y. IMAI and K. ISEKI, "On Axiom System of Propositional Calculi XIV, Proc. Japan Acad. 42, 19-20, 1966.
- [15]Y. L. Liu, J. Meng ,"Fuzzy Ideals in BCI-algebra" Fuzzy sets and Systems ,123, 227-237.2001.