
Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

691

Comparison of Genetic Algorithm and Memetic Algorithm for

Bicriteria Permutation Flowshop Scheduling Problem

لمسألة المقارنة بين الخوارزمية الوراثية وخوارزمية الممتيك لذالة ثنائية الاهذاف

 الجذولة التبادلية الانسيابية

Ghassan Adnan Khtan
1a

, Viean Abdul Muhsin Al-Salihi
2
, Mohamed Saleh Mehdi

1b
,

Hussam Abid Ali Mohammed
1c

1
Department of Mathematics, College of Education for Pure Sceince, University of Kerbala,

2
School of Applied Sciences, University of Technology, Baghdad, Iraq.

1a
ghassanmath@yahoo.com,

1b
moh.saled81@yahoo.com,

1c
hussammath5@gmail.com

Abstract
Flowshop scheduling is a well-known research field for many years. As the problem size gets

bigger, an analytical solution becomes impossible. Here, heuristic solutions come to the stage. In

the literature, generally solutions regarding a multi-objective are developed; and multi-objective

is generally used for three machines. In this paper, the weighted mean completion times and

weighted mean tardiness flowshop machine scheduling have been considered, so heuristic

methods have used: Genetic Algorithms (GA) are a population-based Meta heuristics. They have

been successfully applied to many optimization problems. However, such pure genetic

algorithms that makes them incapable of searching numerous solutions of the problem domain.

A Memetic Algorithm (MA) is an extension of the traditional genetic algorithm. That uses a local

search technique to reduce the Variable Neighborhood Search (VNS). The methods were tested

and gave various experimental results which shows that a pure memetic algorithm performs

better than the pure genetic algorithms for such type of NP-Hard combinatorial problem. And the

hybrid genetic algorithms versions with VNS, give good solutions better than hybrid MA and

both were better than pure algorithms.

 المستخلص
 صبخ انذم انخذهيهي نهاي انًسأنت، دجى كهًا كبشو. سَُىَاث عذّة ًعشوفت يُزيٍ يجالاث انبذىد ان انًسأنت الاَسيابيت جذونت

ًخعذدة انًسائم انًخعهقت بان انذهىل في انبذىد انسابقت طىسث انخُقيبيت. عًىيا انذهىلَ في يزم هزِ انذالاث َسخخذو. يسخذيم

ٍ نزلاد وهزِ انًسائم اسخخذيج بشكم عاو الأهذاف؛ حًاو و يخىسظ الأهًيت نىقج الاحُاونُا جذونت) انبذذ، هزا في. يكائ

(يع GA) انىساريت انخىاسصيياثاٌ اَسيابيت و اسخخذيُا طشق حُقيبيت لإيجاد انذم: يكائٍ زلادن (يخىسظ الأهًيت نهخأخيش

 هزِ يزم يع رنك الأيزهيت، يسائمانعذيذ يٍ قذ طبقج بُجاح عهى حكىٌ يخعذدة انخُقيب و انخي سكاَييجخًع اساط

(هي ايخذاد MAانىساريت انصافيت حجعهها عاجضة عٍ ايجاد دهىل يخعذدة نهزِ انًسأنت واٌ انخىاسصييت) انخىاسصيياث

. (VNSانجىاس انًخغيش) قيًت دانت انهذف بىاسطت بذذ نخقهيم ًذهيّ ان انبذذ نهخىاسصييت انىساريت انخقهيذيت انخي حسخخذو حقُيت

(GAحعطي َخائج افضم يٍ خىاسصييت) انصافيت(MA) خىاسصييتوانخي اظهشث هزِ انطشق اخخبشث وأعطج َخائج يخخهفت

ساريت انهجيُت يع وانخي حكىٌ دساباحها يعقذة. واٌ انخىاسصيياث انى NP-Hard،نًزم هزا انُىع يٍ يسائم انـ انصافيت

(VNS(ٍحعطي دهىل جيذة افضم ي)MA.انهجيُت و كهخاهًا كاَخا افضم يٍ انخىاسصيياث انصافيت)

Keywords: scheduling, flowshop, memetic algorithm, genetic algorithm

1 Introduction
In the context of manufacturing, scheduling is fundamentally related to the problem of finding

a successive assignment of limited resources to a number of jobs which is optimal in terms of

certain performance measures. On many occasions in manufacturing environments, a set of

processes are needed to be serially performed in several stages before a job is completed. Such

systems are referred to as the flowshop environments. In a flowshop system, a set of different

mailto:1aghassanmath@yahoo.com
mailto:1chussammath5@gmail.com

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

691

jobs needs to be processed on a sequential set of machines. That is, each job consists of

operations where each operation must be performed on a different machine for an amount of

processing time. Each machine can handle only one job at a time and the operation of a machine on

a job usually cannot be preempted.

