The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

The influence of harvesting frequencies on green pod and dry seed productions of Cowpea [Vigna unguculata L. Walp] Ramshorn cultivar obtained from three varying seed production companies.

Caser G. Abdel* ${ }^{*}$ and Mohammed S. S. D. Al-Slem ${ }^{* *}$
*Horticulture Department, Agriculture Faculty, Dohuk University, Dohuk, Kurdistan
Region, Iraq
** Ministry of Technological Science, Seed Technology Center Mosul, Iraq

Abstract

An attempt was made to evaluate the variation in green pod and dry seed production of Ramshorn Cowpea cultivar produced by three varying seed companies as influenced by harvesting frequencies. Therefore, green pods were either continuously harvested around the growing season, harvested four, six times, eight times and continuous dry pod harvest. The highest green pod yield ($2.041 \mathrm{~kg} . \mathrm{m}^{-2}$) were obtained from continuous green pod harvesting treatment, gradual reduction in green pod yields were confined with gradual reductions in harvesting frequencies. Contrary results were found with dry seed yield where gradual yield reductions were accompanied with gradual increases in green pod harvesting frequencies. Consequently, the highest seed yield $\left(0.29859 \mathrm{~kg} . \mathrm{m}^{-2}\right)$ was observed in continuous dry pod harvesting treatment. The best Ramshorn producing seed company was the Italian since it gave the highest green pod and dry seed yields (1.42997 and $0.12713 \mathrm{~kg} \cdot \mathrm{~m}^{-2}$, respectively). The highest green pod and yield ($2.12203 \mathrm{~kg} . \mathrm{m}^{-2}$) was obtained from Genex source of continuously green pod harvested interaction. The paramount dry seed yield ($0.34236 \mathrm{~kg} . \mathrm{m}^{-2}$) was concomitant with Genex source of continuous dry pod harvest.

الخلاصة

اجريت محاولة لقيم التباين في انتناج القرنات الخضراء والجافه لصنف اللوبيا رامشورن بين شركات جنكس والايطالية ومودستو المنتجه لهذا الصنف المحصود كقرنات خضراء خلال فترة النمو او اربعة او شتة مرات او ثمان مرات حصدات كقرنات خضر اء والباقي كقرنات جافه بالاضافه الى معاملة الحصاد المستمر كقرنات جافه. اعلى حاصل للقرنات الخضراء 2.041كغم للمتر المربع حصل عليه من معاملة الحصاد المستمر للقرنات الخضراء وحصل انخافاض تنريجي متماشيا مع انخفاض فترات الحصاد للقرنات الخضر اء على العكس من ذلك حصل انخفاض تدريجي في حاصل البذور الجاف متماثيا مع زيادة الحصدات للقرنات الخضراء حيث كان اعلى حاصل للبذور الجافه 0.29859 كغم للمتر المربع كان مر افقا للحصـاد المستمر للقرنات الجافه. كان افضل انتاج لحاصل القرنات الخضراء 1.42997 كغم للمتر المربع وحاصل ابذور الجاف 0.12713كغ للمتر المربع لصنف رامشورن المنتج من الشركه الايطاليه . افضل حاصل حصل عليه من مصدر جنكس المحصود كقرنات خضر اء بشكل مستمر 2.12203 كغم للمتر المربع و كبذور جافه لنفس الثركة كحصاد مستمر للقرنات الجافه 0.34236 كغم

للمتر المربع.
Key words: Cowpea, Green pod, Dry seed, Variations in seed production sourcesCorresponding Author: Dr. Caser G. Abdel, caser.abdel@yahoo.com

Introduction

In cowpea, the final seed yield is dependent upon the number of pods per plant, number of grains per pod and the extent to which grains are filled. In the present study, the reduction in seed yield under water stress was associated with dramatic decrease in all these yield components. The

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

significant reduction in number of harvested pods per plant under water stress may be attributed to the abscission of the reproductive structures. Whereas the reduction in number of seeds per pod and seed size under water stress treatments may be attributed to the limitation of dry matter partitioning to the reproductive sink or even seed formation factors (Ahmed and Suliman, 2010). Turk and Hall (1980) attributed the reduction in seed yield under drought to the secondary detrimental effects of drought avoidance on CO_{2} assimilation. Ravindraet al. (1990) attributed the loss in seed yield to low fruiting efficiency and lack of filling time for pods. Continuous removal of immature pods sustain continuous leaves and inflorescence productions. However, leaving pods on plants to mature resulted in reduced pod production (Abdel, 2011). The objective of this study was to find out the variation of Ramshorn cowpea cultivar among three seed producing companies namely Italian, Genex and Modesto.

Materials and Methods

This experiment was conducted at the Research Field, Horticulture Department, Agriculture and Forestry College, Mosul University, Mosul (Latitude 36°, 20"; Longitude 44°, $58^{\prime \prime}$; Altitude 230 m). The objective of this investigation was to evaluate the responses of Ramshorn cowpea plants raised from seeds purchased from Italian, Modesto and Genex Seed Companies to three varying irrigation levels.

A Split Plot within Factorial Randomized Complete Block Design (Split Split F-RCBD) was chosen for this trail, where the main plot was irrigation levels (A) which was represented by continuous green pod harvest $\left(a_{1}\right)$, four times green pods harvest $\left(a_{2}\right)$, six times green pods harvest, eight times green pods harvest (a_{3}) and no green pods harvest only dry pods were harvested (a_{4}).The sub main plot was three sources (B) of Ramshorn seeds which was represented by seeds obtained from Italian Seed Company (b_{1}), Modesto Seed Company (b_{2}) and Genex Seed Company (b_{3}). Thus, 12 treatments were included in this trail; a treatment was replicated three times and one replicate was represented by 4 furrows each of $1 \times 0.85 \mathrm{~m}$, planted on both sides with a plant intra space of 5 cm .

Field soil (table, 1) was plowed twice on April 8, 2006, dissected according to the proposed design then one gypsum block was settled at a depths of 30 cm from each furrow ridge to truck the soil moisture fluctuations brought up by re-watering (Abdel, 2006a). Meteorological data was recorded in Al-Rashidia Meteorological Center, Mosul City (table, 2). Ramshorn seeds that were purchased from Italian, Modesto and Genex companies were tested before sowing in the permanent field. Their germination percentages and rates were, respectively, ($94 \% ; 6.87$ seeds. d^{-1}), $(82 \% ; 7.08$ seeds. d^{-1}) and ($87 \% ; 7.61$ seeds. d^{-1}). Furrows were watered previous sowing, next day on April $17^{\text {th }}$, seeds were sown at a 5 cm soil depth. Thinning was made on May $17^{\text {th }}$, leaving 5 cm between plants. Plants were fertilized three times by Diamen Phosphate (DAP) at rate of $10 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ on May $10^{\text {th }}$, May $23^{\text {rd }}$, and June $21^{\text {st }}$. In addition to that

Irrigation dates were determined by the calibration equation that obtained from practical measurement of current resistance OHM versus soil available water capacity (AWC depletion $\%=$ $1.6382 \times$ OHM - 32.0127. Pod number, pod length, seed per pod, aborted seeds per pod, aborted ovules per pod, pod fresh weight, dry seed yield, green pod yields, root length, plant fresh weigh were recorded. Samples of root, stem, leaves, and pods were weighed then oven-dried at $65^{\circ} \mathrm{C}$ for 72 hrs. Then samples were re-weighed to calculate root, leaves, stems, pods and plant dry weight and dry matter percentages. Finally this experiment was terminated on October 25.

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (1). Physical analysis for trans located silty loam soil beyond 30 cm depth and clayey underneath native field soil		
Soil separations $\left(\mathrm{g} . \mathrm{kg}^{-1}\right)$	Translocated soil	native soil
Clay particles	564	139
Silt particles	313	564
Sand particles	123	297
Soil bulk density $\left(\mathrm{g} . \mathrm{cm}^{-3}\right)$	1.6	1.55
Soil field capacity $(\%)$	21.8	20
Soil wilting point $(\%)$	12.05	11

Table (2):Meteorological data (Rashida Meteorological Center)

Parameters	May	June	July	August	Sept.	Oct.
MaxT $^{0} \mathrm{C}$	32	41	42.1	45	38.2	30.6
Min T ${ }^{0} \mathrm{C}$	17.4	22.6	25.7	27.3	18.1	16.6
R.H. $\%$	49	30	30	29	35	52

Results and Discussion

1. Vegetative Growth

The influence of harvest frequencies:

The obtained results (Table, 3) revealed that continuous harvest of green pod was the most potent treatment; it gave the highest vegetative growth traits. It substantially exceeded eight harvests in terms of leaf number per plant (5.818%), leaf area index (10.49%) and root fresh weight (10.628%). Additionally, this treatment also exceeded these of dry pod harvest, four and six harvest treatments in all detected parameters.

The next effective treatment was eight harvest frequencies of green pods; it surpassed that of six harvests in plant length (11.21%), plant fresh weight (7.78%), plant dry weight (16.82%), leaf number per plant (14.93%), leaf area (18.69%) and leaf area index (31.66%). Moreover, it showed superiority over four harvestsin plant length (6.71%), plant fresh weight (13.78%), plant dry weight (29.28%), leaf number per plant (34.61%), leaf area (42.22%), leaf area index (77.1%) and root fresh weight (11.74%). Eight harvest treatment was also paramount over dry pod harvest treatment in plant length (30.33%), plant height (12.3%), plant fresh weight (24.9%), plant dry weight (56.89%), leaf number per plant (36.47%), leaf area (46.1%), leaf area index (118.99%) and root fresh weight (21.32%).

Finally, dry pod harvest was the worst treatment as it manifested the lowest vegetative traits, as compared to other treatments. From these results, it can be deduced the apparent influence of harvest types on growth stature due to the repartition of assimilate between leave, shoot and pod generations after each harvest which reconstitute photosynthetic translocations. Since cowpea plants at flowering, setting and pod swelling stages are synchronized with shoot and leave generations where a high completion among vegetative and reproductive organs. However, during juvenility such competitions are absent, and thus pod removal may shift the completion type to the juvenility. Subsequently, Continuous pod removal treatment gave the best vegetative growth parameters as compared to other treatments, particularly no green pod harvest treatment where pods were left on plants and harvested at dry mature stage (Abdel, 2011).

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Growth variations raised by seed sources

Theobtained results (3) exhibited the superiority of Italian source of Ramshorn cowpea cultivar over Genex company seed source of the mentioned cultivar in plant length (9.1%), plant fresh weight (3.96%), leaf number per plant (6.7%), leaf area index (13.79%) and root fresh weight (11.78\%).Moreover, Italian source also exceeded Modesto company seed source in plant length (17.68%), plant height (8%), plant fresh weight (7.11%), plant dry weight (7.99%), leaf number per plant (8.6%), leaf area index (17.82%) and root fresh weight (20.85%).The obvious variations among seed producing sources might be attributed to the techniques that had been adopted by these producing companies which resulted in varying capabilities in genome expressing. Lines and cultivar differences are clear in plant texa and such differences were reported by (Abdel and Alslem, 2010)

Harvest frequenciesand seed source interaction

Italian source plant of continuous green pod harvest was the paramount interaction treatment as it revealed the highest values of plant height (106.95 cm), plant length (69.03), leaf number per plant (49.9), leaf area ($25.2 \mathrm{~cm}^{2}$), leaf area index (2.51), plant fresh weight ($2786.8 \mathrm{~g} \cdot \mathrm{~m}^{-2}$), plant dry weight $\left(682.3 \mathrm{~g} . \mathrm{m}^{-2}\right)$ and root fresh weight $(21.5 \mathrm{~g})$. The differences in the responses of varying seed sources to harvesting frequencies might be attributed to the varying capabilities of these plants in CO_{2} fixation, photosynthesis and assimilate production (Abdelbagiet al., 2000).

