Artin's characters table of the group $\left(Q_{2 m} \times D_{3}\right)$ and $A C\left(Q_{2 m} \times D_{3}\right)$ when m is a prime number

عندما mعد اولّي

Ass.Prof.NaseerRasoolMahmood Naba Hasoon Jaber
University of KrufalCollege of Education for Girls
Department of Mathematics

1.Abstract

The main purpose of this paper is to find Artin's characters table of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{3}\right)$ when m is a prime number, which is denoted by $\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{3}\right)$ where $\mathrm{Q}_{2 \mathrm{~m}}$ is denoted to Quaternion group and D_{3} is the Dihedral group of order 6 .Moreover we have found the cyclic decomposition of Artin's cokernel $\mathrm{AC}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{3}\right)$ when m is a prime number .

$$
\begin{aligned}
& \text { الملخص: }
\end{aligned}
$$

عندما m عدد اولي، ويرمز له Q ${ }_{2 m} \times$ D $_{3}$ الرتبة 6 بالاضافة الى ايجاد النجزئة الدائرية للزمرئ عندما m عدد اولي .

2.Introduction

let G be a finite group ,two elements of G are said to be Γ-conjugate if the cyclic subgroups they generate are conjugate in G and this defines an equivalence relation on G and its classes are called Γ-classes.
let H be a subgroup of G and let \varnothing be a class function on H ,the induced class function on G is given by:
$\varnothing^{\prime}(\mathrm{g})=\frac{1}{|\mathrm{H}|} \sum_{\mathrm{r} \in \mathrm{G}} \emptyset^{\circ}\left(\mathrm{rgr}^{-1}\right) \forall g \in G$
when \emptyset° is defined by:
$\varnothing^{\circ}(\mathrm{h})=\left\{\begin{array}{ll}\emptyset(\mathrm{h}) & \text { if } \mathrm{h} \in \mathrm{H} \\ 0 & \text { if } \mathrm{h} \notin \mathrm{H}\end{array}\right\}$
\emptyset be a character of H ,then \emptyset^{\prime} is a character of G and it is called the induced charater on G.all the characters of G induced from a principale Artin's character.
Let $\bar{R}(\mathrm{G})$ denotes an abelian group generated by Z-valued characters of G under the pointwise addition. Inside this group there is a subgroup generated by Artin's characters, which will be denoted by $\mathrm{T}(\mathrm{G})$ the factor group $\frac{\bar{R}(G)}{T(G)}$ is called the Artin Cokernel of G and denoted by $\operatorname{Ac}(\mathrm{G})$.

3.Preliminaries

3.1The Generalized Quaternion Group $\mathrm{Q}_{2 \mathrm{~m}}$ [5]

For each positive integer m,the generalized Quaternion Group $\mathrm{Q}_{2 \mathrm{~m}}$ of order 4 m with two generators x and y satisfies $\mathrm{Q}_{2 \mathrm{~m}}=\left\{\mathrm{x}^{\mathrm{h}} \mathrm{y}^{\mathrm{k}}, 0 \leq h \leq 2 m-1, \mathrm{k}=0,1\right\}$ which has the following properties $\left\{\mathrm{x}^{2 \mathrm{~m}}=\mathrm{y}^{4}=\mathrm{I}, \mathrm{yx} \mathrm{y}^{\mathrm{m}} \mathrm{y}^{-1}=\mathrm{x}^{-\mathrm{m}}\right\}$.

Journal of Kerbala University , Vol. 12 No. 3 Scientific . 2014

3.2The Dihedral Group D $_{3}$ [6]

The Dihedrael Group D3 is generate by a rotation r of order 3 and reflection s of order 2 then 6 elements of D3 can be written as: $\left\{1, \mathrm{r}, \mathrm{r}^{2}, \mathrm{~s}, \mathrm{sr}, \mathrm{sr}^{2}\right\}$.

3.3The Rational valued characters table:

Definition(3.3.1) [3]

A rational valued character θ of G is a character whose values are in Z, which is $\theta(\mathrm{g}) \in \mathrm{Z}$ for all $\mathrm{g} \in \mathrm{G}$.
Theorem (3.3.2)[6]
Every rational valued character of G be written as a linear combination of Artin's characters with coefficient rational numbers.
Corollary (3.3.3)[3]
The rational valued characters $\theta_{i}=\sum_{\sigma \epsilon G a l\left(Q\left(\chi_{i}\right) / Q\right)} \sigma\left(\chi_{i}\right)$ Form a basis for $\bar{R}(G)$, where χ_{i} are the irreducible characters of G and their numbers are equal to the number of conjugacy classes of a cyclic subgroup of G.
Proposition(3.3.4)[6]
The number of all rational valued characters of finite G is equal to the number of all distinct Γ classis.
Definition (3.3.5)[3]
The information about rational valued characters of a finite group G is displayed in a table called a rational valued characters table of G.We denote it by $\xlongequal{=}(\mathrm{G})$ which is $l \times l$ matrix whose columns are Γ-classes and rows are the valuses of all rational valued characters where l is the number of Γ classes.

