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Abstract

In this paper, an algorithm for solving nonlinear unconstrained optimization problem by
combining extended Conjugate Gradient (CG) and the damped-technique of Powell for the
BFGS method to the Broyden family of quasi-Newton method is proposed . The basic idea
is to choose a combination of the damped-technique of Powell and some pervious search
directions using inexact line search as new search direction. We show that the global
convergence for the new methods is possible and present, in particular. The global
convergence property of the new algorithm is investigated under few weak conditions.

Key words: Unconstrained Optimization, Quasi Newton method, Gradient and related
Algorithms, Damped —technique, inexact line search.

1. Introduction.

This paper considers the unconstrained performances, a typical iteration of such a
Optimization problem method determines at most of the well-
Min known iterative algorithms for solving (1)
f(x) XeR", (1) take the form:
where the objective function f :R" — R* X = X + oy (2)
is a continuously differentiable function in whered, is a search direction and ¢, is a
R"and R" is the n-dimensional Euclidean positive  step-size along the search
space and n may be very large in some direction. This class of methods is called
sensesee [16]. If one uses a variant of line search gradient method. If x, is the
Newton’s method to solve this problem. current iterative point, then denote Vf (x, )

Then each iteration of the algorithm uses

the first three terms of the objective and by g, f(x) by f, and f(x) by f7,

decide on a direction in which a better respectively. If we take d, =—g,, then the
approximate solution can be found ,or at corresponding method is called Steepest
least descent can be obtained .Such Descent (SD) method; a simple one in
algorithms are well-known and a well - gradient methods. It has wide applications
established convergence theory to support in large scale optimization; see[16].
their ~ typically ~ good  numerical Generally CG-method is a useful technique
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for solving large-scale nonlinear problems
because it avoids the computation and
storage of some matrices associated with
the Hessian of objective functions. The CG-
method has the form:

dk:{ ~ 9 _'f k=1 ?)
-g,+4d,, if k=2
FR _ ”gk”2 PR ng(gk —0i4)
k - ' kK ’
o’ o’

which respectively, correspond to the FR
(Fletcher-Reeves)[12], PR (Polak-
Ribiere)[18] and HS (HestenesStiefel)[13].
CG-method with exact line search (ELS)
has finite convergence when they are used
to minimize strictly convex quadratic
function; However, if the objective function
is not quadratic or ELS is not used then a
CG-method has no finite convergence. Also
a CG-method has no global convergence if
the objective function is non- quadratic.
Similarly, Miele and Cantrell [14] studied
the memory gradient method for (1), the
memory gradient method and the FR-CG
method identical in the particular case of a
quadratic function. Cragg and Levy [5],
Wolfe and Viazminsky[21] proposed a
super-memory gradientinvestigated also a
super-memory descent method for (1)
showed both memory and super-memory
gradient methods are more efficient than
CG and SD by mount of computation and
storages. Shi-Shen[20] combined the CG-
method and supper-memory  descent
method to form a new gradient method that
may be more effective than the standard
CG-method for solving large scale
optimization  problems,  Al-Bayatiand
Latif[4] combined conjugate gradient (CG)
and variable —metric  (VM)method
investigate that the new method is
convergence under few conditions.

The theoretical and practical merits of
the Quasi Newton (QN) family of methods
for unconstrained optimization have been
systematically explored since the classic
paper of Fletcher and Powell analyzed by
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where S, is a parameter that determines the
different CG-methods; see for example the
following  references:  Crowder and
Wolfe[6]; Dai and Yuan [7],[8] and
Fletcher-Reeves [12]. Well known choices
of p, and can be taken as:

s Ok (0 — G)
k - ]

(4)
de 10

Davidon:*VVM method[9]. On each iteration
kof these methods, an estimate of a
solution x, and a positive definite Hessian

approximation B, are used to obtain a new
estimate X,,,thenB, is updated to a new
family in terms of the differences:

Sk = Xiwr — X )

Y = Gk — Ok (6)
Where g, denotes the gradient
Fletcher[11], Denmis and Schnable[10],

Nocedal and Wright[16] they defined the
effective among variable metric method . In
(1970) the self-scaling VM algorithms were
introduced, showing significant
improvement in efficiency over earlier
methods.

Recently, Al-Baali and Grandintti[2]
show that the performance of the BFGS
method can be improved if y, modified

before updating to the damped —technique
,/Al-Baali and Purmama[3] applied several
members of Broyeden family of methods
work substantiallybefore BFGS method,
showed that a class of a damped Quasi-
Newton methods have the global
convergence property.