Table (3) The effects of harvesting frequencies on growth of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		Ph	Pl	Pl fwt	Pldwt	R fwt	L/P	La	Lai
Harvestin g types	Hgp	92.04a	64.12a	2650.4a	654. 2 a	18.3a	46a	24.6a	2.14a
	Hds	67.42d	54.97d	2076.5d	409. 1c	13.7c	31.9d	16.7c	0.9 f
	$\begin{aligned} & \mathrm{H} 4 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	73.46c	$\underset{d}{57.85 \mathrm{c}}$	2279. c	496.5b	14.8c	32.3d	17.1c	1.09d
	$\begin{aligned} & \mathrm{H} 6 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	79.02b	$\begin{gathered} 59.12 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	2406. 6b	549.4b	16.2b	37. 8c	20. 5b	1.41c
	$\begin{aligned} & \mathrm{H} 8 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	87.88a	$\begin{gathered} \hline 61.73 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	2593.8a	641.9a	16.6b	43.5b	24.3a	1.94b
Seeds Source	Italian	86.71a	61.94a	2488a	572.6a	17.5a	40.2a	21a	1.64a
	Modest o	73.7c	57.33b	2322.9c	530.3b	14.5b	37b	20.6a	1.4b
	Genex	79.5b	$\begin{gathered} \hline 59.41 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	2393.2b	$\begin{gathered} 547.8 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	15.6b	37.7b	20.8a	1.44b
Hgp	Italian	106.95a	69.03a	2786.8a	682.3a	21.5a	49.9a	25.2a	2.51a
	Modest o	82.32bc	$\begin{gathered} 60.8 \mathrm{bc} \\ \mathrm{~d} \end{gathered}$	2540.4bc	635ab	17.12bc	43.1bc	23.7a	1.861cd
	Genex	86.9b	62.6bc	2623.9b	645.3a	16.4bcd	$\begin{gathered} 45.03 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	24.8a	2.05bc
Hds	Italian	69.62de	55.3de	2116.7 gh	421de	13.8cde	30.7e	16.6d	0.836 j
	Modest o	63.7e	52.5e	2012.5h	386.8e	11.9 e	32.6de	16.3d	0.863j
	Genex	69de	$\begin{gathered} 57.13 \mathrm{c} \\ \mathrm{e} \\ \hline \end{gathered}$	2100.3 gh	$\begin{gathered} 419.6 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$	15.3bcde	32.4de	17.04d	0.953hj
H4gp+sd	Italian	73.3cde	57.9ce	2369.8de	523.6c	15.9bcde	32.2de	17.7cd	$\begin{gathered} 1.1395 \mathrm{~g} \\ \mathrm{~h} \\ \hline \end{gathered}$
	Modest o	69.45de	56.4ce	2172.4 fg	464cde	12.5de	31.3 e	$\begin{gathered} 18.14 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	1.04hj
	Genex	77.7bcd	59.3bd	2296.74ef	501.9c	15.33bcd	33.40d	18.2cd	1.103h

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

					d	e	e		
H6gp+sd	Italian	85.7b	61.6cd	$\begin{gathered} 2394.03 \mathrm{~cd} \\ \mathrm{e} \end{gathered}$	$\begin{gathered} 551.4 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	17.8abc	41.23c	21.2b	1.544e
	Modest o	$\begin{gathered} 73.53 \mathrm{~cd} \\ \mathrm{e} \end{gathered}$	$\begin{gathered} 57.07 \mathrm{c} \\ \mathrm{e} \end{gathered}$	2402.5cde	$\begin{gathered} 545.2 b \\ c \end{gathered}$	15.2bcde	36.07d	20.6b	1.364 ef
	Genex	77.9 bcd	$\begin{gathered} 58.8 \mathrm{~cd} \\ \mathrm{e} \end{gathered}$	2423.2cde	$\begin{gathered} 551.7 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	15.5bcde	36.20d	19.7bc	1.311 fg
H8gp+sd	Italian	98.02a	$\begin{gathered} 65.95 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2773a	684.7a	18.43ab	$\begin{gathered} 46.93 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	24.6a	2.1721 b
	Modest o	$\begin{gathered} 79.42 \mathrm{bc} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 59.95 b \\ d \end{gathered}$	2486.5 bcd	$\begin{gathered} 620.2 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 15.64 \mathrm{bcd} \\ \mathrm{e} \end{gathered}$	42.07 c	24.06a	$\begin{gathered} 1.8384 \mathrm{c} \\ \mathrm{~d} \end{gathered}$
	Genex	86.2b	59.3bd	2521.9 bcd	$\begin{gathered} 620.7 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 15.60 \mathrm{bcd} \\ \mathrm{e} \end{gathered}$	41.43c	24.3a	1.7974d

*Hgp=Harvesting green pod ; Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; $\mathrm{H} 6 \mathrm{~g} p+\mathrm{sd}=$ Harvesting green pods six tims and the rest were left for dry seed; H8gp+sd= Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{P} \mathrm{h}=$ plant hight $(\mathrm{cm}) ; \mathrm{Pl}=$ plant length; Pl fwt = plant fresh weight $(\mathrm{g}) ; \mathrm{Pl}$ dwt $=$ plant dry weight $\left(\mathrm{g} \cdot \mathrm{m}^{-2}\right) ; \mathrm{R}$ fwt $=$ root fresh weight $\left(\mathrm{g} \cdot \mathrm{m}^{-2}\right) ; \mathrm{L} / \mathrm{p}=$ leaf number per plant; $\mathrm{La}=$ leaf area $\left(\mathrm{cm}^{-2}\right) ; \mathrm{Lai}=$ leaf area index $. \mathrm{ae}=\mathrm{abcde}$.

2. Flowering

The influence of harvest frequencies

The highest final flower numberper plant was confined to cowpea plants harvested six times (table, 4). Since this treatment significantly bypassed four times green pod harvest at the $7^{\text {th }}$ and $8^{\text {th }}$ by 38.78 and 22.73%, respectively, besides its superiority over dry pod harvest at $4^{\text {th }}, 5^{\text {th }}, 7^{\text {th }}$ and $8^{\text {th }}$ harvests by $41.5,52.74,100.2$ and 19.71%, respectively. However, the lowest value at harvest $8^{\text {th }}$ was confined to six harvest treatment. Dry pods harvest was the worst treatment in flower generations, as it gave the lowest flower number per plant by (72.82 flower per plant). These results suggested that pod removal showed plant efficacy to generate more flowers which may be due to substitute for the lost pods to sustain further progeny through producing seeds from the newly generated flowers (Abdel, 2006).

Seed resources

The best seed source was Genex company (Table, 4) as it profoundly exceeded that of Italian at $1^{\text {st }}$ and $7^{\text {th }}$ and gross flower number by $55.06,34.48$ and 8.36%, respectively, and over Modesto source at $4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ and gross flower number per plant by $36.05,26,32.57$ and 15.29%, respectively. Ahmed et al. (1993a) confirmed that certain cultivars and lines such CB5 completely ceased their flower generation at $33^{\circ} \mathrm{C}$ day and $30^{\circ} \mathrm{C}$ night. They attributed their results to flower bud damage, whereas heat resistance cultivars such as L7964 showed perfuse flower production without fruit setting and no bud damage which was referred to anther damage. However, they mentioned a high heat resistant lines for instance L518.

Harvest frequencies and seed sources interaction

Continuous harvest of Genex appeared to be the paramount dual treatment as it gave the highest number of flower per plant (93.43 flower.Plant ${ }^{-1}$) and it substantially exceeded that of Modesto of dry pods harvest, four green pods harvest, Italian dry pods harvest. The worst dual treatment was Modesto dry pods harvest (65. 43flower.Plant ${ }^{-1}$). No doubt pod removal had an impact on cowpea plants which differ among seed sources grown under prevailing environment (table, 2). Variation might be attributed to plant status acquired from pod removal and to the capability of these plants to behave under high temperature. Heat stress during vegetative growth and earlier reproductive phase of cowpea grown under long day which possesses a clear role on inflorescence initiation, particularly at the $5^{\text {th }}$ node (Faisal et al., 1993). They found that flower initiations were halted at $30^{\circ} \mathrm{C}$ night temperatures, however, initiations were improved at $20^{\circ} \mathrm{C}$. Heat

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

pulses were not perceived the high night temperature but plant can be perceived heat at certain bud development phase that adversely influence bud development.

Table (4) The effects of harvesting frequencies on flower number per plant at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		$\begin{array}{r} \hline \text { FNPH } \\ 1 \end{array}$	$\begin{array}{r} \hline \text { FNPH } \\ 2 \end{array}$	$\begin{array}{r} \hline \text { FNPH } \\ 3 \end{array}$	$\begin{array}{r} \text { FNPH } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { FNPH } \\ 5 \\ \hline \end{array}$	$\begin{array}{r} \hline \text { FNPH } \\ 6 \end{array}$	$\begin{array}{r} \hline \text { FNP } \\ \text { H7 } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { FNPH } \\ 8 \end{array}$	$\begin{array}{r} \hline \text { FNPH } \\ \hline \end{array}$	Total
Harvestin g types	Hgp	5.40a	14a	11.4 a	12.34a	9.23 ab	5.81ab	9.20 ab	11.7a	6.8ab	85.84a
	Hds	5.51a	15.4a	12.3a	9.11 b	7.11b	4.92b	5.9c	7.7b	4.98ab	72.8b
	$\begin{array}{r} \mathrm{H} 4 \mathrm{gp}+\mathrm{s} \\ \mathrm{~d} \end{array}$	5.24a	13.7a	12.01a	13.3a	11.47a	8.12a	8.51bc	5.94c	4.29b	82. 6b
	H6gp+s	5.33a	14.44a	13.12a	12.89a	10.86a	5.96ab	11.81a	7.29b	5.47ab	87.17a
	$\begin{array}{r} \text { H8gp+s } \\ d \end{array}$	5.06a	11.98a	11.59a	12.16a	10.46a	6.56ab	10.6ab	11.19a	7.56a	87.13a
Seeds Source	Italian	4.05b	14.40a	12.88a	12.77a	9.65a	6.61ab	7.83b	8.65a	5.63a	82.46b
	Modest 0	5.6a	12.87a	11.25a	9.79b	8.77b	5.25b	9.25 A b	8.48a	6.24a	77.5c
	Genex	6.28a	14.42a	12.09a	13.32a	11.05a	6.96a	10.53a	9.13a	5.59a	89.35a
Hgp	Italian	4.93a	$\begin{array}{r} 14.63 \mathrm{a} \\ \mathrm{~b} \end{array}$	13.10a	$\begin{array}{r} 12.93 \mathrm{a} \\ \mathrm{~b} \end{array}$	8.50ac	5.50ac	7.70ce	$\begin{array}{r} 10.67 a \\ \mathrm{e} \end{array}$	5.40bd	83.37a
	Modest o	5.13a	$\begin{array}{r} 12.03 \mathrm{a} \\ \mathrm{~b} \end{array}$	10.03a	9.7bc	8.68ac	4.8ac	9.63 ad	12.3ab	8.4ab	80.7bc
	Genex	6.13a	$\begin{array}{r} 15.33 \mathrm{a} \\ \mathrm{~b} \end{array}$	11a	14.4a	10.53 a b	$\begin{array}{r} 7.13 \mathrm{ab} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 10.27 \mathrm{a} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 12.03 \mathrm{a} \\ \mathrm{c} \end{array}$	6.6bc	93.43a
Hds	Italian	4.03a	16.37a	12.43a	7.87c	7.17bc	3.5c	4.7 e	7.9bf	5.57bd	69.53 d e
	Modest 0	5.33a	14.7ab	10.6a	6.7c	5.57c	4.57 bc	5.5de	8.07bf	4.4cd	65.43 e
	Genex	7.17a	$\begin{array}{r} 15.03 \mathrm{a} \\ \mathrm{~b} \end{array}$	13.73a	$\begin{array}{r} 12.77 \mathrm{a} \\ \mathrm{~b} \end{array}$	8.6 ac	6.7abc	7.5ce	7.03df	4.97bd	83.5ac
H4gp+sd	Italian	3.7a	$\begin{array}{r} 13.33 \mathrm{a} \\ \mathrm{~b} \end{array}$	14.03a	15.37a	$\begin{array}{r} 11.63 \mathrm{a} \\ \mathrm{~b} \end{array}$	8.67a	8.13be	6.07ef	5.07bd	86ac
	Modest 0	5.93a	$\begin{array}{r} 13.33 \mathrm{a} \\ \mathrm{~b} \end{array}$	11.23a	12.6ab	10.3ab	6.93 ab c	7.8ce	5.9f	2.8d	$\begin{array}{r} 76.83 \mathrm{c} \\ \mathrm{~d} \\ \hline \end{array}$
	Genex	6.1a	14.4ab	10.77a	11.9bc	$\begin{array}{r} 12 \\ .47 \mathrm{a} \end{array}$	8.77a	9.6 ad	5.87 f	5bd	$\begin{array}{r} 84.87 \mathrm{a} \\ \mathrm{c} \end{array}$
H6gp+sd	Italian	3.87a	15.37a	13.73a	13.5ab	$\begin{array}{r} 10.17 \mathrm{a} \\ \mathrm{~b} \end{array}$	$\begin{array}{r} 6.87 \mathrm{ab} \\ \mathrm{c} \end{array}$	$\begin{array}{r} \hline 10.43 \mathrm{a} \\ \mathrm{c} \end{array}$	$\begin{array}{r} \hline \text { 7.7cde } \\ f \end{array}$	5.4bd	$\begin{array}{r} 87.03 \mathrm{a} \\ \mathrm{c} \end{array}$
	Modest o	6.17a	$\begin{array}{r} 13.77 a \\ b \end{array}$	13.1a	$\begin{array}{r} 10.13 \mathrm{~b} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 9.43 \mathrm{ab} \\ \mathrm{c} \end{array}$	5.17ac	$\begin{array}{r} 12.33 \mathrm{a} \\ \mathrm{~b} \end{array}$	6.5 df	5.3bd	81.9ac
	Genex	5.97a	14.2ab	12.5a	15.03a	12.97a	5.83ac	12.67a	7.67cf	5.7bd	92.57a
H8gp+sd	Italian	3.7a	12.3ab	11.1a	14.17a	10.8ab	8.5ab	8.2be	10.9ad	6.7bc	$86.37 \mathrm{a}$
	Modest	5.43a	10.5b	11.27a	9.8bc	9.9 ac	4.8ac	11ac	9.63af	10.3a	82.63 a c
	Genex	6.03a	$\begin{array}{r} 13.12 \mathrm{a} \\ \mathrm{~b} \end{array}$	12.4a	12.5ab	$\begin{array}{r} 10.57 \mathrm{a} \\ \mathrm{~b} \end{array}$	6.37ac	12.6a	13.03a	5.67bd	92.4ab