In flowshop scheduling, the processing routes are the same for all the jobs (Solimanpur et al.,

2004). In the permutation flowshop, passing is not allowed. Thus the sequencing of different jobs

that visit a set of machines is in the same order. In the general flowshop, passing is allowed.

Therefore, the job sequence on each machine may be different (Pinedo, 1995).

The multi-objective flowshop scheduling problem has been addressed by some papers on

scheduling. Marett and Wright (1996) compared the performance of simulated annealing and tabu

search by using them for solving a large and complex multi-objective flowshop problem. Sayin and

Karabati (1999) dealt with the scheduling problem in a two machine flowshop environment by

minimizing makespan and sum of completion times simultaneously. Danneberg et al. (1999)

addressed the permutation flowshop scheduling problem with setup times where the jobs are

partitioned into groups or families. Jobs of the same group can be processed together in a batch but

the maximum number of jobs in a batch is limited. The setup time depends on the group of the jobs.

They proposed the makespan as well as the weighted sum of the completion times of the jobs as

objective function. For solving such a problem, they proposed and compared various constructive

and iterative algorithms. Toktas et al. (2004) considered the two machine flowshop scheduling by

minimizing makespan and maximum earliness simultaneously. Cheachan et al. (2010) proposed a

multi-objective algorithm for flowshop scheduling where a minimizing makespan and maximum

tardiness was used. Ravindran et al. (2005) proposed three heuristic algorithms for solving the

flowshop scheduling problem by makespan and total flow. Loukil et al. (2005) proposed multi-

objective simulated annealing algorithm to tackle the multi-objective production scheduling

problems (one machine, parallel machines and permutation flowshops). They considered seven

possible objective functions (the mean weighted completion time, the mean weighted tardiness, the

mean weighted earliness, the maximum completion time (makespan), the maximum tardiness, the

maximum earliness, the number of tardy jobs). They claimed that the proposed multi-objective

simulated annealing algorithm is able to solve any subset of seven possible objective functions.

In this paper, we deal with a multi-objective permutation flowshop scheduling problem. The

weighted mean completion time and weighted mean tardiness are to be optimized simultaneously.

To tackle this problem, an effective multi-objective Genetic Algorithm (GA) and Memetic

algorithm (MA). The remainder of this paper is organized as follows: Section 2 gives the problem

definition. In Section 3, the background of VNS, GA and MA and previous works are summarized.

The experimental results are provided in Section 4. Finally, Section 5 provides conclusions and the

future work.

2 Problem Definition
In this paper, a permutation flowshop problem is considered. The permutation flowshop

represents a particular case of the flowshop scheduling problems, having as its goal achieving a

schedule for a number of jobs on several machines regarding predetermined objective functions and

related constraints.

Consider a hypothetical permutation flowshop scheduling problem in which jobs are to be

processed on machines where the machines are ceaselessly ready to be used from time zero

onwards. Each job consists in operations and the operation of each job must

be processed on machine .

At any time, every job can be processed at most on one machine and every machine can

process at most one job. One job can start on machine if it is completed on machine and if

machine is free. In addition, preemption is not permitted; i.e., once an operation is started, it must

be completed without interruption.

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

691

For the permutation flowshop the operating sequences of the jobs are the same on every

machine. That is to say, if one job is at the position on machine 1, then this job will be at the

 position on all the machines.

Given the known uninterrupted processing time of job on machine , , and due date of job

 , , and the precedence constraints, the objective is to seek a schedule that minimizes the weighted

mean completion time and the weighted mean tardiness of the manufacturing system.

2.1 Weighted Mean Completion Time
The first objective considered is the minimization of the weighted mean completion time. This

objective can be calculated by the following expression:

∑

where is the completion time for job on machine , is the number of the jobs and is

an importance factor related to job . For instance, it may be equal to a holding cost per unit time.