The rational character table of $\mathrm{Q}_{2 \mathrm{~m}}$ where m is an odd number(3.3.6) [5]

	Γ-classes of $\mathrm{c}_{2 \mathrm{~m}}$								[y]				
	$\mathrm{X}^{2 \mathrm{r}}$				$\mathrm{X}^{2 r+1}$								
Θ_{1}	11					1			1				
Θ_{2}	1						1		0				
-	$\stackrel{*}{*}\left(\mathrm{C}_{\mathrm{m}}\right)$				$\stackrel{*}{*}\left(\mathrm{C}_{\mathrm{m}}\right)$!				
$\Theta_{l / 2}$					0								
$\Theta_{(l / 2)+1}$	11								1				-1
!					0								
Θ_{l-1}	$\stackrel{*}{*}\left(\mathrm{C}_{\mathrm{m}}\right)$				H				:				
Θ_{l}					0								
Θ_{l+1}	2	2	...	2					-	-2	...	-2	0

Table(1)

Where $0 \leq r \leq l$, , is the number of Γ-classes $\mathrm{C}_{2 \mathrm{~m}}, \theta \mathrm{j}$ such that $1 \leq \mathrm{j} \leq l+1$ are the rational valued characters of group $\mathrm{Q}_{2 \mathrm{~m}}$ and if we denote Cij the elements of $\xlongequal{*}\left(\mathrm{C}_{\mathrm{m}}\right)$ and hij the elements of H as defined by:

$$
\mathrm{Hij}=\left\{\begin{array}{lll}
C_{i j} & \text { if } & i=l \\
-C_{i j} & \text { if } & i \neq l
\end{array}\right.
$$

The rational character table of $\mathrm{Q}_{2 \mathrm{~m}}$ when $\mathrm{m}=\mathrm{p}, \mathrm{p}$ is a prime number(3.3.7)[5] $\stackrel{*}{*}\left(\mathrm{Q}_{2 \mathrm{p}}\right)$

Γ-classes	$[1]$	$\left[\mathrm{x}^{2}\right]$	$\left[\mathrm{x}^{\mathrm{p}}\right]$	$[\mathrm{x}]$	$[\mathrm{y}]$
Θ_{1}	1	1	1	1	1
θ_{2}	$\mathrm{p}-1$	-1	$\mathrm{p}-1$	-1	0
θ_{3}	1	1	1	1	1
θ_{4}	$\mathrm{p}-1$	-1	$1-\mathrm{p}$	1	0
θ_{5}	2	2	-2	-2	0

Table(2)

The rational character table of D_{3} (3.3.8) [4]
$\stackrel{*}{*}\left(\mathrm{D}_{3}\right)$

classesг-	[I]	[r]	[s]
$\left\|C L_{\alpha}\right\|$	1	2	3
$\left\|C_{D_{3}}\left(c l_{\alpha}\right)\right\|$	6	3	2
θ_{1}	2	-1	0
θ_{2}	1	1	1
θ_{3}	1	1	1

Table(4)

4.Artin's Character Tables:

Theorem(4.1):[3]

Let H be a cyclic subgroup of G and $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{m}}$ are chosen representatives for the m -conjugate classes of H contained in $\mathrm{CL}(\mathrm{g})$ in G,then:
$\varphi^{\prime}(\mathrm{g})= \begin{cases}\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(g) \\ 0 & \text { if } H \cap C L(g)=\phi\end{cases}$

Propostion(4.2)[3]

The number of all distinct Artin's characters on a group G is equal to the number of Γ-classes on G.Furthermore, Artin's characters are constant on each Γ-classes.

Theorem(4.3) [8]
The Artin's characters table of the Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$ when m is odd number is given as follows:

Table(5)

Journal of Kerbala University , Vol. 12 No. 3 Scientific . 2014

Where $0 \leq \mathrm{r} \leq \mathrm{m}-1, \mathrm{l}$ is the number of Γ-classes of $\mathrm{C}_{2 \mathrm{~m}}$ and Φj are the Artin characters of the Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$, for all $1 \leq j \leq l+1$.
The Artin characters table of $Q_{2 m}$ when $m=p, p$ is prime number (4.4)
The general form of Artin's characters of $\mathrm{Q}_{2 \mathrm{~m}}$ when $\mathrm{m}=\mathrm{p}, \mathrm{p}$ is prime number