*Hgp=Harvesting green pod;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; H8gp+sd= Harvesting green pods eight tims and the rest were left for dry seed ; FNPH $==$ Flower number per plant harvest. $a=a b c d e$.

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

3. Pod development
 Harvesting frequencies

Continuous green pod harvesting appeared to be the most potent treatment (tables, 5-11). It gave the highest final pod number per plant and pod length as compared to others. This treatment exceeded dry pods harvest treatment in pod number 53.33%, weight of fresh pods at all harvests by ∞, pod dry weight at $1^{\text {st }}$ and $7^{\text {th }}$ harvests by ∞ and 69.57%, respectively, seed number per pod at $1^{\text {st }}, 7^{\text {th }}$ harvests and final seed number per pod byo, 116.55 and 11.4%, respectively, pod length at $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 5^{\text {th }}$ and $7^{\text {th }}$ harvests byoo, $8.06,11.9,14.82$ and 122.5%, respectively. Moreover, continuous green pod harvest gave the lowest aborted seeds and ovules per pod. However, it manifested the lowest pod number per plant at $5^{\text {th }}$ and $6^{\text {th }}$ harvests, pod dry weights at $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$, $6^{\text {th }}, 8^{\text {th }}$ and $9^{\text {th }}$ harvests and individual pod dry weight and its seed number at $5^{\text {th }}$ harvest.

Dry pod harvests treatment was categorized in the final fifth sequence order, since it revealed the lowest green pod fruiting characteristics. However, it significantly reduced aborted seeds and ovules per pod. It significantly by passed continuous green pod harvest treatment in pod number per plant at $5^{\text {th }}$ harvest by 39.66%, weight of dry pod at $2^{\text {nd }}$ to $5^{\text {th }}$ harvests by $36.85,26.91$, 38.25 and 40.21%, respectively, seed number per pod at $5^{\text {th }}$ harvest by 19.1%. In addition to that, it exhibited substantial reductions in aborted seeds per pod at $1^{\text {st }}, 4^{\text {th }}$, and $7^{\text {th }}$ harvest by $\infty, 41.45$, and 67.23%, respectively, and in the final aborted seeds per pod 25%. It also exhibited huge reduction in aborted ovules per pod at $1^{\text {st }}, 4^{\text {th }}$ and $7^{\text {th }}$ harvests and in the final aborted ovules per pod byo, 50.7 , 102.63 , and 30.29%, respectively. The obtained results confirmed the variations resulted from different harvesting frequencies in all fruiting traits which might be attributed to plant recovery capacities after pod removals which reflected the assimilate utilizing ability for substituting the lost organs to keep seed production for further generations. Seeds and ovules are usually aborted by fertilization failure owing to pollen defects or stigma reception failure for pollen grain (Abdel and Al-Rawi, 2011), or assimilate shortages owing to plant capability to produce assimilate or translocation and partitioning of these assimilate (Ehlers and Hall 1996).

Seed sources

The obtained results (tables, 5-11) manifested that Ramshorn plants raised from Genex seeds source gave the highest total pod number per plant and seed number per pod besides the lowest aborted ovules and seeds per pod. Genex was significantly exceeded Modesto in terms of pod number per plant at $4^{\text {th }}$ to $7^{\text {th }}$ harvests and total pod number per plant by 51.96, 85.27, 59.7, 68.35 and 27.35%, respectively, green pod fresh weight at $3^{\text {rd }}$ to $7^{\text {th }}$ harvests and total green pod fresh weight by $12.46,14.83,19.5,67.89,36.68$ and 11.78%, respectively, dry pod weight at $3^{\text {rd }}$ to $7^{\text {th }}$ harvests and total dry pod weigh by $18.07,33.87,41.8,79.11,55.54$ and 49.51%, respectively, seeds number per pod at $1^{\text {st }}, 4^{\text {th }}, 5^{\text {th }}$ and $7^{\text {th }}$ harvests by $27.29,29.08,27.59,42.36$, and 18.5%, respectively, pod length at $7^{\text {th }}$ harvest by 34.41%, final mean of pod length by 6.48%. Genex showed significant aborted seeds per pod at $1^{\text {st }}$ to $5^{\text {th }}$ harvest and final abortedseeds per pod by $62.96,65.71,50.24,24.38,29.95$ and 17.67%, respectively, aborted ovule number per pod at $3^{\text {rd }}$ to $5^{\text {th }}$ and final aborted ovules by $31.67,51.38,46.94$ and 18.91%, respectively. Genex source displayed superiority over Italian source in pod number per plant at $1^{\text {st }}$ and $5^{\text {th }}$ harvest by 52.17 and 86.72%, respectively, seeds number per pod at $5^{\text {th }}$ harvest by 2.4% and gross seeds number per pod by 5.32%. Moreover, Genex source manifested huge reductions in aborted seeds per pod at $2^{\text {nd }}$ and $3^{\text {rd }}$ harvest by 36.57 and 26.57%, respectively, aborted ovules per pod at $4^{\text {th }}$ by 26.6%, as compared to Italian source.

The worst source was Modesto as it gave the lowest pod number per pod, weight of green pod, weight of dry pod and seed number per pod, pod length. Moreover, Modesto source showed the highest aborted seed number per pod besides the highest aborted ovules per pod. This source exceeded Italian in pod number per plant at $1^{\text {st }}$ harvest by 47.83%, besides its lowest aborted seeds per pod at $7^{\text {th }}$ by 33.16% as compared to Genex. From field observation Genex plants commenced into flowering earlier than other two sources, such earliness may be attributed to capability of these

The $2{ }^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

plants to convert their vegetative meristems into reproductive ones within short duration owing to its genome expressions. The worse results that accompanied to Modesto source might be due to weakness in assimilate synthesis or their distributions under the ambient high temperature, particularly during July and August (table, 2). Combination influences were found between leaf senescence and heat resistance in cowpea, where heat susceptible cultivars displayed earlier leaves senescence (Abdelbagiet al., 2000).

Harvest frequencies and sources combinations

Genex plant of continuous green pods appeared to be the most potent interaction treatment (table, 5-11). It gave the highest final pod number per plant and pod number per plant at $1^{\text {st }}$ harvest. However, it showed reduced pod number per plant at $6^{\text {th }}$ and $9^{\text {th }}$ harvests. The worst interaction treatment was Modesto of dry pod (No green pod harvest). Since this dual treatment gave the lowest pod number of pods per plant at $1^{\text {st }}$ and $7^{\text {th }}$ harvest, the lowest gross pod number at the end of the growing season, pod dry weight at $1^{\text {st }}, 6^{\text {th }}$ and $7^{\text {th }}$ harvests, final mean of seeds number per pod at $1^{\text {st }}, 2^{\text {nd }}, 6^{\text {th }}$ and $7^{\text {th }}$ harvests. Significant differences were not detected between Modesto of dry pod harvest and other dual treatments revealed the highest values of aborted seeds per pod at $2^{\text {nd }}, 5^{\text {th }}, 8^{\text {th }}$ and $9^{\text {th }}$ harvest, aborted ovules per pod at $2^{\text {nd }}, 3^{\text {rd }}, 8^{\text {th }}$ and $9^{\text {th }}$ harvests. However, dry pod harvest of Modesto gave the highest pod number per plant at $3^{\text {rd }}$ and $5^{\text {th }}$ harvests, pod dry weight at $2^{\text {nd }}$ to $5^{\text {th }}$ harvests. The variations observed among combination treatments might be due to the capabilities of individual source in expressing their genomes, and therefore there should a gene conversion, deletion, addition and translocations in Ramshorn cultivar among these producing companies which reflected on their field performance, if which otherwise there would be no differences occurred.