These importance factors are not required to be less than 1. is the sum total of jobs‟ weights; that

is,

 ∑

Let denote the completion time of the job, on machine in an imaginary

permutation , the completion time of the job in this permutation, which is

equal to can be calculated by the following equations:

 { } and

 { } and

For more of the shortcut will write the completion time as the following , therefore the

equation (1) becomes

∑

2.2 Weighted Mean Tardiness
Another objective considered is the minimization of the weighted mean tardiness. This

objective is due-date based and calculates how due-dates are being met. That is to say, this objective

takes into account the due dates that are violated. To calculate the value of this objective, the

subsequent expression is used:

∑

Where is the number of the jobs, is the tardiness for job on machine and equals to

 and and are the same as explained weighted in Section 2.1 equation (2).

It can be easily noticed that the objectives considered are inherently contradicting. To illustrate

the point, one should take into account that the optimization of the first objective in a single

objective problem is performed regardless of the jobs‟ due-dates. Hence, the resulting sequences

may have large due-dates violations, thus imposing large penalties to the system. On the other hand,

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

699

while optimizing the second objective, the goal is to schedule jobs as close as possible to their due-

dates. However, the sequence obtained is very likely to cause large penalties to the system due to

the fact that this sequence is formed without regard to the job‟s completion times.

3 Methodology
3.1 Variable Neighborhood Search (VNS)

It is clear to solve scheduling problems one tends to use branch and bound (B&B) or Dynamic

programming (DP) to find optimal solutions, however, these approaches has two main

disadvantages:

 It is mathematically complex and thus a lot of time to be invested.

 When it concerns NP-hard problem, the computational time requirements are enormous for large

sized problem.

 To avoid these draw backs we can appeal to heuristics methods. In recent year, the

improvement in heuristic methods has becomes under the name 'local search heuristic' are

implemented on the problem of scheduling of jobs on three machines to minimize the

∑ (⁄ ⁄)
 (minimize the weighted mean completion time and weighted mean

tardiness). For the representation of solution the natural representation will be used. For each local

search method a set of parameter setting is necessary for arriving at high performing algorithm.

Conclusions concerning implementation of different setting are discussed.

First we introduce some neighborhoods for a permutation problem, where the step of feasible

solutions is given by the set of permutations of jobs [10].

 Jump (Ju) In a permutation , select an arbitrary job and jump it to a

smaller position , , or to a large position , . Thus, we have | | .

 Pairwise Interchange (PI) In a permutation select two arbitrary jobs and , and

interchange them, and | | ⁄ .

 Adjacent Pairwise Interchange (API) This is a special case of both the jump and the pairwise

interchange neighborhood. In a permutation , two adjacent jobs and ,

are interchanged to generate a neighbor , where | | .

 Search Dynamic Programming (Dyna) In this move we composed of a set of independent

interchange moves; each such move exchange the jobs at positions and , . Two

interchange moves are independent if they don't overlap, that is if for two moves involving

position and we have that or vice versa.

 Now, we propose algorithm AH which is applied at VNS to provide a best solution.

3.1.1 Algorithm AH [10]
Step (1) Select an initial solution obtain from the arbitrary sequence and

calculate objective value of say .

Step (2) In this step will be change the initial sequence by the others neighborhoods and

calculate values function for every one i.e.

a. For the neighbor Ju, have and .

b. For the neighbor PI, have and .

c. For the neighbor API, have and .

d. For the neighbor Dyna, have and .

Step (3) Now choose () and

 (), then set and
.

Now, we give details about local search methods (Meta-heuristic methods) which are used to solve

 ∑ (⁄ ⁄)
 problems.

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

022

3.2 Genetic Algorithm Approach
The genetic algorithm (GA) is an optimization and search technique based on the principles of

genetics and natural selection. A GA lets a population made up of many individuals to evolve under

specified selection rules to a state that maximizes the “fitness” (i.e., maximizes the benefit

function).

The figure below [11] shows a basic model of a genetic algorithm, one of the main techniques

in artificial evolution. From an initial population (population of parents). Crossover and mutation

are possible to give children. Until the evolution is stopped, children are selected to become parents

and so on. This basic model can be modified to match the requirements of the problem to solve.

Fig.: Basic genetic algorithm

Proposed genetic algorithm: in this research, the chromosome or the individual that stands for a

solution has two main components: the sequence itself and the idle times inserted at the beginning

of the schedule. For example [5] [4,1,2,3] indicates that the processing order is: jobs 4, 1, 2 and 3,

with first job starting at time 6. The genetic operators used were:

 Crossover: Two different crossover operators were implemented. The first is the well-known

Order crossover (OX) [10]. After choosing two parents, a fragment of the chromosome from one

of them is randomly selected and copied in to the offspring. In the second phase, the offspring„s

empty positions are sequentially filled according to the chromosome of the other parent.