Γ-classes	$[1]$	$\left[\mathrm{x}^{2}\right]$	$\left[\mathrm{x}^{\mathrm{p}}\right]$	$[\mathrm{x}]$	$[\mathrm{y}]$
$1 C L_{\alpha} 1$	1	2	1	2	2 p
$1 C_{Q_{2 p}}\left(C L_{\alpha}\right) 1$	4 p	2 p	4 p	2 p	2
Φ_{1}	4 p	0	0	0	0
Φ_{2}	4	4	0	0	0
Φ_{3}	2 p	0	2 p	0	0
Φ_{4}	2	2	2	2	0
Φ_{5}	P	0	P	0	1

Table(6)

The Artin characters of $\mathrm{D}_{3}(4.5)$ [6]

Γ-classes	$[\mathrm{I}]$	$[\mathrm{r}]$	$[\mathrm{s}]$
$1 C L_{\alpha} 1$	1	2	3
$\mid C_{D_{3}}\left(C L_{\alpha}\right) 1$	6	3	2
Φ_{1}	6	0	0
Φ_{2}	2	2	0
Φ_{3}	3	0	1

Table(7)

5.The main resulte

Propostion(5.1)
If p is a prime number and, then The Artin's character table of the group $\left(\mathrm{Q}_{2 \mathrm{p}} \times \mathrm{D}_{3}\right)$ is given as:
The general form of the Artin characters of the group $\left(\mathrm{Q}_{2 \mathrm{p}} \times \mathrm{D}_{3}\right)$ when p is prime number

	$[1, I]\left[x^{2}, I\right]\left[x^{\mathrm{p}}, I\right][\mathrm{x}, \mathrm{I}][\mathrm{y}, \mathrm{I}]$	$[1, \mathrm{r}]\left[\mathrm{x}^{2}, \mathrm{r}\right]\left[\mathrm{x}^{\mathrm{p}}, \mathrm{r}\right][\mathrm{x}, \mathrm{r}][\mathrm{y}, \mathrm{r}]$	$[1, \mathrm{~s}]\left[\mathrm{x}^{2}, \mathrm{~s}\right]\left[\mathrm{x}^{\mathrm{p}}, \mathrm{~s}\right][\mathrm{x}, \mathrm{~s}][\mathrm{y}, \mathrm{~s}]$
$\left\|C L_{\alpha}\right\|$		$12_{1} 122 \mathrm{p}$	$1 \quad 2 \quad 1 \quad 22 \mathrm{p}$
$\left\|C_{Q_{2 p^{*} D_{3}}}\left(C L_{\alpha}\right)\right\|$	24p $\quad 24 \mathrm{p} \quad 12 \mathrm{p} \quad 12$	24p $\quad 12 \mathrm{p} \quad 24 \mathrm{p} \quad 12 \mathrm{p} \quad 12$	24p $\quad 12 \mathrm{p} \quad 24 \mathrm{p} \quad 12 \mathrm{p} \quad 12$
$\begin{gathered} \hline \Phi_{(1,1)} \\ \Phi_{(2,1)} \\ \vdots \\ \Phi_{(1+1,1)} \end{gathered}$	$6 \operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{p}}\right)$	0	0
$\begin{gathered} \Phi_{(1,2)} \\ \Phi_{(2,2)} \\ \vdots \\ \\ \Phi_{(1+1,2} \\ \hline \end{gathered}$	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{p}}\right)$	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{p}}\right)$	0
$\begin{gathered} \hline \Phi_{(1,3)} \\ \Phi_{(2,3)} \\ \vdots \\ \Phi_{(1+1,3)} \end{gathered}$	$3 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{p}}\right)$	0	$\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{p}}\right)$

Table(8)
which is (5×5) square matrix .

Proof: Let $\mathrm{g} \in\left(Q_{2 \mathrm{p}}{ }^{\mathrm{x}} \mathrm{D}_{3}\right) ; \mathrm{g}=(\mathrm{q}, \mathrm{d}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{p}}, \mathrm{d} \in \mathrm{D}_{3}$
Case(I):
If H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{p}} \times\{\mathrm{I}\}\right)$,then $1-\mathrm{H}=<(\mathrm{x}, \mathrm{I})>\quad 2-\mathrm{H}=<(\mathrm{y}, \mathrm{I})>$
And φ the principle character of H, Φ_{j} Artin's characters of $\mathrm{Q}_{2 \mathrm{p}}, 1 \leq \mathrm{j} \leq 1+1$, then by using theorem (4.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{lc}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{p} \varphi(h i) & \text { if } h i \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

1- $\quad \mathrm{H}=<(x, I)>$
(i) If $\mathrm{g}=(1, \mathrm{I})$
 $\{(1, I)\}$
(ii) If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right), \mathrm{g} \in H$ then