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (5) The effects of harvesting frequencies on pods number per plant at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		PNP	$\begin{array}{r} \hline \text { PNP } \\ \text { H2 } \end{array}$	$\begin{array}{r} \hline \text { PNP } \\ \text { H3 } \end{array}$	$\begin{array}{r} \hline \text { PNP } \\ \text { H4 } \end{array}$	$\begin{array}{r} \hline \text { PNP } \\ \text { H5 } \end{array}$	$\begin{array}{r} \hline \text { PNP } \\ \text { H6 } \end{array}$	$\begin{array}{r} \hline \text { PNP } \\ \text { H7 } \end{array}$	PNP	$\begin{array}{r} \hline \text { PNP } \\ \text { H9 } \end{array}$	Total
Harvesti ng types	Hgp	3.24a	7.31a	4.62ab	3.6a	1.74b	0.99b	3.54a	4.07a	1.96a	31.08a
	Hds	0c	2.54c	5.97a	4.03a	2.43a	1.47b	0.8c	1.11b	1.91a	20.27c
	$\begin{array}{r} \mathrm{H} 4 \mathrm{gp}+ \\ \mathrm{sd} \end{array}$	2.2b	5.17b	3.81 b	3.91a	0c	4.41a	2.2b	1.94b	1.12a	24.77b
	$\begin{array}{r} \text { H6gp+ } \\ \text { sd } \end{array}$	2.35b	5.42b	3.8 b	3.9a	$\begin{array}{r} 1.97 \mathrm{a} \\ \mathrm{~b} \end{array}$	0.97b	0c	4.09a	2.12a	24.62b
	$\begin{array}{r} \mathrm{H} 8 \mathrm{gp}+ \\ \mathrm{sd} \\ \hline \end{array}$	2.95a	6.72a	4.66ab	3.48a	$\begin{array}{r} 2.12 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{array}$	1.22b	3.66a	3.27a	2.69a	30.76a
Seeds Source	Italian	1.61b	6.05a	5.23a	4.27a	1.28b	$\begin{array}{r} 1.95 \mathrm{a} \\ \mathrm{~b} \end{array}$	1.8 ab	2.51a	2.07a	26.85a
	Modes to	2.38a	4.64b	4.08b	2.81b	1.29b	1.34b	1.58b	2.73a	2.04a	22.89b
	Genex	2.45a	$5.61 \mathrm{a}$ b	4.41ab	4.27a	2.39a	2.14a	2.66a	3. 5a	1.77a	29.15 a
Hgp	Italian	$\begin{array}{r} 2.73 \mathrm{a} \\ \mathrm{bc} \end{array}$	8.27a	$\begin{array}{r} 5.57 \mathrm{ab} \\ \mathrm{c} \end{array}$	3.9ab	$\begin{array}{r} 1.33 \mathrm{~b} \\ \mathrm{c} \end{array}$	0.8b	$\begin{array}{r} 3.23 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	3.7ab	$\begin{array}{r} 1.6 \mathrm{bcd} \\ \mathrm{e} \end{array}$	31.13ab
	Modes to	$\begin{array}{r} 3.7 \mathrm{ab} \\ \mathrm{c} \end{array}$	$6.2 \mathrm{ab}$ c	3.7 bcd	2.4b	1.4bc	0.67b	$\begin{array}{r} 3.17 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	4 ab	$2.7 \mathrm{abc}$ d	$27.57 \mathrm{ab}$
	Genex	3.93a	$\begin{array}{r} 7.47 \mathrm{a} \\ \mathrm{~b} \end{array}$	$\begin{array}{r} 4.33 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	4.5ab	2.5ab	1.5b	4.23 ab	4.5a	$\begin{array}{r} 1.57 \mathrm{bc} \\ \mathrm{de} \end{array}$	34.53a
Hds	Italian	0d	1.93f	6.47a	4.7ab	1.8b	1.77b	0.9de	0.77c	$\begin{array}{r} 1.7 \mathrm{bcd} \\ \mathrm{e} \end{array}$	20.03ef
	Modes to	0d	2.27 e f	5.53 ab c	3.5 ab	1.63b	0.87b	0 e	0.9c	$\begin{array}{r} 1.5 \mathrm{bcd} \\ \mathrm{e} \end{array}$	16.2 f
	Genex	0d	$\begin{array}{r} 3.43 \mathrm{~d} \\ \text { ef } \end{array}$	5.9ab	3.9ab	3.87a	1.77b	1.5cde	$\begin{array}{r} 1.67 \mathrm{~b} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 2.53 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	$24.57 \mathrm{~cd}$
$\mathrm{H} 4 \mathrm{gp}+\mathrm{s}$ d	Italian	1.5cd	$\begin{array}{r} 6.03 \mathrm{a} \\ \mathrm{bc} \end{array}$	$\begin{array}{r} 4.53 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	$4.57 \mathrm{a}$ b	0c	4.47a	$\begin{array}{r} 2.43 \mathrm{bc} \\ \mathrm{~d} \end{array}$	1.5c	$\begin{array}{r} 1.37 \mathrm{~cd} \\ \mathrm{e} \end{array}$	$26.1 \text { bcd }$
	Modes to	$\begin{array}{r} 2.5 \mathrm{ab} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 4.43 \mathrm{c} \\ \mathrm{de} \end{array}$	3.4cd	$3.07 \mathrm{a}$ b	0c	3.57a	1.4cde	$\begin{array}{r} 2.23 \mathrm{a} \\ \mathrm{bc} \end{array}$	0.77e	$\begin{array}{r} 21.37 \mathrm{de} \\ \mathrm{f} \end{array}$
	Genex	$\begin{array}{r} 2.6 \mathrm{ab} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 5.03 \mathrm{~b} \\ \mathrm{~cd} \\ \hline \end{array}$	3.5 cd	4.1ab	0c	5.2a	$\begin{array}{r} 2.77 \mathrm{ab} \\ \mathrm{~cd} \\ \hline \end{array}$	$\begin{array}{r} 2.4 \mathrm{ab} \\ \mathrm{c} \end{array}$	1.23de	$\begin{array}{r} 26.83 \mathrm{bc} \\ \mathrm{de} \end{array}$
$\begin{array}{r} \mathrm{H} 6 \mathrm{gp}+\mathrm{s} \\ \mathrm{~d} \end{array}$	Italian	1.55c	$6.5 \mathrm{ab}$ c	$\begin{array}{r} 4.67 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	$\begin{array}{r} 4.23 \mathrm{a} \\ \mathrm{~b} \end{array}$	$\begin{array}{r} 1.43 \mathrm{~b} \\ \mathrm{c} \end{array}$	1b	0 e	3.7ab	2.9ab	$25.99 \mathrm{~cd}$
	Modes to	3 abc	$\begin{array}{r} 4.5 \mathrm{~cd} \\ \mathrm{e} \end{array}$	3.2d	$2.67 a$ b	1.73b	0.8b	0e	4 ab	$\begin{array}{r} 1.73 \mathrm{bc} \\ \mathrm{de} \\ \hline \end{array}$	$\begin{array}{r} 21.63 \mathrm{de} \\ \mathrm{f} \\ \hline \end{array}$
	Genex	$\begin{array}{r} 2.5 \mathrm{ab} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 5.27 \mathrm{~b} \\ \mathrm{~cd} \\ \hline \end{array}$	3.53 cd	4.8a	$\begin{array}{r} 2.73 \mathrm{a} \\ \mathrm{~b} \end{array}$	1.1b	0e	4.57a	$\begin{array}{r} 1.73 \mathrm{bc} \\ \mathrm{de} \end{array}$	$26.23 b c$
$\begin{array}{r} \mathrm{H} 8 \mathrm{gp}+\mathrm{s} \\ \mathrm{~d} \end{array}$	Italian	$\begin{array}{r} 2.27 \mathrm{~b} \\ \mathrm{c} \end{array}$	7.5 ab	$\begin{array}{r} 4.9 \mathrm{abc} \\ \mathrm{~d} \end{array}$	$\begin{array}{r} 3.93 \mathrm{a} \\ \mathrm{~b} \end{array}$	1.83b	1.73b	$\begin{array}{r} 2.83 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	$\begin{array}{r} 3.2 \mathrm{ab} \\ \mathrm{c} \end{array}$	2.8 abc	31abc
	Modes to	$\begin{array}{r} 3.33 \mathrm{a} \\ \mathrm{~b} \end{array}$	$\begin{array}{r} 5.8 \mathrm{ab} \\ \mathrm{~cd} \\ \hline \end{array}$	$4.3 \mathrm{abc}$ d	2.43 b	1.7 b	0.8b	$\begin{array}{r} 3.33 \mathrm{ab} \\ \mathrm{c} \end{array}$	$\begin{array}{r} 2.5 \mathrm{ab} \\ \mathrm{c} \end{array}$	3.5a	$27.7 \mathrm{abc}$ d
	Genex	$\begin{array}{r} \hline 3.23 \mathrm{a} \\ \mathrm{~b} \end{array}$	$\begin{array}{r} 6.87 \mathrm{a} \\ \mathrm{bc} \end{array}$	$\begin{array}{r} 4.77 \mathrm{ab} \\ \mathrm{~cd} \end{array}$	$4.07 \mathrm{a}$ b	$\begin{array}{r} 2.83 \mathrm{a} \\ \mathrm{~b} \end{array}$	1.13 b	4.8a	4.1ab	$\begin{array}{r} 1.77 \mathrm{bc} \\ \mathrm{de} \end{array}$	33.57ab

[^0]
The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (6) The effects of harvesting frequencies on individual pod fresh weight (g) at(Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	$\begin{gathered} \text { Mean } \\ \mathrm{s} \end{gathered}$
Harvesti ng types	Hgp	$\begin{gathered} 6.29 \\ 3 \mathrm{a} \end{gathered}$	6.207a	6.824a	5.851a	$\begin{gathered} 5.091 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 4.009 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 5.627 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 6.544 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 6.90 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 5.928 \\ a \end{gathered}$
	Hds	0b									
	$\begin{aligned} & \mathrm{H} 4 \mathrm{gp}+ \\ & \mathrm{sd} \end{aligned}$	$\begin{gathered} 6.93 \\ 5 \mathrm{a} \end{gathered}$	6.158a	6.178ab	5.707a	Ob	Ob	0b	0b	Ob	$\begin{gathered} 5.745 \\ \mathrm{a} \end{gathered}$
	$\begin{aligned} & \text { H6gp+ } \\ & \text { sd } \end{aligned}$	$\begin{gathered} 6 . \\ 367 a \end{gathered}$	$\begin{gathered} 5 . \\ 836 a \end{gathered}$	$\begin{gathered} 5 . \\ 642 \mathrm{ab} \end{gathered}$	5.429a	4. 86a	$\begin{gathered} 4 . \\ 891 \mathrm{a} \end{gathered}$	0b	0b	0b	$\begin{gathered} 5.843 \\ \mathrm{a} \\ \hline \end{gathered}$
	$\begin{aligned} & \mathrm{H} 8 \mathrm{gp}+ \\ & \text { sd } \end{aligned}$	$\begin{gathered} 6.59 \\ 5 \mathrm{a} \end{gathered}$	5.949a	5.582b	5.573a	$\begin{gathered} 4.747 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 4.271 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 6.029 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.129 \\ \mathrm{a} \\ \hline \end{gathered}$	0b	$\begin{gathered} 5.808 \\ \mathrm{a} \end{gathered}$
Seeds Source	Italian	$\begin{gathered} 5.52 \\ 2 \mathrm{a} \end{gathered}$	6.644a	7.005a	6.568a	$\begin{gathered} 4.373 \\ \text { ab } \end{gathered}$	4.78a	$\begin{gathered} 4.756 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 6.592 \\ a \end{gathered}$	$\begin{gathered} 6.98 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 6.338 \\ \mathrm{a} \end{gathered}$
	Modes to	$\begin{gathered} 5.18 \\ 4 \mathrm{a} \end{gathered}$	6.388a	5.795b	5.212b	$\begin{gathered} 3.765 \\ b \end{gathered}$	$\begin{gathered} 3.183 \\ b \end{gathered}$	$\begin{gathered} 2.868 \\ c \end{gathered}$	$\begin{gathered} 6.359 \\ \mathrm{a} \end{gathered}$	6a	$\begin{gathered} 5.322 \\ c \end{gathered}$
	Genex	$\begin{gathered} 5.00 \\ 9 \mathrm{a} \end{gathered}$	6.358a	6.517 a	5.985a	$\begin{gathered} 4.499 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 5.344 \\ \mathrm{a} \\ \hline \end{gathered}$	3.92b	$\begin{gathered} 6.189 \\ a \end{gathered}$	$\begin{gathered} 6.12 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 5.949 \\ b \end{gathered}$
Hgp	Italian	$\begin{gathered} 6.78 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 6.373 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 7.293 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$	6.42ab	$\begin{gathered} 5.287 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.293 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 6.827 \\ a b \\ \hline \end{gathered}$	$\begin{gathered} 7.273 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 7.15 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	6.3a
	Modes to	$\begin{gathered} \hline 6.24 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	5.98bc	$\begin{gathered} 6.153 \mathrm{~cd} \\ \mathrm{e} \\ \hline \end{gathered}$	5.46ab c	$\begin{gathered} 4.787 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.187 \\ a b \\ \hline \end{gathered}$	$\begin{gathered} 5.327 \\ b c \\ \hline \end{gathered}$	$\begin{gathered} 6.28 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 6.61 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 5.559 \\ \mathrm{ab} \\ \hline \end{gathered}$
	Genex	$\begin{gathered} 5.85 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 6.267 a \\ b c \\ \hline \end{gathered}$	$\begin{gathered} 7.027 \mathrm{bc} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 5.673 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	5.2a	$\begin{gathered} 5.547 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 4.727 \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 6.08 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 6.95 \\ 3 \mathrm{a} \end{gathered}$	$\begin{gathered} 5.925 \\ \mathrm{ab} \\ \hline \end{gathered}$
Hds	Italian	0b	0d	Of	0d	0b	0c	0d	0c	0b	0c
	Modes to	0b	0d	Of	0d	Ob	0c	0d	0c	0b	0c
	Genex	0b	0d	Of	0d	0b	0c	0d	0c	0b	0c
$\begin{aligned} & \mathrm{H} 4 \mathrm{gp+s} \\ & \mathrm{~d} \end{aligned}$	Italian	$\begin{gathered} \hline 7.06 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 6.453 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	6.86bcd	$\begin{gathered} 6.493 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	Ob	0c	0d	0c	0b	$\begin{gathered} 6.703 \\ \mathrm{a} \end{gathered}$
	Modes to	$\begin{gathered} 7.28 \\ \mathrm{a} \\ \hline \end{gathered}$	6.06bc	5.56de	4.563c	0b	0c	0d	0c	0b	$\begin{gathered} 5.862 \\ \mathrm{ab} \\ \hline \end{gathered}$
	Genex	$\begin{gathered} 6.46 \\ \mathrm{a} \\ \hline \end{gathered}$	5.96bc	$\begin{gathered} 6.113 \mathrm{~cd} \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 6.033 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	Ob	0c	0d	0c	0b	$\begin{gathered} 6.141 \\ \mathrm{a} \\ \hline \end{gathered}$
$\begin{aligned} & \mathrm{H} 6 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	Italian	$\begin{gathered} \hline 6.65 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 5.987 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 6.213 \mathrm{bc} \\ \mathrm{de} \end{gathered}$	$\begin{gathered} 5.793 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 4.947 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 4.947 \\ \text { ab } \\ \hline \end{gathered}$	0d	0c	0b	$\begin{gathered} 5.757 \\ \mathrm{ab} \end{gathered}$
	Modes to	$\begin{gathered} 5.95 \\ 3 \mathrm{a} \end{gathered}$	$\begin{gathered} 6.073 b \\ c \end{gathered}$	5.013 e	4.94bc	4.48a	$\begin{gathered} 4.14 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	0d	0c	0b	$\begin{gathered} 5.099 \\ a b \end{gathered}$
	Genex	$\begin{gathered} 6.49 \\ 3 \mathrm{a} \end{gathered}$	5.447c	5.7cde	$\begin{gathered} 5.553 a \\ b c \end{gathered}$	$\begin{gathered} 5.153 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 5.587 \\ a \end{gathered}$	0d	0c	0b	$\begin{gathered} 5.655 \\ \mathrm{ab} \end{gathered}$
$\begin{aligned} & \mathrm{H} 8 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	Italian	$\begin{gathered} 7.10 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 5.933 b \\ c \\ \hline \end{gathered}$	5.88cde	$\begin{gathered} 6.087 a \\ b c \\ \hline \end{gathered}$	4.9a	$\begin{gathered} 4.654 \\ \mathrm{ab} \\ \hline \end{gathered}$	7.64a	6.6ab	0b	6.1ab
	Modes to	$\begin{gathered} 6.44 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 5.913 b \\ c \\ \hline \end{gathered}$	4.947e	$\begin{gathered} 5.013 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 4.427 \\ \mathrm{a} \\ \hline \end{gathered}$	2.8 ab	4.94c	$\begin{gathered} 5.853 \\ \mathrm{ab} \\ \hline \end{gathered}$	Ob	$\begin{gathered} 4.236 \\ \mathrm{~b} \\ \hline \end{gathered}$
	Genex	$\begin{gathered} 6.24 \\ \mathrm{a} \\ \hline \end{gathered}$	6 bc	5.92cde	$\begin{gathered} 5.62 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 4.913 \\ \mathrm{a} \\ \hline \end{gathered}$	5.35a	$\begin{gathered} 5.507 \\ b c \end{gathered}$	$\begin{gathered} 5.933 \\ a b \\ \hline \end{gathered}$	0b	$\begin{gathered} 4.905 \\ \mathrm{ab} \\ \hline \end{gathered}$