 The second crossover calls homogeneous mixture crossover (HMX) was proposed by

Mohammed et al. [12], given by the mixture the two chromosomes from parents uniformly by

making a set from genes M, they introduced the way for the mixture, first; the odd position from

Yes

No

Generation of initial population

“Parent” population

Reproduction of generation

Select two parents

Reproduction of parents

Mutation of children

“Children” population

Stop evolution

Get solution from
“children” population

Gene ration of new “parent” population

from “children” population

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

026

the first parents and the even position from the second parents. Then separate genes without

repetition gene, since we read the set M from the left, if the gene j does not existing in the first

child put it, otherwise we put gene j in the second child until final M. This way also gives a new

two chromosomes.

 Mutation: In our implementation a traditional mutation strategy based as indicated at (3.1.1

Algorithm AH). According to it, we choose minimum value from AH.

 Outline of the Basic Genetic Algorithm (GA):

 Initialization: In the first step of GA many individual solutions are randomly generated to form

an initial population. The population initial generation depends on the nature of the problem, but

typically contains several hundreds of possible solutions. Traditionally, the initial population is

produced randomly, it allows the entire range of possible solutions (the search space).

Sometimes, the solutions may be “seeded” in areas where optimal solutions are likely to be

found.

 Selection: During each successive generation, a population of the existing population is selected

to create a new generation. Individual solutions are selected through a fitness-based process,

where fitter solutions (as measured by a fitness function) are typically more likely to be selected.

Certain selection methods rate the fitness of each solution and preferentially select the best

solutions. Other methods rate only a random sample of the population, as the latter process may

be very time-consuming.

 Reproduction: The next step is to breed a second generation population of solutions from those

selected through genetic. For each new solution to be created, a pair of “parent” solutions is

selected for generating from the pool selected previously. By breeding a "child" solution using

the above methods of crossover and mutation, a new solution is produced which typically shares

many of the characteristics of its "parents". New parents are selected for each new child, and the

process continues until a new generation of solutions of appropriate size is generated. Although

reproduction methods that are based on the use of two parents are more similar to nature of

biology, some research suggests more than two “parents” are better to be reproduce a good

quality child [13].

 These processes eventually result in the next generation population of offspring that is different

from the initial generation. Generally speaking the average fitness will have increased by this

procedure for the population, since only the best organisms from the first generation are selected

for generating, along with a small proportion of less fit solutions, for reasons already mentioned

above.

 Crossover and mutation are the most famous genetic operators but it is possible to use other

operators such as regrouping, colonization-extinction, or migration in genetic algorithms.

 Termination: This generational process is repeated until a termination condition has been

reached. Common terminating conditions are:

 A solution is found that satisfies minimum criteria.

 Fixed number of generations reached.

 Allocated budget (computation time /money) reached.

 The highest level solutions fitness is reaching or has reached a plateau such that successive

iterations no longer produce better results.

 Manual inspection.

 Combinations of the above.

 Simple generational genetic algorithm procedure:

 Choose the initial population of individuals.

 Evaluate the fitness of each individual in that population.

 Repeat on this generation until termination (time limit, sufficient fitness achieved, etc.)

 Select the best-fit individuals for reproduction.

 Generating new individuals through crossover and mutation operations to give birth to offspring.

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

020

Leader

Cluster

Support •

•

•

•

 Evaluate the individual fitness of new individuals.

 Replace least-fit population with new individuals.

3.3 Memetic Algorithm Approach
The memetic algorithms [14] can be viewed as a marriage between a population-based global

technique and a local search made by each of the individuals. They are a special kind of genetic

algorithms with a local hill climbing. Like genetic algorithms, memetic algorithms are a population-

based approach. They have shown that they are orders of magnitude faster than traditional genetic

algorithms for some problem domains. In a memetic algorithm a population structure approach

based on a ternary tree was chosen. In contrast with a non-structured population it divides the

individuals in clusters and restricts crossover possibilities.