(iii) If $\mathrm{g}=\left(\mathrm{x}^{2}, \mathrm{I}\right)$ or $\mathrm{g}=(\mathrm{x}, \mathrm{I})$ and $\mathrm{g} \in H$ then
$\Phi_{(\mathrm{j}, 1)}(\mathrm{g})=\frac{\mid C_{Q_{2 p^{\times} D_{3}}(g) \mid}}{\left|C_{H}(g)\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12 p}{\left|C_{H}(\mathrm{~g})\right|}(1+1)=\frac{3.4 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 2=\frac{3\left|C_{Q 2 p(q) \mid}\right|}{\left|C_{H(q)}\right|} \cdot 2=6 . \Phi_{j}(q)$
since $\mathrm{H} \cap C L(g)=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varnothing\left(\mathrm{g}^{-1}\right)=1$ and since $\mathrm{g}=(\mathrm{q}, \mathrm{I}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{p}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{m}}$
(iv) if $g \notin \mathrm{H}$ then
$\Phi_{(\mathrm{j}, 1)}(\mathrm{g})=0$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
2- If $\mathrm{H}=<(\mathrm{y}, \mathrm{I})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I})\left(\mathrm{y}^{2}, \mathrm{I}\right)\left(\mathrm{y}^{3}, \mathrm{I}\right)\right\}$ then
(i) If $\mathrm{g}=(1, \mathrm{I})$ then

(ii) If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right)$ and $\mathrm{g} \in H$ then

(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right)$ and $\mathrm{g} \in \mathrm{H}$,i.e. $\left\{\mathrm{g}=(\mathrm{y}, \mathrm{I})\right.$ or $\left.\mathrm{g}=\left(\mathrm{y}^{3}, \mathrm{I}\right)\right\}$ then
$\Phi_{(l+1,1)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12}{4}(1+1)=3.2=6 . \Phi_{1+1}(\mathrm{y})$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and φ
$(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
Otherwise
$\Phi_{(\mathrm{l}+1, \mathrm{D})}(\mathrm{g})=0 \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$

Case(II):
If H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{x}\{r\}\right)$ then:
1- $\quad \mathrm{H}=<(\mathrm{x}, \mathrm{r})>\quad 2-\mathrm{H}=<(\mathrm{y}, \mathrm{r})>$
$1-\mathrm{H}=<(\mathrm{x}, \mathrm{r})>$
and φ the principle character of H , then by using theorem (4.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{p} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

(i) If $\mathrm{g}=(1, \mathrm{I}),(1, \mathrm{r})$ then
$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 . p}{\left|C_{H}(1, I)\right|} \cdot 1=\frac{6.4 p}{\left|C_{H}(1, I)\right|} \cdot 1=\frac{6 \mid C_{Q_{2 p}(1) \mid}}{3\left|C_{<\chi\rangle}(1)\right|} \varphi(1)=2 . \Phi \mathrm{j}(1)$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{(1, \mathrm{I}),(1, \mathrm{r}),\left(1, \mathrm{r}^{2}\right)\right\}$
(ii) $\mathrm{g}=(1, \mathrm{I}),\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{p}}, \mathrm{r}\right),(1, \mathrm{r}) ; \mathrm{g} \in H$
if $\mathrm{g}=(1, \mathrm{I}),(1, \mathrm{r})$ then
$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{Q 2 p} x D_{3}(g)\right|}{\left|C_{H}(g)\right|} \varphi(\mathrm{g})=\frac{24 p}{\left|C_{H}(g)\right|} .1 \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$

$$
=\frac{6.3 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6\left|C_{Q 2 p}(1)\right|}{3\left|C_{<x\rangle}(1)\right|} \varphi(1)=2 \Phi_{\mathrm{j}}(1)
$$

(iii)

$$
\text { if } g=\left(x^{p}, I\right),\left(x^{p}, r\right) \text { then }
$$

$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{Q 2 p} x D_{3}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6.3 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6\left|C_{Q 2 p}\left(x^{p}\right)\right|}{3\left|C_{<x>}\left(x^{p}\right)\right|} \varphi(1)=2 \Phi_{\mathrm{j}}\left(x^{p}\right)$
(iv) if $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{p}}, \mathrm{r}\right)$ and $\mathrm{g} \in H$ then
$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{Q 2 p} x D_{3}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12 p}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$ $=\frac{3.4 p}{\left|C_{H}(\mathrm{~g})\right|}(1+1)=\frac{3\left|C_{Q 2 p}(q)\right|}{3\left|C_{<x>}(q)\right|} \cdot 2=2 \Phi_{j}(q)$
Since $g=(q, r), q \in Q_{2 p}, q \neq x^{p}$
(v) if $\mathrm{g} \notin H$ then
$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
2-
(i)
if $\mathrm{H}=<(\mathrm{y}, \mathrm{r})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),(1, \mathrm{r}),(\mathrm{y}, \mathrm{r}),\left(\mathrm{y}^{2}, \mathrm{r}\right),\left(\mathrm{y}^{3}, \mathrm{r}\right)\right\}$
if $\mathrm{g}=(1, \mathrm{I}),(1, r)$ then