*Hgp=Harvesting green pod;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $\mathrm{H} 8 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed; $\mathrm{H}=$ harvest.

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (7) The effects of harvesting frequencies on individual pod dry weight (g) plant at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	Means
Harvesti ng types	Hgp	$\begin{gathered} 1.68 \\ 2 \mathrm{a} \end{gathered}$	1.71b	1.743b	$\begin{gathered} 1.404 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 1.23 \\ 6 \mathrm{~b} \end{gathered}$	0.965a	$\begin{gathered} 1.231 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 1.66 \\ 3 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.763 \\ \mathrm{a} \end{gathered}$	0.965a
	Hds	0b	2.34a	2.212a	$\begin{gathered} 1.941 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.73 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	1.107a	$\begin{gathered} 0.785 \\ c \end{gathered}$	$\begin{gathered} 1.55 \\ \mathrm{a} \end{gathered}$	1.56a	1.107a
	$\begin{aligned} & \mathrm{H} 4 \mathrm{gp}+ \\ & \mathrm{sd}+ \end{aligned}$	$\begin{gathered} 1.88 \\ 2 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.605 \\ b \end{gathered}$	1.673b	$\begin{gathered} 1.412 \\ \mathrm{~b} \end{gathered}$	0c	1.278a	1.14b	$\begin{gathered} 1.80 \\ 6 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.266 \\ \mathrm{a} \end{gathered}$	1.57a
	$\begin{aligned} & \text { H6gp+ } \\ & \text { sd } \\ & \hline \end{aligned}$	$\begin{gathered} 1.68 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.553 \\ \mathrm{~b} \\ \hline \end{gathered}$	1.502b	$\begin{gathered} 1.292 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 1.15 \\ 7 \mathrm{~b} \\ \hline \end{gathered}$	1.132a	0d	$\begin{gathered} 1.82 \\ 1 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.654 \\ \mathrm{a} \\ \hline \end{gathered}$	1.535a
	$\begin{aligned} & \mathrm{H} 8 \mathrm{gp}+ \\ & \mathrm{sd} \end{aligned}$	$\begin{gathered} 1.76 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.581 \\ \mathrm{~b} \\ \hline \end{gathered}$	1.454b	$\begin{gathered} 1.408 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 1.12 \\ 4 \mathrm{~b} \\ \hline \end{gathered}$	0.976a	1.47a	$\begin{gathered} 1.59 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.843 \\ \mathrm{a} \end{gathered}$	0.976a
Seeds Source	Italian	$\begin{gathered} 1.50 \\ 2 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.811 \\ \mathrm{a} \end{gathered}$	1.904a	$\begin{gathered} 1.697 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.09 \\ 9 \mathrm{a} \end{gathered}$	1.203a	$\begin{gathered} 1.243 \\ a \end{gathered}$	$\begin{gathered} 1.77 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.791 \\ \mathrm{a} \end{gathered}$	1.389a
	Modes to	$\begin{gathered} 1.36 \\ \mathrm{a} \\ \hline \end{gathered}$	1.73a	1.489b	$\begin{gathered} 1.246 \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 0.89 \\ \mathrm{~b} \\ \hline \end{gathered}$	0.742b	$\begin{gathered} 0.623 \\ c \end{gathered}$	$\begin{gathered} 1.63 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	1.5a	0.923b
	Genex	$\begin{gathered} 1.34 \\ 2 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.732 \\ \mathrm{a} \end{gathered}$	1.758a	$\begin{gathered} 1.531 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 1.16 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	1.329a	$\begin{gathered} 0.969 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 1.65 \\ 4 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.561 \\ \mathrm{a} \end{gathered}$	1.38a
Hgp	Italian	$\begin{gathered} 1.87 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.73 \mathrm{~b} \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.903 \mathrm{~b} \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.626 \\ \text { bc } \end{gathered}$	$\begin{gathered} 1.25 \\ 6 \mathrm{~b} \end{gathered}$	$\begin{aligned} & 0.823 \mathrm{a} \\ & \mathrm{bc} \end{aligned}$	$\begin{gathered} 1.763 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 1.92 \\ 3 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.853 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 0.823 \mathrm{bc} \\ \text { de } \end{gathered}$
	Modes to	$\begin{gathered} 1.66 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.67 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	1.42def	$\begin{gathered} 1.273 \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.13 \\ 6 \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 0.716 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 1.116 \\ c \end{gathered}$	$\begin{gathered} 1.49 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.66 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	0.716cde
	Genex	$\begin{gathered} 1.51 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.72 \mathrm{~b} \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.83 \mathrm{bc} \\ \mathrm{de} \end{gathered}$	$\begin{gathered} 1.313 \\ c d \end{gathered}$	$\begin{gathered} 1.31 \\ 6 \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 1.356 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	1.07c	$\begin{gathered} 1.57 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.776 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 1.356 \mathrm{abc} \\ \mathrm{~d} \end{gathered}$
Hds	Italian	0b	$\begin{gathered} 2.406 \\ \mathrm{a} \\ \hline \end{gathered}$	2.473a	$\begin{gathered} 2.226 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.86 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	1.623a	$\begin{gathered} 0.973 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.606 \\ \mathrm{ab} \\ \hline \end{gathered}$	1.623ab
	Modes to	0b	$\begin{gathered} 2.24 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 1.993 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 1.616 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ 6 \mathrm{~b} \\ \hline \end{gathered}$	0.49c	0d	$\begin{gathered} 1.58 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.463 \\ \mathrm{ab} \end{gathered}$	0.49e
	Genex	0b	$\begin{gathered} 2.373 \\ \mathrm{ab} \\ \hline \end{gathered}$	2.17ab	$\begin{gathered} 1.98 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 1.99 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.21 \mathrm{ab} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 1.383 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} 1.76 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.61 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 1.21 \mathrm{abcd} \\ \mathrm{e} \end{gathered}$
$\underset{d}{\mathrm{H} 4 \mathrm{gp}+\mathrm{s}}$	Italian	$\begin{gathered} 1.91 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.73 \mathrm{~b} \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.963 \mathrm{~b} \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.613 \\ \text { bc } \\ \hline \end{gathered}$	0c	$\begin{gathered} 1.35 \mathrm{ab} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 1.446 \\ \text { bc } \end{gathered}$	$\begin{gathered} 1.86 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.633 \\ \mathrm{ab} \\ \hline \end{gathered}$	1.713a
	$\begin{aligned} & \hline \text { Modes } \\ & \text { to } \\ & \hline \end{aligned}$	$\begin{gathered} 1.92 \\ 3 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.593 \\ \text { cd } \end{gathered}$	1.42ef	1.05d	0c	$\begin{gathered} 1.013 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 0.936 \\ c \end{gathered}$	$\begin{gathered} 1.79 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.003 \\ \mathrm{~b} \end{gathered}$	1.4abcd
	Genex	$\begin{gathered} 1.81 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.493 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 1.636 \mathrm{c} \\ \text { def } \end{gathered}$	$\begin{gathered} 1.573 \\ \text { bc } \\ \hline \end{gathered}$	0c	$\begin{gathered} 1.473 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 1.036 \\ c \end{gathered}$	$\begin{gathered} 1.76 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.163 \\ \mathrm{ab} \end{gathered}$	1.598ab
$\begin{aligned} & \mathrm{H} 6 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	Italian	$\begin{gathered} 1.82 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.593 \\ \text { cd } \end{gathered}$	$\begin{gathered} 1.643 \mathrm{c} \\ \text { def } \end{gathered}$	$\begin{gathered} 1.413 \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.21 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 1.126 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	0d	$\begin{gathered} 2.02 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.906 \\ a b \end{gathered}$	1.684ab
	Modes to	1.5a	1.6cd	1.313f	1.08d	$\begin{gathered} \hline 0.99 \\ 3 \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \mathrm{ab} \\ \mathrm{c} \end{gathered}$	0d	$\begin{gathered} 1.78 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.543 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 1.402 \mathrm{abc} \\ \mathrm{~d} \end{gathered}$
	Genex	$\begin{gathered} 1.72 \\ 6 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.466 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} \substack{1.55 \mathrm{cde} \\ \mathrm{f}} \\ \hline \end{gathered}$	$\begin{gathered} 1.383 \\ \mathrm{~cd} \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ \mathrm{~b} \\ \hline \end{gathered}$	1.39ab	0d	$\begin{gathered} 1.66 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.513 \\ \mathrm{ab} \\ \hline \end{gathered}$	1.521 abc
$\begin{aligned} & \mathrm{H} 8 \mathrm{gp+s} \\ & \mathrm{~d} \end{aligned}$	Italian	$\begin{gathered} 1.91 \\ 3 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.586 \\ \text { cd } \end{gathered}$	$\begin{aligned} & 1.536 \mathrm{c} \\ & \text { def } \end{aligned}$	$\begin{gathered} 1.606 \\ \text { bc } \end{gathered}$	$\begin{gathered} 1.16 \\ 3 b \end{gathered}$	$\begin{gathered} 1.103 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	2.03a	$\begin{gathered} 1.70 \\ 6 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.956 \\ a \end{gathered}$	$\begin{gathered} 1.103 \mathrm{abc} \\ \text { de } \end{gathered}$
	Modes to	$\begin{gathered} 1.72 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.55 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	1.223f	$\begin{gathered} 1.213 \\ c d \end{gathered}$	$\begin{gathered} 0.98 \\ 3 \mathrm{~b} \end{gathered}$	0.61bc	1.02c	$\begin{gathered} 1.52 \\ 0 \mathrm{a} \end{gathered}$	$\begin{gathered} 1.83 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	0.61 de
	Genex	$\begin{gathered} 1.65 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.606 \\ c d \end{gathered}$	$\begin{gathered} 1.603 \mathrm{c} \\ \text { def } \end{gathered}$	$\begin{gathered} 1.406 \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 1.22 \\ 6 \mathrm{~b} \end{gathered}$	$\begin{gathered} 1.216 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 1.356 \\ \text { bc } \end{gathered}$	$\begin{gathered} 1.54 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.743 \\ a b \end{gathered}$	$\begin{gathered} 1.216 \mathrm{abc} \\ \text { de } \end{gathered}$