Population structure
 The structure consists of several clusters and each cluster consists of a leader and three

supporter solutions. The leader is chosen as the best individual of the cluster. The number of

individuals in the population is defined by a number of nodes in the ternary tree, i.e., it is necessary

13 individuals to make a ternary tree with 3 levels, 40 individuals to 4 levels and so on.

 Representation: For the permutation flowshop scheduling problem the representation we have

chosen is quite intuitive, with a solution being represented as a chromosome with the alleles

assuming different integer values in the [1, n] interval, where n is the number of jobs.

 Crossover: As indicated in section 3.2 is the same crossovers in GA.

 Mutation: As indicated in section 3.2 is the same mutation in GA.

 Fitness Function: As in this problem the goal is to minimize the weighted mean completion

time and weighted mean tardiness, the fitness function was chosen as randomly.

 Offspring Insertion in Population: Once the leader and one supporter are selected, the

recombination, mutation and local search take place and an offspring is generated. If the fitness

of the offspring is better than the leader, the new individual takes its place. Otherwise it takes the

place of the supporter that took part in the recombination. If the new individual is already present

in the population, it is not inserted. We adopted a policy of not allowing duplicated individuals to

reduce loss of diversity. After all individuals were inserted, the population is restructured. The

fitness of the leader of a group must be lower than the fitness of the leader of the group just

above it. Following this policy, the higher subgroups will have leaders with better fitness than

the lower groups and the best solution will be the leader of the root subgroup. The adjustment is

made by comparing the leader of each subgroup with the leader of the subgroup just above. If the

leader in the level below turns out to be better, they swap their places.

4 Computational Experience
4.1 Test Problems

In this section a number of experiments are carried out which outlines the effectiveness of both

the algorithm described above. The purpose of these experiments is to compare the performance of

memetic algorithm approach with genetic algorithm approach for the Permutation Flowshop

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

022

Scheduling Problem. The experiments were conducted on Pentium IV at 2.2GHz, 2GB computer

using „Matlab‟ language.

A set of test problem was created to compare the performance of the algorithms. The main

characteristics of a problem are its size as measured by the number of machines, and the number of

jobs. And the degree of correlation in the processing times for each jobs are likely to effect the

efficiency of algorithm which find near optimal solutions. A sample of test problems was generated

with three machines and 10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000 and 2000 jobs. This

method of processing time , and in the test problems were randomly sampled from a

uniform distribution on the integers defined on [1,10] and the due dates where generated from

uniform distribution [⁄ ⁄] such that ∑

where ⁄ , TF = 0.2, 0.4, RDD = 0.2, 0.4, 0.6, 0.8, 1, and the due date

generation follow that given in [7] and integer weights and tardiness penalty are drawn from

distribution in the range []. For each value of jobs we have average 10 problems.

4.2 Comparative Results
In this section we will report on the results of our computational tests to show the effectiveness

of our local search methods. We are going to compare the results which we have pure versions of

pure genetic algorithm (and pure memetic algorithm . In table (1) we compare the

efficiency and have been approached in terms of comparable average of value ()

and average of time () in case of without using the VNS. The is the best in case of

values test problem but for the time; and almost the same.

Table (1) Compare between and for ∑ (⁄ ⁄)
 problem

without using VNS

n

10 51.84193 0.124905 51.09262 0.124704

20 75.99547 0.176598 73.85434 0.176486

30 115.078 0.235044 109.0408 0.237384

40 144.3009 0.293423 141.016 0.293873

50 176.0374 0.349932 171.1646 0.353946

75 247.7387 0.517809 243.9867 0.503806

100 334.5184 0.68767 327.6341 0.677696

150 486.9344 1.043307 476.5341 1.028668

200 632.6442 1.451246 624.7556 1.479306

500 1524.405 4.989597 1516.281 5.015494

1000 3006.417 13.87517 2983.928 13.99025

2000 5939.021 47.15903 5902.931 42.60472

 : number of jobs.

 : average time in seq.

 : average value of the objective function.

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

022

In the following table (2) shows the efficiency local search heuristic methods (Genetic algorithm

() and Memetic algorithm ()) have been approached in terms of comparable rate of

value and time with hybrid versions with VNS. The VNS is taking from the algorithm HA. The

 is the almost best value for jobs since they are goods except (10, 20, 30, 2000) jobs and also

for the time; The is better than the .