$$
\Phi_{(1+1,2)}(\mathrm{g})=\frac{\left|C_{Q_{2 p x D 3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 p}{12} \cdot 1=2 \mathrm{p}=2 \Phi_{1+1}(\mathrm{~g})
$$

if $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{I}\right)=\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right),\left(\mathrm{y}^{2}, \mathrm{r}\right)$ and $\mathrm{g} \in H$ then

$$
\begin{equation*}
\Phi_{(1+1,2)}(\mathrm{g})=\frac{\left|C_{Q_{2 p x D 3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(g)=\frac{24 p}{12} \cdot 1=2 \mathrm{p}=2 \Phi_{1+1}(\mathrm{~g}) \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\{\mathrm{g}\} \text { and } \varphi(\mathrm{g})=1 \tag{ii}
\end{equation*}
$$

if $g \neq\left(x^{p}, I\right) \quad$ and $g \in H$ i.e. $g=\{(y, I),(y, r)\}$ or $g=\left\{\left(y^{3}, I\right),\left(y^{3}, r\right)\right\}$
then
$\Phi_{(\mathbf{l + 1 , 2})}(\mathrm{g})=\frac{\left|C_{Q_{2 p x D 3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12}{12}(1+1)=2 \Phi_{1+1}(\mathrm{~g})$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
otherwise $\Phi_{(1+1,2)}(\mathrm{g})=0$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
case(III):
if H is a cyclic subgroup of $\left(Q_{2 p x}\{s\}\right)$ then
1-

$$
\mathrm{H}=<(\mathrm{x}, \mathrm{~s})>, 2-\mathrm{H}=<(\mathrm{y}, \mathrm{~s})>
$$

and φ the principle character of H , then by using theorem (4.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{p} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

1-

$$
\mathrm{H}=<(\mathrm{x}, \mathrm{~s})>
$$

(i) If $g=(1, I)$ then

$$
\begin{aligned}
& \Phi \quad(\mathrm{j}, 3)(\mathrm{g})= \\
& \frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi \quad(\mathrm{g})= \\
& \frac{24 p}{\left|C_{H}(1, I)\right|} \cdot 1=\frac{6.4 p}{\left|C_{H}(1, I)\right|} .1 \\
& =\frac{6\left|C_{Q 2 p}(1)\right|}{2\left|C_{<x>}(1)\right|} \cdot 1=3 \Phi_{\mathrm{j}}(1) \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\{(1, \mathrm{I})\} \\
& \text { If } \mathrm{g}=\{(1, \mathrm{~s})\} \text { then } \\
& \frac{\left|C_{Q_{2 p^{x D}}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi \\
& (\mathrm{g})= \\
& \frac{8 p}{\left|C_{H}(1, s)\right|} \cdot 1=\frac{2.4 p}{\left|C_{H}(1, s)\right|} .1 \\
& =\frac{2\left|C_{Q 2 p}(1)\right|}{2\left|C_{<x\rangle}(1)\right|} \cdot 1=\Phi_{\mathrm{j}}(1) \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\{(1, \mathrm{~s})\} \\
& \text { (ii) If } \mathrm{g}=(1, \mathrm{I}),\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{p}}, \mathrm{~s}\right),(1, \mathrm{~s}) ; \mathrm{g} \in H \text { then } \\
& \text { If } g=(1, I) \text { then } \\
& \Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1 \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\{\mathrm{g}\} \text { and } \varphi(\mathrm{g})=1
\end{aligned}
$$

$$
=\frac{6.4 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6 \mid C_{Q_{2 p}(1) \mid}}{2\left|C_{<x\rangle}(1)\right|} \varphi(1)=3 \Phi_{\mathrm{j}}(1)
$$

If $g=\{(1, s)\}$ then
Φ

$$
(\mathrm{j}, 3)(\mathrm{g})=
$$

$$
\frac{\left|C_{Q_{2 p} D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi
$$

$(\mathrm{g})=$

$$
\frac{8 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{2.4 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1
$$

$=\frac{2\left|C_{Q 2 p}(1)\right|}{2\left|C_{<\chi>}(1)\right|} \cdot 1=\Phi_{\mathrm{j}}(1) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
(iii)If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right)$ then