The aim of this paper is to combinethe
damped technique of Quasi-Newton with
modified VVM-algorithm .The basic idea is
to choose a combination of the current
gradient and some pervious search direction
algorithms, which may be more effective
than the standard conjugate related
algorithm. We report and discuss some
computational results obtained of standard
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test problem. It is shown that the
performance of the new switching
2. A New Proposed Algorithm.

In this section, we used inexact modified
Armijo step size rules fully described in
Armijoline search rule[1] to find the best
step size parameter along the search
direction at each iteratione, is chosen by
modified namely for given
q>1 €(0)),a, =—q"and is the smallest
nonnegative integer such that :

B1
B, gk
d (B s B =

4, = ma 2 0y
k kSk
where Al-Baali and Grandintti[2] show that
the performance of the BFGS method can

be improved if vy, is modified before
updating the damped —technique.

Vi =¥V +(L-w)Bys, (11)
wherey, is a parameter  chosen
appropriately and sufficiently large in the

interval  (0,1],The resulting damped
B,S,S, B, 9 A -
B =B — ka . iAk +®k(SkTBkSk)VkaT
sk Bksk sk yk
where ®,
sufficiently close to zero)see Powell[19].
0 = Yo By

SkT Y SkTBkSk

And ¥, is defined by (11) for a suitable
value ofy, . This class of damped updates is
reduced to the Broyden family if y, =y,
(which corresponds to w, =1).Thus ,if the

equality holds for all iterations we obtain
the Broydenfamily of methods.Otherwise
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ék)gk + Zﬂk(kl)ﬂdk |+1} if kK>r

algorithm in substantially better than the
BFGS methods.

f(x +,dy) < ﬂlakg:gk
(7)

of the following new algorithm we defined
a search direction by the form

1 r
dy :_J/kgk+FZIBk—idk—i 8)
i=1

Where

it k<r-1
©)

(10)

(D) —BFGS method is proposed by

Powell[19]for the lagrangian function in
constrained optimization and used many
times with only values of y, >0.8

,see for example[11],[16] . B, is updated to
a new Hessian approximation:

(12)

is a parameter defined (&, <®, <l,where £ is a certain negative value

(13)

we obtainthe D-Broyden class of methods.
In particular,the choices(®, =0and®, =1
) vield the(D)-BFGS and (D)-DFP
methods  which  correspond(for  these
choices and w, =1) to the well known
BFGS and DFP methods,respectively.
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3. Algorithm
Stepl:Given a starting point X, a

symmetric and positive definite matrix
B, = | positive value of w,,,q,0,and
tolerance & >0 ,set k =1.

Step2:terminate|g, | < &, then go to step9;

else go to Step3.

Step3:  compute the search direction
defined (9).

Step4: find a step length «, is chosen by
(7) and a new point as (2) go to step (5)

4. Convergent Algorithm property:

Now to ensure that the new algorithm has
a global convergence, let us consider the
following theorems[7],[16]:

Proposed the following assumptions:

H,: The objective function f has lower
bound on the level set
L, ={x e R"|f(X) < f(x,)}, where

X, Is an available initial point.

4.1. Theorem(1)

Step5: If available storage is exceeded,
then employ a restart option either with
k=n or

gl;l“+1gk+l > gl;r+1gk'

Step6: compute s,, Yy, using (5), (6)
Step7: updatey, to y, and B, to B, , using
formulas (11),(12)&(13)

Step8: Set k =k +1 and go to Step 3.

Step9:output NOI,NOF.
Step10:stop .

H,: The gradient g(x)of f(x) is
Lipschitz continuous in an open convex set
B which contains L,

i.e. there exist a constant L > 0such that:
la)—g(y)|<Lfx-y|, vxyeB

H,: The gradient g(x) is uniformly
continuous in an open convex set B
containing L,. Obviously

assumption (H,) implies (H,).