Table (2) Compare between and for ∑ (⁄ ⁄)
 problem with

using VNS

10 48.20147 0.128141 48.04437 0.12578

20 68.89549 0.183678 68.35036 0.180783

30 102.7427 0.237143 101.7414 0.236342

40 130.9945 0.296141 130.1191 0.31677

50 156.6596 0.349918 157.9709 0.409337

75 226.4671 0.505848 226.9081 0.527959

100 306.4692 0.759616 306.6347 0.667848

150 447.3711 1.020531 448.7808 1.029536

200 589.7393 1.470041 593.1156 1.445019

500 1455.018 4.992128 1459.727 4.939721

1000 2916.17 14.13807 2917.381 13.91558

2000 5827.962 43.6308 5825.517 42.66788

 : hybrid genetic algorithm.

 : hybrid memetic algorithm.

5 Conclusion
This paper has developed a number of solution procedures for three machines flowshop

scheduling minimizing ∑ (⁄ ⁄)
 .

 For the pure algorithms show that pure memetic algorithm performs better than the pure genetic

algorithms for all results.

 The hybrid genetic algorithms versions with VNS, gives good solutions better than hybrid memetic

algorithm and both were better than pure algorithms.

 The local search methods used to solve all the large problems, the results show the robustness and

flexibility of local search heuristics.

 Future work Some suggestions for future research are described as follows:

 First, the extensions propose of the exact for ∑ (⁄ ⁄)
 problem by

driving a good lower bound or using the dominance rule in branch and bound algorithm.

 Second, using the local search heuristic should be explored finding an improvement potential of

various polynomially bounded scheduling heuristic.

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

022

Reference

[1] Solimanpur M., Vrat P. and Shankar R., (2004): A neuro-tabu search heuristic for flowshop

scheduling problem. Computers & Operations Research 31:2151–2164.

[2] Pinedo M., (1995): Scheduling: theory algorithms and systems. Englewood Cliffs, Prentice-

Hall, New Jersey.

[3] Marett R. and Wright M., (1996): A comparison of neighborhood search techniques for multi-

objective combinatorial problems. Computers & Operations Research 23:465–483.

[4] Sayin S. and Karabati S., (1999): A bicriteria approach to the two-machine flowshop

scheduling problem. European Journal of Operational Research 113:435–449.

[5] Danneberg D., Tautenhahn T. and Werner F., (1999): A comparison of heuristic algorithms for

flowshop scheduling problems with setup times and limited batch size. Math Comput Model

29:101–126.

[6] Toktas B., Azizoglu M. and Koksalan S. K., (2004): Two-machine flowshop scheduling with

two criteria: maximum earliness and makespan. European Journal of Operational Research

157:286–295.

[7] Cheachan H. A., Mohammed H. A. and Khtan Q. A., (2010): Scheduling flowshop machines to

minimize the multi-objective functions. Iraqi Journal for Administrative Sciences 637–657.

[8] Ravindran D., Noorul Haq A., Selvakuar S. J. and Sivaraman R., (2005): Flowshop scheduling

with multiple objective of minimizing makespan and total flow time. Int J Adv Manufacturing

Tech 25:1007–1012.

[9] Loukil T., Teghem J. and Tuyttens D., (2005): Solving multi-objective production scheduling

problems using metaheuristics. European Journal of Operational Research 161:42–61.

[10] Mohammed H. A., Cheachan H. A. and Khtan Q. A., (2009): Single machine scheduling to

minimizing sum penalty number of late jobs subject to minimize the sum weight of completion

time. Journal of Kerbala University. 7(1):163–173.

[11] Yousefi M. and Yusuff R. M., (2012): Minimizing earliness and tardiness penalties in a single

machine scheduling against common due date using genetic algorithm. Research Journal of

Applied Sciences, Engineering and Technology 4(9): 1205-1210.

[12] Mohammed H. A., Hassan A. S., Saloomi M. H. and Khtan Q. A., (2012): Memetic Algorithm

and Genetic Algorithm for the Single Machine Scheduling Problem with Linear Earliness and

Quadratic Tardiness Costs. Journal of Kerbala University. 7(1):163–173.

[13] Ting, Chuan-Kang (2005): On Mean Convergence Time of Multi-parent Genetic Algorithms

without Selection. Advances in Artificial Life, pp: 403-412. ISBN 978-3-540-28848.

[14] Murata T., Ishibuchi H. and Tanaka H., (1996): Multi-objective genetic algorithm and its

applications to flowshop scheduling. Computers and Industrial Engineering 30:957–968.