If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{p}}, \mathrm{s}\right)$ then
$\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p x D 3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{8 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{2.4 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{2\left|C_{Q_{2 p}}\left(x^{p}\right)\right|}{2\left|C_{<x\rangle}\left(x^{p}\right)\right|} \varphi(1)=\Phi_{\mathrm{j}}\left(\mathrm{x}^{p}\right)$
(iv)If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{p}}, \mathrm{s}\right)$ and $\mathrm{g} \in H$

If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right)$ then
$\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)$
$=\frac{12 p}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
$=\frac{3.4 p}{\left|C_{H}(g)\right|}(1+1)=\frac{3\left|C_{Q_{2 p}}(q)\right|}{2\left|C_{<\chi\rangle}(q)\right|} \cdot 2=3 \Phi_{j}(q)$
Since $g=(q, I), q \in Q_{2 p}, \quad q \neq x^{p}$
If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{s}\right)$ then
$\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} \times D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)$
$=\frac{8 p}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
$=\frac{2.4 p}{\left|C_{H}(g)\right|}(1+1)=\frac{2\left|C_{Q_{2 p}}(q)\right|}{4\left|C_{<x\rangle}(q)\right|} \cdot 2=\Phi_{j}(q)$

$$
\text { Since } g=(q, s), q \in Q_{2 p}, \quad q \neq x^{p}
$$

(v) if $\mathrm{g} \notin H$ then
$\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
2-if $\mathrm{H}=<(\mathrm{y}, \mathrm{s})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),(1, \mathrm{~s}),(\mathrm{y}, \mathrm{s}),\left(\mathrm{y}^{2}, \mathrm{~s}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\}$ then
(i)If $\mathrm{g}=(1, \mathrm{I})$ then

$$
\Phi_{(l+1,3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 p}{8} \cdot 1=3 \cdot \mathrm{p}=3 \Phi_{1+1}(\mathrm{~g})
$$

If $\mathrm{g}=(1, \mathrm{~s})$ then
$\Phi_{(1+1,3)}(\mathrm{g})=\frac{\mid C_{Q_{2 p^{x}}(\mathrm{~g}) \mid}}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{8 p}{8} .1=\mathrm{p}=\Phi_{1+1}(\mathrm{~g})$
(ii)If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{I}\right)=\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right)$ and $\mathrm{g} \in H$ then
$\Phi_{(1+1,3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 p}{8} .1=$
3. $\mathrm{m}=3 \Phi_{1+1}(\mathrm{~g})$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$

If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{~s}\right)$ and $\mathrm{g} \in H$ then
$\Phi_{(l+1,3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} x D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{8 p}{8} .1=\mathrm{p}=\Phi_{1+1}(\mathrm{~g}) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
(iii)If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right) \quad$ and $\mathrm{g} \in H$ i.e. $\mathrm{g}=\{(\mathrm{y}, \mathrm{I}),(\mathrm{y}, \mathrm{s})\}$ or $\mathrm{g}=\left\{\left(\mathrm{y}^{3}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\} \quad$ then
$\Phi_{(1+1,3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} \times D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12}{8}(1+1)=3 \Phi_{1+1}(\mathrm{~g})$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
(iv)If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{~s}\right), \mathrm{g} \in \mathrm{H}$ then
$\Phi_{(l+1,3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} \times D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{8 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8 p}{8} \cdot 1=\Phi_{1+1}(\mathrm{~g})$
(v)If $\mathrm{g}=(\mathrm{y}, \mathrm{s})$ then
$\Phi_{(l+1,3)}(\mathrm{g})=\frac{\left|C_{Q_{2 p} \times D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{4}{\left|C_{H}(\mathrm{~g})\right|} .(1+1)=\frac{4}{8} \cdot 2=1$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
otherwise $\Phi_{(l+1,3)}(\mathrm{g})=0$ sinceH $\cap \mathrm{CL}(\mathrm{g})=\phi$

Example (5.2): To find Artine's character table of the group $\left(\mathrm{Q}_{14} \times \mathrm{D}_{3}\right)$ when $\mathrm{p}=7$ is a prime number.
$\operatorname{Ar}\left(\mathrm{Q}_{14} \times \mathrm{D}_{3}\right)=$