[^1]
The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (8) The effects of harvesting frequencies on seed number per pod at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	Means
Harvesti ng types	Hgp	8.31ab	$\begin{gathered} 9.13 \\ \mathrm{a} \end{gathered}$	9.06a	9.22a	7.23bc	5.49a	9.16a	$\begin{gathered} 8.14 a \\ b \end{gathered}$	8.13a	8.22a
	Hds	0.00c	$\begin{gathered} 8.37 \\ \mathrm{a} \end{gathered}$	8.88a	8.80a	8.73a	5.40a	4.23c	7.09b	7. 57 a	7.38b
	$\begin{gathered} \text { H4gp+ } \\ \text { sd } \end{gathered}$	7.58 b	$\begin{gathered} 9.22 \\ \mathrm{a} \end{gathered}$	8.89a	8.57a	0d	7.34a	7.61b	$\begin{gathered} 7.37 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	5.83a	7.81ab
	$\begin{gathered} \text { H6gp+ } \\ \text { sd } \\ \hline \end{gathered}$	8.31ab	$\begin{gathered} 8.34 \\ \mathrm{a} \end{gathered}$	8.99a	8.13a	6.78c	6.08a	0d	$\begin{gathered} 8.72 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	8.11a	7.93ab
	$\begin{gathered} \text { H8gp+ } \\ \text { sd } \end{gathered}$	9 a	$\begin{gathered} 9.02 \\ \mathrm{a} \\ \hline \end{gathered}$	8.47a	8.21a	7.86b	5.97a	9.09a	8.99a	8.38a	8.33a
Seeds Source	Italian	6. 76 a	$\begin{gathered} 8.71 \\ \mathrm{a} \end{gathered}$	8.61a	9.06a	6.13b	6.65a	6.15a	7.82a	8.26a	8.09b
	Modest 0	5.79b	$\begin{gathered} 8.59 \\ \mathrm{a} \\ \hline \end{gathered}$	8.87a	7.29b	5.40c	6.91a	4.91b	8.03a	7.06b	7.19c
	Genex	7.37a	$\begin{gathered} 9.22 \\ \mathrm{a} \end{gathered}$	9.1a	9.41a	6.89a	$\begin{gathered} 6 . \\ 91 \mathrm{a} \end{gathered}$	6.99a	8.33a	7.5ab	8.52a
Hgp	Italian	8.47ad	8.9a	9.1ab	10.07a	7.37be	$\begin{aligned} & 4.57 \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	9.1ab	8.13a	9.07a	8.3ac
	Modest o	7.18cd	8.6a	9 ab	7.7bd	6.2de	4.7 ab	8.5ab	7.9a	7.6ab	7.49cd
	Genex	9.3 ab	9.9a	$\begin{gathered} 9.13 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	9.93 a	$\begin{gathered} \text { 8.43ab } \\ \mathrm{c} \\ \hline \end{gathered}$	7.2ab	9.87a	8.4a	7.7Ab	8.87a
Hds	Italian	0 e	$\begin{gathered} 8.37 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 9.17 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	8.7abc	8.87ab	8.3a	5.27c	5.8a	$\begin{gathered} 7.77 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 7.78 \mathrm{bc} \\ \mathrm{~d} \\ \hline \end{gathered}$
	Modest	0 e	$\begin{gathered} 7.93 \\ \mathrm{a} \\ \hline \end{gathered}$	8.2ab	$\begin{gathered} 8.6 \mathrm{abc} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 7.93 \mathrm{ab} \\ \mathrm{~cd} \\ \hline \end{gathered}$	2.37b	0d	7.23a	$\begin{gathered} 6.83 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	6.14e
	Genex	0e	8.8a	$\begin{gathered} 9.26 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	9.1ab	9.4 a	$\begin{gathered} 5.53 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 7.43 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	8.23a	8.1a	$\begin{gathered} 8.23 \mathrm{ab} \\ \mathrm{c} \end{gathered}$
H4gp+sd	Italian	$\begin{gathered} 7.93 \mathrm{ab} \\ \mathrm{~cd} \end{gathered}$	9.3a	$\begin{gathered} 8.23 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	9.2 ab	Of	7.33a	$\begin{gathered} 7.83 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	7.47a	7.4ab	$\begin{gathered} 8.09 \mathrm{ab} \\ \mathrm{c} \end{gathered}$
	Modest	6.5 d	$\begin{gathered} 9.47 \\ \mathrm{a} \end{gathered}$	8.8ab	6.87cd	Of	6.2a	$\begin{gathered} 6.67 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	6.87a	4.87c	7.03d
	Genex	$\begin{gathered} \text { 8.3abc } \\ \mathrm{d} \end{gathered}$	9.2a	$\begin{gathered} 9.63 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	9.63 ab	Of	8.5a	$\begin{gathered} 8.33 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	7.77a	$\begin{gathered} 5.23 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 8.33 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$
H6gp+sd	Italian	$\begin{gathered} 8.23 \mathrm{ab} \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 7.83 \\ \mathrm{a} \\ \hline \end{gathered}$	8.6ab	$\begin{gathered} 8.77 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 6.63 \mathrm{~cd} \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 5.93 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	0d	8.77a	7.9a	$\begin{gathered} 7.83 \mathrm{bc} \\ \mathrm{~d} \\ \hline \end{gathered}$
	$\begin{gathered} \hline \text { Modest } \\ \mathrm{o} \end{gathered}$	7.4bcd	$\begin{gathered} 8.17 \\ \mathrm{a} \\ \hline \end{gathered}$	9.83a	6.7 d	5.9 f	$\begin{gathered} 5.63 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	0d	9a	8.07a	7.59cd
	Genex	9.3 ab	$\begin{gathered} 9.03 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 8.53 a \\ b \\ \hline \end{gathered}$	8.93ab	$\begin{gathered} \text { 7.8abc } \\ \mathrm{d} \end{gathered}$	$\begin{gathered} 6.67 a \\ \mathrm{~b} \\ \hline \end{gathered}$	0d	8.4a	8.37a	$\begin{gathered} 8.37 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$
H8gp+sd	Italian	$\begin{gathered} 9.17 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 9.13 \\ \mathrm{a} \\ \hline \end{gathered}$	7.93b	$\begin{gathered} 8.57 \mathrm{ab} \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 7.8 \mathrm{abc} \\ \mathrm{~d} \end{gathered}$	7.1ab	8.6ab	8.93a	9.17a	$\begin{gathered} 8.49 \mathrm{ab} \\ \mathrm{c} \end{gathered}$
	Modest	$\begin{gathered} 7.87 \mathrm{bc} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 8.77 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 8.53 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	6.63 d	$\begin{gathered} 6.97 \mathrm{~cd} \\ \mathrm{e} \end{gathered}$	$\begin{gathered} 4.17 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 9.37 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	9.17a	7.9a	7.71 cd
	Genex	9.97a	$\begin{gathered} 9.17 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 8.93 a \\ b \\ \hline \end{gathered}$	9.43 ab	8.8ab	$\begin{gathered} 6.63 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	9.3 ab	8.87a	8.07a	8.8ab