The new Algorithmgenerates an infinite sequence {x, }If (H,)and(H,) hold , then

slod” .
k=r 7k

where

7, = max(

2 2
d
2<i<r |gk|| ’” k-r+1 )

Proof.
Since {f }is a decreasing sequence and

satisfies assumption (H,)and assumption (
H,) alsoB,,, has the global rate of

4.2. Theorem(2).
Let d, bedefined by the formula(2), if we

choose y,and g, that satisfy (4) and (10)
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(14a)

(14b)

convergent see Al-Baali and

Purama[3]hence the proof is complete.

for all k.Then our method satisfies the
descent condition for all k .
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Proof.
From (2) and (3),we get

By :”gknzl//;
where
T
Vi = gl_ax(gk I ,0)
<I<r 7k

_7k||gk||2 +49,d, < _7k||gk||2 + B¢ max{d,_; ¥, 0}
<o +|o.] we max{d/ g, .0}

~rod” +Hlo viv
0

IA

IN

Then we obtain
l r
9,d, :_7k||gk||2 +FZﬂkingdk
i=1

1 r
< >l loe|” + Beoracit
i=1

<0
Therefore, the descent condition (7) satisfied.

4.3. Theorem(3).
If conditions of Theorem (1) are hold, then either lim|g, | =0 or {x,} has no bound.

k—o0
Proof.
If lim|g,| # 0, then there exists an infinite subset B, ={r,r+1,...} and & > Osuch that:
k—o0
l9.[>& keB, (15)
Thus
4 4
e od . B, (16)
Yk Yk
By Theorem (1) and for k >1, we obtain
Ja. ] < max{g;[} (17)

I<i<r
Now if k <r, then the conclusion is obvious. Otherwise k > r, then by induction process
weobtain the following conclusion;

4 +00 4
£ < ZM <+ (18)
keBo Yk k=r Yk
Then there exists at least one i:2 <i <r such that:

lim|d, ;]| = +o0 (19)

keBg,k—0

Therefor{x, } has no bound.
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5. Numerical Results

In this section, we investigate how the
number r effects the number
performance.We test our algorithm the
various storage, where ris changed from

2<r<n for more we compare with the
CG methods.

We report some numerical results with
the proposed algorithm we test the
performance of new algorithm the test
problem we wused is described in
Nocedal[15],[[17]. The numerical results of
our experiment are reported from table[1]
each problem was tested with various
values of nchanging n=10 to 1000
.The numerical results in the form of NOI
denoted the number of iteration functions
and NOF denoted the number of function.

Our line search subroutine computes «,
such that the modification Armijo line
search rule (7) hold with g, =0.01,the
initial value of ¢, is always set to 1.

All the results shown in Table 1 show
that new algorithm successfully for all
initial  points .We then  compare
performance of new algorithm with the CG

,there are about (91.03-91.8)%
improvements of NOI for all
dimensions.Also  there are  (94.58-

94.99)%improvements of NOF for all test
functions.In each case the convergence

criterion is  |g,[<1x10°. The new

algorithm seems to be suitable to solve ill-
conditioned problem.

Table 1: Comparison between the New and CG algorithms using three
different values of I and four different values of N
the total of tools for each test function

NO. TEST CG NOI/NOF NEW  NOI(NOF)
OF FUNCTION n r=10 r=100 r=300
TEST

5 102/340 12/15 12/15 12/15
GEN-Wolf 10 190/388 14/17 14/17 14/17
1 100 206/412 15/16 15/16 15/16
1000 216/560 16/26 16/26 16/26
5 26/60 34/44 34/44 34/44
Non-diagonal 10 30/65 12/18 12/18 12/18
2 (Shanno-78) 100 102/206 16/24 16/24 16/24
1000 292/580 16/24 16/24 16/24
5 82/194 10/24 19/22 19/22
10 82/198 10/25 19/22 19/22
3 Ex- 100 102/205 10/22 21/23 21/23
Tridigonal-2 1000 103/212 10/16 21/23 21/23
5 69/183 11/14 11/14 11/14
GEN-Recipe 10 72/187 12/16 12/16 12/16
4 100 80/204 12/16 12/16 12/16
1000 85/210 12/16 12/16 12/16
5 56/140 16/28 16/20 16/20
EX- 10 58/118 16/31 16/20 16/20
5 Tridiagonal-1 100 58/118 16/20 16/20 16/20
1000 58/118 16/20 16/20 16/20