Γ-classes	$[1, \mathrm{I}]$	$\left[\mathrm{x}^{2}, \mathrm{I}\right]$	$\left[\mathrm{x}^{7}, \mathrm{I}\right]$	$[\mathrm{x}, \mathrm{I}]$	$[\mathrm{y}, \mathrm{I}]$	$[1, \mathrm{r}]$	$\left[\mathrm{x}^{2}, \mathrm{r}\right]$	$[\mathrm{x}, \mathrm{r}]$	$[\mathrm{x}, \mathrm{r}]$	$[\mathrm{y}, \mathrm{r}]$	$[1, \mathrm{~s}]$	$\left[\mathrm{x}^{2}, \mathrm{~s}\right]$	$[\mathrm{x}, \mathrm{s}]$	$[\mathrm{x}, \mathrm{s}]$	$[\mathrm{y}, \mathrm{s}]$
$\left\|c L_{\alpha}\right\|$	1	2	1	2	2 p	2	2	2	2	2 p	3	3	3	3	6 p
$\left\|c_{Q_{2 p^{\times} D_{3}}}\left(c L_{\alpha}\right)\right\|$	168	84	168	84	12	84	84	84	84	12	56	56	56	56	4
$\Phi_{(1,1)}$	168	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(2,1)}$	24	24	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(3,1)}$	84	0	84	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(4,1)}$	12	12	12	12	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(5,1)}$	42	0	42	0	6	0	0	0	0	0	0	0	0	0	0
$\Phi_{(1,2)}$	56	0	0	0	0	56	0	0	0	0	0	0	0	0	0
$\Phi_{(2,2)}$	8	8	0	0	0	8	8	0	0	0	0	0	0	0	0
$\Phi_{(3,2)}$	28	0	28	0	0	28	0	28	0	0	0	0	0	0	0
$\Phi_{(4,2)}$	4	4	4	4	0	4	4	4	4	0	0	0	0	0	0
$\Phi_{(5,2)}$	14	0	14	0	2	14	0	14	0	2	0	0	0	0	0
$\Phi_{(1,3)}$	84	0	0	0	0	0	0	0	0	0	28	0	0	0	0
$\Phi_{(2,3)}$	12	12	0	0	0	0	0	0	0	0	4	4	0	0	0
$\Phi_{(3,3)}$	42	0	42	0	0	0	0	0	0	0	14	0	14	0	0
$\Phi_{(4,3)}$	6	6	6	6	0	0	0	0	0	0	2	2	2	2	0
$\Phi_{(5,3)}$	21	0	21	0	3	0	0	0	0	0	7	0	7	0	1

Table(9)

6.To find Artin's cokernel of the group $\left(Q_{2 p} x D_{3}\right)$ when p is a prime number denoted by $\mathrm{AC}\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{xD} \mathrm{D}_{3}\right)$
 Definition (6.1):[1]

Let $\mathrm{T}(\mathrm{G})$ be the subgroup of $\bar{R}(G)$ gererated by Artin's characters .T(G) is normal subgroup of $\bar{R}(G)$,then the finite factor an a blain group $\frac{\bar{R}(G)}{\mathrm{T}(\mathrm{G})}$ is called Artin cokernel of G,denoted by $\mathrm{AC}(\mathrm{G})$.

Definition (6.2):[2]

Let M be a matrix with entries in a principle ideal domain R.A K-minor of M is the determinate of KxK sub-matrix preserving row and column order.
Proposition (6.3)[1]
$\mathrm{AC}(\mathrm{G})$ is a finitely generated Z-modul.Let m be the number of all distinct Γ-classes then $\operatorname{Ar}(\mathrm{G})$ and \equiv (G) are of the rank 1.There exists an invertible matrix $\mathrm{M}(\mathrm{G})$ with entries in rational number such that:
\equiv (G) $=\mathrm{M}^{-1}(\mathrm{G}) \cdot \operatorname{Ar}(\mathrm{G})$ and this implies $\mathrm{M}(\mathrm{G})=\operatorname{Ar}(\mathrm{G}) .(\equiv *(\mathrm{G}))^{-1}$

Proposition (6.4)
By proposition(6.3) then $\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{xD}_{3}\right)=\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{xD}_{3}\right) .\left(\equiv *\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{xD}_{3}\right)\right)^{-1}=$
$\left(\begin{array}{lllllllllllllll}4 & 2 & 2 & 2 & 1 & 1 & 4 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 1 \\ 0 & 2 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 & 1 & 1 \\ 2 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 4 & 2 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)$

Definition (6.5):[2]
A k-th determinat divisor of M is the greatest common divisor (g.c.d)for all the k-minor ,this is denoted by $\mathrm{D}_{\mathrm{k}}(\mathrm{M})$.

Lemma(6.6):[2]

Let M,P,W be matrices with entries in the principal ideal domain R.Let P and W be invertible matrices then $D_{k}(P, M, W)=D_{K}(M)$ modulo the group of units of R.