[^2]
The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (9) The effects of harvesting frequencies on pod length (cm) at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	means
Harves ting types	Hgp	16.65a	$\begin{gathered} 17.477 \\ a b \end{gathered}$	$\begin{gathered} 16.872 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 15.195 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 15.838 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 11.27 \\ 8 a b \end{gathered}$	$\begin{gathered} 17.92 \\ 2 \mathrm{a} \end{gathered}$	$\begin{gathered} 16.61 \\ a b \end{gathered}$	$\begin{gathered} 16.53 \\ \mathrm{a} \end{gathered}$	16.53a
	Hds	Ob	16.17c	$\begin{gathered} 15.196 \\ b \end{gathered}$	14.37a	$\begin{gathered} 13.794 \\ b \end{gathered}$	$\begin{gathered} 9.144 \\ b \end{gathered}$	$\begin{gathered} 8.056 \\ c \end{gathered}$	$\begin{gathered} 15.06 \\ 1 b \end{gathered}$	$\begin{gathered} 16.38 \\ 3 a \end{gathered}$	16.38a
	$\begin{aligned} & \mathrm{H} 4 \mathrm{gp} \\ & +\mathrm{sd} \end{aligned}$	$\begin{gathered} 17.111 \\ \mathrm{a} \end{gathered}$	16.59c	17.33a	$\begin{gathered} 15.177 \\ \mathrm{a} \end{gathered}$	0c	$\begin{gathered} 13.94 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 15.18 \\ 3 \mathrm{~b} \end{gathered}$	$\begin{gathered} 16.61 \\ 7 \mathrm{ab} \end{gathered}$	$\begin{gathered} 12.32 \\ 8 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 15.707 \\ \mathrm{a} \\ \hline \end{gathered}$
	$\begin{aligned} & \text { H6gp } \\ & + \text { sd } \end{aligned}$	$\begin{gathered} 16.338 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 17.61 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 16.544 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 15.238 \\ \mathrm{a} \end{gathered}$	15.55a	$\begin{gathered} 14.48 \\ 3 \mathrm{a} \end{gathered}$	0d	$\begin{gathered} 17.24 \\ 6 a \end{gathered}$	$\begin{gathered} 16.61 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 16.055 \\ \mathrm{a} \end{gathered}$
	$\begin{aligned} & \text { H8gp } \\ & + \text { sd } \end{aligned}$	$\begin{gathered} 16.177 \\ \mathrm{a} \end{gathered}$	16.7 bc	16.6a	$\begin{gathered} 14.598 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 14.67 \\ a b \end{gathered}$	$\begin{gathered} 12.75 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 18.33 \\ 3 \mathrm{a} \end{gathered}$	$\begin{gathered} 17.24 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 15.96 \\ \mathrm{a} \end{gathered}$	15.96a
Seeds Source	Italia n	$\begin{gathered} 14.599 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 18.6 \\ a \end{gathered}$	$\begin{gathered} 17.986 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 16.055 \\ \mathrm{a} \\ \hline \end{gathered}$	13.09a	$\begin{gathered} 13.46 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 13.14 \\ 5 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 18.39 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 17.75 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 7.781 \\ \mathrm{a} \\ \hline \end{gathered}$
	Mode sto	12.49b	$\begin{gathered} 15.937 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 15.736 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 14.102 \\ \mathrm{~b} \\ \hline \end{gathered}$	11.19b	$\begin{gathered} \hline 10.04 \\ \mathrm{a} \\ \hline \end{gathered}$	9.62b	$\begin{gathered} 15.43 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 13.86 \\ b \end{gathered}$	14.82c
	$\begin{array}{\|l\|} \hline \text { Gene } \\ \mathrm{x} \end{array}$	12.68b	16.15b	$\begin{gathered} 15.805 \\ \text { b } \end{gathered}$	$\begin{gathered} 14.596 \\ b \end{gathered}$	$\begin{gathered} 11.63 \\ b \end{gathered}$	$\begin{gathered} 13.45 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 12.93 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 15.85 \\ b \end{gathered}$	$\begin{gathered} 15.07 \\ 8 b \end{gathered}$	$\begin{gathered} 15.781 \\ \mathrm{~b} \end{gathered}$
Hgp	Italia n	18.4ab	$\begin{gathered} 19.023 \\ a b \\ \hline \end{gathered}$	$\begin{gathered} 18.35 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	16.4a	$\begin{gathered} 17.416 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 10.25 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 19.56 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 18.57 \\ 7 \mathrm{ab} \end{gathered}$	$\begin{gathered} 18.25 \\ \mathrm{a} \end{gathered}$	18.25a
	Mode sto	$\begin{gathered} 15.533 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 16.69 \mathrm{c} \\ \mathrm{de} \end{gathered}$	$\begin{gathered} 16.333 \\ \text { abcd } \end{gathered}$	$\begin{gathered} 14.353 \\ \text { bc } \end{gathered}$	$\begin{gathered} 14.983 \\ \text { bcd } \end{gathered}$	$\begin{gathered} 9.883 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 16.96 \\ 7 \mathrm{ab} \end{gathered}$	$\begin{gathered} 15.49 \\ 3 \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 15.23 \\ 3 \mathrm{ab} \end{gathered}$	$\begin{gathered} 15.233 \\ \text { de } \end{gathered}$
	Gene	$\begin{gathered} 16.016 \\ \text { cd } \\ \hline \end{gathered}$	$\begin{gathered} 16.72 \mathrm{c} \\ \mathrm{de} \end{gathered}$	$\begin{gathered} 15.933 \\ \text { bcd } \end{gathered}$	$\begin{gathered} 14.833 \\ \text { abc } \end{gathered}$	$\begin{gathered} 15.116 \\ \text { bcd } \end{gathered}$	$\begin{gathered} 13.7 a \\ b \end{gathered}$	$\begin{gathered} 17.23 \\ 3 \mathrm{ab} \end{gathered}$	$\begin{gathered} 15.87 \\ 3 \mathrm{c} \end{gathered}$	$\begin{gathered} 16.11 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 16.116 \\ \text { bcde } \end{gathered}$
Hds	Italia n	0 e	$\begin{gathered} 18.053 \\ \text { abcd } \end{gathered}$	$\begin{gathered} 16.383 \\ \text { abcd } \end{gathered}$	$\begin{gathered} 15.226 \\ \text { abc } \end{gathered}$	14.8cd	$\begin{gathered} 13.21 \\ 7 \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 10.28 \\ 3 \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 16.46 \\ 7 \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 17.85 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 17.85 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$
	Mode sto	0.00e	15.193 e	$\begin{gathered} 14.680 \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 13.840 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 12.183 \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 4 . \\ 33 \mathrm{~b} \end{gathered}$	0d	$\begin{gathered} 13.93 \\ 3 \mathrm{c} \end{gathered}$	$\begin{gathered} 14.76 \\ 7 \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 14.77 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$
	$\begin{array}{\|l\|} \hline \text { Gene } \\ \mathrm{x} \\ \hline \end{array}$	0.00e	$\begin{gathered} 15.276 \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 14.527 \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 14.066 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 14.400 \\ \mathrm{~cd} \\ \hline \end{gathered}$	$\begin{gathered} 9.883 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 13.88 \\ 3 \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 14.78 \\ 3 \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 16.53 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 16.533 \\ \text { abcd } \end{gathered}$
$\begin{aligned} & \mathrm{H} 4 \mathrm{gp}+ \\ & \text { sd } \end{aligned}$	Italia n	$\begin{gathered} 18.600 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 18.546 \\ \text { abc } \\ \hline \end{gathered}$	$\begin{gathered} 18.967 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 16.366 \\ a \end{gathered}$	0.00f	$\begin{gathered} 14 . \\ 55 \mathrm{ab} \end{gathered}$	$\begin{gathered} 15.66 \\ 0 \mathrm{ab} \end{gathered}$	$\begin{gathered} 18.57 \\ 7 \mathrm{ab} \end{gathered}$	$\begin{gathered} 16.73 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 17.842 \\ a b \\ \hline \end{gathered}$
	Mode sto	$\begin{gathered} 16.250 \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 15.606 \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 18.167 \\ \text { bcd } \end{gathered}$	$\begin{gathered} 14.016 \\ c \end{gathered}$	0.00f	$\begin{gathered} 12.48 \\ 3 \mathrm{ab} \end{gathered}$	$\begin{gathered} 13.75 \\ 0 \mathrm{bc} \end{gathered}$	$\begin{gathered} 15.49 \\ 3 \mathrm{c} \end{gathered}$	$\begin{gathered} 9 . \\ 393 \mathrm{c} \end{gathered}$	$\begin{gathered} 14.284 \\ \mathrm{e} \end{gathered}$
	$\begin{array}{\|l\|} \hline \text { Gene } \\ \mathrm{x} \\ \hline \end{array}$	$\begin{gathered} 16.483 \\ \text { bcd } \end{gathered}$	$\begin{gathered} 15.610 \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 16.867 \\ \text { abcd } \end{gathered}$	$\begin{gathered} 15.150 \\ \text { abc } \end{gathered}$	0.00 f	$\begin{gathered} 14.80 \\ 0 \mathrm{a} \end{gathered}$	$\begin{gathered} 16.13 \\ 7 \mathrm{ab} \end{gathered}$	$\begin{gathered} 15.78 \\ 3 \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 10.86 \\ 7 \mathrm{bc} \end{gathered}$	$\begin{gathered} 14.995 \\ \text { de } \\ \hline \end{gathered}$
$\begin{aligned} & \text { H6gp+ } \\ & \text { sd } \end{aligned}$	Italia n	$\begin{gathered} 17.900 \\ \text { abc } \\ \hline \end{gathered}$	$\begin{gathered} 19.160 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 18.267 \\ \text { abc } \end{gathered}$	$\begin{gathered} 16.283 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 17.100 \\ a b \\ \hline \end{gathered}$	$\begin{gathered} 14.31 \\ 7 \mathrm{ab} \end{gathered}$	0.00d	$\begin{gathered} 19.17 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 18.30 \\ 0 \mathrm{a} \end{gathered}$	$\begin{gathered} 17.332 \\ \mathrm{abc} \end{gathered}$
	Mode sto	$\begin{gathered} 15.450 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 16.580 \\ \text { cde } \end{gathered}$	$\begin{gathered} 15.567 \\ \mathrm{~cd} \\ \hline \end{gathered}$	$\begin{gathered} 14.266 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} 14.916 \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 14.21 \\ 7 \mathrm{ab} \end{gathered}$	0.00d	$\begin{gathered} 16.11 \\ 7 \mathrm{bc} \end{gathered}$	$\begin{gathered} 15.28 \\ 3 \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 15.182 \\ \text { de } \end{gathered}$
	$\begin{array}{\|l\|} \hline \text { Gene } \\ \mathrm{x} \end{array}$	$\begin{gathered} 15.666 \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 17.110 \\ \text { bcde } \end{gathered}$	$\begin{gathered} 15.800 \\ \text { bcd } \\ \hline \end{gathered}$	15.166 abc	$\begin{gathered} 14.633 \\ \mathrm{~cd} \\ \hline \end{gathered}$	$\begin{gathered} 12.91 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	0.00d	$\begin{gathered} 16.45 \\ 0 \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 16.26 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 15.651 \\ \text { cde } \\ \hline \end{gathered}$
$\begin{aligned} & \text { H8gp+ } \\ & \text { sd } \end{aligned}$	Italia n	$\begin{gathered} 18.083 \\ \text { abc } \end{gathered}$	$\begin{gathered} 18.450 \\ \text { abc } \\ \hline \end{gathered}$	$\begin{gathered} 17.967 \\ \text { abc } \end{gathered}$	16ab	$\begin{gathered} 16.133 \\ \text { abc } \end{gathered}$	$\begin{gathered} 14.98 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 20.21 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 19.17 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 17.63 \\ 3 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 17.633 \\ \mathrm{abc} \end{gathered}$
	Mode sto	$\begin{gathered} 15.216 \\ d \end{gathered}$	$\begin{gathered} 15.616 \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 15.933 \\ \text { bcd } \end{gathered}$	$\begin{gathered} 14.033 \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 14.866 \\ \text { de } \end{gathered}$	$\begin{gathered} 9.283 \\ a b \end{gathered}$	$\begin{gathered} 17.38 \\ 3 \mathrm{ab} \end{gathered}$	$\begin{gathered} 16.11 \\ 7 \mathrm{bc} \end{gathered}$	$\begin{gathered} 14.63 \\ 7 \mathrm{ab} \end{gathered}$	$\begin{gathered} 14.636 \\ \text { de } \end{gathered}$
	$\begin{aligned} & \text { Gene } \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} 15.233 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 16.033 \\ \text { de } \end{gathered}$	$\begin{gathered} 15.900 \\ \text { bcd } \end{gathered}$	$\begin{gathered} 13.763 \\ c \end{gathered}$	$\begin{gathered} 14.033 \\ \text { cde } \end{gathered}$	$\begin{gathered} 13.98 \\ 3 \mathrm{ab} \end{gathered}$	$\begin{gathered} 17.40 \\ 0 \mathrm{ab} \end{gathered}$	$\begin{gathered} 16.45 \\ 0 \mathrm{bc} \end{gathered}$	$\begin{gathered} 15.61 \\ 0 \mathrm{ab} \end{gathered}$	$\begin{gathered} 15.610 \\ \text { cde } \end{gathered}$

*Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed;
H8gp+sd= Harvesting green pods eight tims and the rest were left for dry seed; $\mathrm{H}=$ harvest.