5 26/55 5/8 5/8 5/8

10 20/40 5/8 5/8 5/8

6 exponential 100 22/45 5/8 5/8 5/8

1000 22/45 5/8 5/8 5/8
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5 1260/3036 20/25 20/21 20/25
10 1371/2781 16/21 16/21 16/21
7 Dquadratic 100 925/1853 12/16 12/16 12/16
1000 925/1850 12/16 12/16 12/16
5 52/120 16/39 16/28 16/28
GEN- 10 56/116 16/39 16/28 16/28
8 Tridiagonal-1 100 58/127 16/20 16/20 16/20
1000 58/127 16/20 16/20 16/20
5 107/220 50/56 50/56 50/56
10 107/217 50/56 50/56 50/56
9 GEN-Powell 100 115/230 50/56 50/56 50/56
1000 125/251 50/56 50/56 50/56
5 9/24 10/15 10/15 10/15
10 9/24 10/15 10/15 10/15
10 GEN-Strait 100 9/24 10/15 10/15 10/15
1000 9/24 10/15 10/15 10/15
5 503/1049 20/23 20/23 20/23
GEN-Beale 10 457/915 20/23 20/23 20/23
11 100 509/1019 22/25 22/25 22/25
1000 535/1072 22/25 22/25 22/25
5 25/76 417 417 a/7
10 25/76 3/8 3/8 3/8
12 Full Hessian 100 15/75 3/8 3/8 3/8
1000 17/78 3/8 3/8 3/8
The Total of 12 5 2317/5497 208/298 217/273 217/277
functions for four 10 2477/5125 184/277 193/252 193/252
different dimensions 100 2201/4518 187/246 198/247 198/247
1000 2445/5127 188/250 199/257 199/257

6. Conclusions and Discussions.

We defined a search direction and
consider the sufficient condition for descent
search direction. We present the algorithm
for our memory gradient method with
inexact Armijo line search techniques and
global convergence of our method, we see
how choice of r and y, affect the

numerical performance and compared three
kinds of our methods with CG method by
changing value of r ,we see that the choice

Appendix.

of sizing parameter y, has great effect of

our algorithm. But the algorithm has
stability for the evaluation of number of
iteration and the evaluation of number of
function for different choice of rto
improve performance and accelerate the
gradient relates which need a few iterations.

The new algorithm converges faster and
is more efficient than the others.

All the test functions used in this paper are from general literature Nocedal[15],[17].

1. Generalized Wolfe Function:

n-

1
F(X)=(-%B=%/2)+2%, -D>+ > (X y =X B= %/ 2+2X,, —1))* + (X, —X,(3—x,/2) -1),
i=1

X, =[-L....—1].

2. Non-diagonal (Shanno-78) Function (cute):
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f(x)=(x, -1+ anloo(xl —-x2,)%,

i=2

X, =[-1-1,...,~1].
3. Extended Tridiagonal-2 Function:
n-1
f(x)= Z(Xi X D% +c(x + DX,y +1),

i=1

X, =[LL...1] ,c=0.1.

4. Generalized Recipe Function:
n/3

_ 2 2 x5
f(x)= |Z=1: [(XBi—l —=5)" + Xgi 4 + (X3|7l_i3|_2)2 ’

X, =[2,51,....2,51].

5. Extended Tridigonal-1Function:

n/2

f(x)= Z(XZi—l + X =3)% + (Xp g — Xy + D)%,
i1

X, =[2,2,...,2].

6. Extended Three Exponential Terms Function:
n/2

f(X) =D (EXP(Xys + 3%, — 0.1) + eXp(Xy 4 —3X, —0.1) +exp(—X,;_, —0.1)),
i=1

X, =[0.1,0.1,...,0.1].

7. Dquadratic Function (cute):
n-2

f(x)= Z:(Xi2 + Oy + AX, )’
i=1

X, =[33,...,3] , ¢=100,d =100.

8. Generalized Tridiagonal-1 Function:
n-1

f(x)= Z(Xzi—l + Xy — 3)2 +(X2i—l = Xyi +1)4 '
i=1

X, =[2,2,...,2].

9. Generalized Powell function:
n/3

F(x) = 2{3—[ Lzl =sin(F5) -expl-( - 2)° T},

1+(%=%p;)?

X, =[01,2,..,0L2].

10. Generalized Strait Function:

f(x)= r_]Z/%,(Xzzil - Xzi)2 +100(1 - X2i—1)2 ’
Xy = [—2,_...,—2].
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11. Generalized Beale Function:

n/2

(2014)

fF(X)=>D [L.5— %, +@Q—x,) ] + [2.25—x, ,a-x2)[ +[2.625—x, ,a—x ]

i=1

X, =[-1-1...-1-1].

12. Full Hessian Function:
n 2 n

f(X):(ZXij +Z:(Xi exp(x;) — 2% —x7),
i=1 i-1

X, =[LL...1].
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