Proposition (6.7):[8]

$$
\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{p}}\right)=\left[\begin{array}{lllll}
2 & 1 & 2 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
2 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Proposition (6.8):[7]

$$
M\left(D_{3}\right)=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Proposition (6.9) : $\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{xD} \mathrm{D}_{3}\right)=\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{p}}\right) \otimes \mathrm{M}\left(\mathrm{D}_{3}\right)=$

$$
\left(\begin{array}{lllllllllllllll}
4 & 2 & 2 & 2 & 1 & 1 & 4 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 1 \\
0 & 2 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 & 1 & 1 \\
2 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
4 & 2 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
2 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\underline{\operatorname{Proposition}(6.10)[8]: p\left(\mathrm{Q}_{2 \mathrm{p}}\right)=}$

$$
\left[\begin{array}{ccccc}
1 & -1 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Proposition (6.11)[7]:p($\left.\mathrm{D}_{3}\right)=$

$$
\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Proposition (6.12): $\quad \mathrm{p}\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{xD} \mathrm{D}_{3}\right)=\mathrm{p}\left(\mathrm{Q}_{2 \mathrm{p}}\right) \otimes \mathrm{p}\left(\mathrm{D}_{3}\right)=$

$$
\left(\begin{array}{rrrrrrrrrrrrrrr}
1 & -1 & 0 & -1 & 1 & 0 & -1 & 1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Proposition (6.13):[8]

$\mathrm{W}\left(\mathrm{Q}_{2 \mathrm{p}}\right)=\left[\begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$
Proposition (6.14):[7]
$W\left(D_{3}\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 0 & -1 \\ 1 & 1 & 1\end{array}\right]$
Proposition (6.15):
$\mathrm{W}\left(\mathrm{Q}_{2 \mathrm{p}} \mathrm{xD}_{3}\right)=\mathrm{W}\left(\mathrm{Q}_{2 \mathrm{p}}\right) \otimes \mathrm{W}\left(\mathrm{D}_{3}\right)=$

$$
\left(\begin{array}{rrrrrrrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & -1 & 0 & -1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Definition (6.16):[2]
Let M be a matrix with entries in a principal domain R, be equivalent $D=\operatorname{diag}\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots\right.$, $\left.d_{m}, 0,0, \ldots, 0\right\}$ such that d_{j} / d_{j+1} for $1 \leq j \leq m$. We call D the invariant factor matrix of M and $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{m}}$ the invariant factor of M .

Proposition (6.17) : $\mathrm{P}\left(\mathrm{Q}_{2 \mathrm{p}}{ }^{\mathrm{x}} \mathrm{D}_{3}\right) * \mathrm{M}\left(\mathrm{Q}_{2 \mathrm{p}}{ }^{\mathrm{x}} \mathrm{D}_{3}\right) * \mathrm{~W}\left(\mathrm{Q}_{2 \mathrm{p}}{ }^{\mathrm{x}} \mathrm{D}_{3}\right)=$

$$
\left(\begin{array}{ccccccccccccccc}
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
& & & & & & & & & & & & & &
\end{array}\right)
$$

$=\operatorname{diag}\{4,4,2,2,2,2,2,1,1,1,-2,-2,-1,-1,-1\}=D\left(Q_{2 p}{ }^{\times} D_{3}\right)$
The following theorem gives the cyclic decomposition of the factor group $\mathrm{AC}\left(\mathrm{D}\left(\mathrm{Q}_{2 \mathrm{p}}{ }^{\mathrm{x}} \mathrm{D}_{3}\right)\right)$ when p is $\mathrm{D}\left(\mathrm{Q}_{2 \mathrm{p}}{ }^{\times} \mathrm{D}_{3}\right)$ prime number.

References:

[1] M.J.Hall "The Theory of Group ",Macmillan,Neyork,1959.
[2] M.S.Kirdar,"The factor Group of the Z-valued class function Modulo the group of the Generalized characters"University of Birmingham1980
[3] C.Curits and I.Reiner,"Methods of Representation Theory with Application to finite Groups and order",John Wily and sons,NewYork,1981.
[4] H.H.Abass,"On the factor Group of class function over the Group of Generalized characters of D_{n} ",M.S.C.thesis,Technology University,1994.
[5] N.R.Mahamood"The cyclic Decomposition of the factor group of $\frac{\left(Q_{2 m}\right)}{\bar{R}\left(Q_{2 m}\right)}$ ",M.SC. thesis University of Technology,1995.
[6] A.S.Abid,"Artin's characters table of Dihedral group for odd number",M.S.C.thesis,University of Kufa,2006.
[7] R.N.Mirza,"On Artin cokernel of Dihedral Group D_{n} when n is an odd number",2007.
[8] A.H.Abdul-Mun'em,"On Artin Cokernel of the Quaternion Group $\mathrm{Q}_{2 \mathrm{~m}}$ when m is odd number ",2008.