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (10) The effects of harvesting frequencies on aborted seed number per pod at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	means
Harvesti ng types	Hgp	2.47a	$\begin{gathered} 2.51 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.54ab	2.73 ab	$\begin{gathered} 3.12 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.52 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3.01a	$\begin{gathered} 2.32 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.12 \\ \mathrm{a} \end{gathered}$	2.6 a
	Hds	0.00b	1.89b	1.99b	1.93c	2.52b	2.01b	1.77b	$\begin{gathered} 2.14 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.38 \\ \mathrm{a} \end{gathered}$	2.08b
	$\begin{aligned} & \mathrm{H} 4 \mathrm{gp}+ \\ & \text { sd } \end{aligned}$	1.99a	$\begin{gathered} 2.12 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3.04a	2.60b	0.00c	$\begin{gathered} 2.52 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.96a	$\begin{gathered} 2.32 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.72 \\ \mathrm{a} \end{gathered}$	2.41a
	$\begin{aligned} & \text { H6gp+ } \\ & \text { sd } \end{aligned}$	2.08a	2.73a	2.77ab	3.08a	3.30a	3.49a	0.00c	$\begin{gathered} 1.90 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.07 \\ \mathrm{a} \end{gathered}$	2.68a
	$\begin{aligned} & \mathrm{H} 8 \mathrm{gp}+ \\ & \text { sd } \end{aligned}$	2.37a	$\begin{gathered} 2.48 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.66ab	2.51 b	3.69a	$\begin{gathered} 2.91 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.53a	$\begin{gathered} 2.32 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.74 \\ \mathrm{a} \end{gathered}$	2.58a
Seeds Source	Italian	$\begin{gathered} 1.77 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.39a	2.62b	2.27b	2.37b	2.80a	1.73b	$\begin{gathered} 1.79 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 1.97 \\ \mathrm{a} \end{gathered}$	2.34b
	Modest o	2.20a	2.90a	3.11a	3.01a	2.95a	2.52a	1.90b	$\begin{gathered} 2.35 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.07 \\ \mathrm{a} \\ \hline \end{gathered}$	2.73a
	Genex	1.35b	1.75b	2.07c	2.42b	2.27b	2.75a	2.53a	$\begin{gathered} 2.46 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1.98 \\ \mathrm{a} \end{gathered}$	2.32b
Hgp	Italian	$\begin{gathered} 2.277 \\ a b \end{gathered}$	$\begin{gathered} 2.57 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 2.30 \mathrm{cde} \\ \mathrm{f} \end{gathered}$	$\begin{gathered} \text { 2.13cde } \\ \text { f } \end{gathered}$	$\begin{gathered} 2.87 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 2.37 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.30 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 1.83 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.03 \\ \mathrm{a} \\ \hline \end{gathered}$	2.35cde
	Modest o	2.97a	$\begin{gathered} 3.13 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3.33abc	3.27a	$\begin{gathered} 3.73 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.37 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.23 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.60 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.23 \\ \mathrm{a} \end{gathered}$	2.99ab
	Genex	$\begin{gathered} 1.67 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 1.83 b \\ c \end{gathered}$	2 ef	$\begin{gathered} 2.80 \mathrm{abc} \\ \mathrm{de} \end{gathered}$	$\begin{gathered} 2.77 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 2.83 a \\ b \\ \hline \end{gathered}$	3.50a	$\begin{gathered} 2.53 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.10 \\ \mathrm{a} \\ \hline \end{gathered}$	2.45abc de
Hds	Italian	0.00c	$\begin{gathered} 1.87 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	1.97 ef	1.67 f	2.27c	$\begin{gathered} 2.70 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.10 b \\ c \end{gathered}$	$\begin{gathered} 1.37 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.23 \\ \mathrm{a} \\ \hline \end{gathered}$	2.02e
	Modest o	0.00c	$\begin{gathered} 2.43 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{aligned} & 2.30 \mathrm{cde} \\ & \mathrm{f} \\ & \hline \end{aligned}$	$\begin{gathered} 2.17 \mathrm{bcd} \\ \text { ef } \end{gathered}$	$\begin{gathered} 3.30 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	1.17b	0.00d	$\begin{gathered} 2.43 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.53 \\ \mathrm{a} \\ \hline \end{gathered}$	2.04 e
	Genex	0.00c	1.37c	1.70 f	1.97def	2c	$\begin{gathered} 2.17 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.20 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 2.63 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.37 \\ \mathrm{a} \\ \hline \end{gathered}$	2.18de
H4gp+sd	Italian	$\begin{gathered} 1.93 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.30 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	3.40ab	$\begin{gathered} 2.5 \mathrm{abcd} \\ \text { ef } \end{gathered}$	0.00d	$\begin{gathered} 2.30 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.53 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 1.97 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.27 \\ \mathrm{a} \end{gathered}$	$2.40 \mathrm{bcd}$ e
	Modest o	$\begin{gathered} 2.40 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.60 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	3.37ab	3.37a	0.00d	$\begin{gathered} 2.83 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.20 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.37 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.60 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.72 \mathrm{abc} \\ \mathrm{~d} \end{gathered}$
	Genex	1.53b	1.47c	$\begin{gathered} 2.4 \mathrm{bcde} \\ \mathrm{f} \end{gathered}$	1.93ef	0.00d	$\begin{gathered} 2.43 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.13 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.62 \\ a \end{gathered}$	$\begin{gathered} 1.30 \\ \mathrm{a} \end{gathered}$	2.10 e
H6gp+sd	Italian	$\begin{gathered} 1.67 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.73 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 2.8 \text { abcd } \\ \text { ef } \end{gathered}$	3.10abc	$\begin{gathered} 3.33 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.23 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	0.00d	$\begin{gathered} 1.73 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.67 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} \text { 2.53abc } \\ \text { de } \end{gathered}$
	Modest o	$\begin{gathered} \text { 2.70a } \\ \mathrm{b} \end{gathered}$	3.33a	3.43a	3.17 ab	$\begin{gathered} 3.60 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3.87a	0.00d	$\begin{gathered} 1.87 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.20 \\ \mathrm{a} \end{gathered}$	3.02a
	Genex	$\begin{gathered} 1.87 a \\ b \\ \hline \end{gathered}$	$\begin{gathered} 2.13 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	2.07 ef	$\begin{gathered} 2.97 \mathrm{abc} \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 2.97 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 3.37 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	0.00d	$\begin{gathered} 2.10 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.33 \\ \mathrm{a} \\ \hline \end{gathered}$	2.48abc de
H8gp+sd	Italian	$\begin{gathered} 2.47 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 2.47 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 2.6 \mathrm{abcd} \\ \text { ef } \end{gathered}$	1.97def	$\begin{gathered} 3.37 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.40 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	1.70c	$\begin{gathered} 2.07 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.63 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.41 \mathrm{bcd} \\ \mathrm{e} \end{gathered}$
	Modest o	$\begin{gathered} 2.93 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3 ab	$\begin{gathered} 3.13 \mathrm{abc} \\ \mathrm{~d} \end{gathered}$	3.10abc	4.10a	$\begin{gathered} 2.37 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.07 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.50 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.80 \\ \mathrm{a} \end{gathered}$	2.89abc
	Genex	$\begin{gathered} 1.70 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 1.97 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	2.20def	$\begin{gathered} 2.5 \mathrm{abcd} \\ \mathrm{ef} \end{gathered}$	$\begin{gathered} 3.60 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.97 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.83 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 2.40 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 1.80 \\ \mathrm{a} \end{gathered}$	$2.44 \mathrm{abc}$ de

*Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $\mathrm{H} 8 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{H}=$ harvest .

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (11) The effects of harvesting frequencies on aborted ovule number per pod at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	$\underset{\mathrm{s}}{\mathrm{mean}}$
Harvestin g types	Hgp	$\begin{gathered} 2.33 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.29 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2 . \\ 52 \mathrm{ab} \end{gathered}$	3.21a	$\begin{gathered} 3 . \\ 13 \mathrm{ab} \end{gathered}$	2.9a	3.08a	2.60a	2.37a	2.71a
	Hds	$\begin{gathered} 0.00 \\ \mathrm{~b} \end{gathered}$	2.03b	2.04b	2.13c	2.49b	1.98a	1.52b	2.24a	2.16a	2.08b
	$\underset{d}{\mathrm{H} 4 \mathrm{gp}+\mathrm{s}}$	$\begin{gathered} 2.04 \\ \mathrm{a} \\ \hline \end{gathered}$	2.94a	2.89a	$\begin{gathered} 2.59 b \\ c \end{gathered}$	0.00c	3 a	3.53a	2.24a	1.92a	2.65 A
	$\underset{d}{\text { H6gp+s }}$	$\begin{gathered} 2.54 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.51 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.52 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.97 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3.44a	3.49a	0.00c	2.06a	2.38a	2.74 A
	$\begin{gathered} \text { H8gp+s } \\ d \end{gathered}$	$\begin{gathered} 2.41 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2.62 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.99a	$\begin{gathered} 2.83 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.99 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3.14a	3.23a	2.39a	1.86a	2.72a
Seeds Source	Italian	$\begin{gathered} 1.85 \\ \mathrm{a} \end{gathered}$	2.40a	$\begin{gathered} 2.67 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.76b	2.39b	3 a	1.83 b	2.16a	2.12a	2.53b
	Modest	$\begin{gathered} 1.95 \\ \mathrm{a} \end{gathered}$	2.60a	2.91a	3.30a	2.88a	3.24a	2.44a	2.38a	2.05a	2.83a
	Genex	1.79	2.30a	2.21b	2.18c	1.96b	2.47a	2.55a	2.38a	2.24a	2.38b
Hgp	Italian	$\begin{gathered} 2.77 \\ \mathrm{a} \\ \hline \end{gathered}$	2.23a	$\begin{gathered} 2.40 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 3.17 \mathrm{a} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 2.97 \mathrm{a} \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 2.23 a \\ b \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.33 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$	2.57a	$\begin{gathered} 1.90 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 2.51 \mathrm{~b} \\ \mathrm{f} \\ \hline \end{gathered}$
	Modest o	$\begin{gathered} 1.90 \\ \mathrm{a} \end{gathered}$	2.73a	$\begin{gathered} 2.83 a \\ b \end{gathered}$	3.8a	3.9ab	3.93a	$\begin{gathered} 3.23 b \\ \mathrm{e} \end{gathered}$	2.5 a	$\begin{gathered} 2.03 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.99 \mathrm{a} \\ \mathrm{~b} \end{gathered}$
	Genex	$\begin{gathered} 2.33 \\ \mathrm{a} \end{gathered}$	1.9a	$\begin{gathered} 2.33 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.67 \mathrm{a} \\ \mathrm{e} \end{gathered}$	$\begin{gathered} 2.53 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 2.53 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.67 \mathrm{a} \\ \mathrm{c} \end{gathered}$	2.73a	3.17a	$\begin{gathered} 2.65 \mathrm{a} \\ \mathrm{~d} \end{gathered}$
Hds	Italian	0b	1.97a	1.97 b	$\begin{gathered} 2.07 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 2.53 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	2.7ab	1.97e	1.7 a	$\begin{gathered} 1.83 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.09 ef
	Modest 0	0b	2.37a	$\begin{gathered} 2.33 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.53 \mathrm{~b} \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 2.77 \mathrm{~b} \\ \mathrm{~d} \end{gathered}$	1.43 b	Of	2.97a	2.7 ab	$\begin{gathered} 2.14 \mathrm{~d} \\ \mathrm{f} \\ \hline \end{gathered}$
	Genex	0b	1.77a	1.97b	1.8 e	2.17d	1.8ab	2.6ce	2.07a	$\begin{gathered} 1.93 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	1.2 f
H4gp+sd	Italian	$\begin{gathered} 1.87 \\ \mathrm{a} \end{gathered}$	2.9a	2.8 ab	$\begin{gathered} 2.47 \mathrm{~b} \\ \mathrm{e} \end{gathered}$	0 e	$\begin{gathered} 2.97 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.73 \mathrm{c} \\ \mathrm{e} \end{gathered}$	2.5 a	$\begin{gathered} 2.67 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} \text { 2.61a } \\ \mathrm{e} \\ \hline \end{gathered}$
	Modest	$\begin{gathered} 2.43 \\ \mathrm{a} \\ \hline \end{gathered}$	3a	3.47a	$\begin{gathered} \hline 3.33 \mathrm{a} \\ \mathrm{c} \end{gathered}$	0 e	3.7ab	4.73a	2.07a	$\begin{gathered} 1.67 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	3.05a
	Genex	$\begin{gathered} 1.83 \\ \mathrm{a} \end{gathered}$	2.93a	2.4ab	1.97e	0 e	$\begin{gathered} 2.33 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.17 \mathrm{~b} \\ \mathrm{e} \end{gathered}$	2.17a	1.43 b	$\begin{gathered} 2.28 \mathrm{~d} \\ \mathrm{f} \\ \hline \end{gathered}$
H6gp+sd	Italian	$\begin{gathered} 2.63 \\ \mathrm{a} \end{gathered}$	2.7a	3 ab	$\begin{aligned} & 3.23 \mathrm{a} \\ & \mathrm{~d} \\ & \hline \end{aligned}$	$\begin{gathered} 3.33 \mathrm{a} \\ \mathrm{~d} \end{gathered}$	3.4ab	Of	1.83a	$\begin{gathered} 2.63 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.85 \mathrm{a} \\ \mathrm{c} \end{gathered}$
	Modest	$\begin{gathered} 2.87 \\ \mathrm{a} \end{gathered}$	2.77a	$\begin{gathered} 2.43 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	3.5ab	4.07a	4.14a	Of	2.07a	2.1ab	$\begin{gathered} 2.99 \mathrm{a} \\ \mathrm{~b} \end{gathered}$
	Genex	$\begin{gathered} 2.13 \\ \mathrm{a} \\ \hline \end{gathered}$	2.07a	$\begin{gathered} 2.13 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.17 \mathrm{c} \\ \mathrm{e} \end{gathered}$	$\begin{gathered} 2.93 \mathrm{a} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 2.93 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	Of	2.27a	2.4ab	2.38 cf
H8gp+sd	Italian	2a	2.5 a	$\begin{gathered} 3.17 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 2.87 \mathrm{a} \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 3.13 \mathrm{a} \\ \mathrm{~d} \end{gathered}$	3.7ab	$\begin{gathered} 2.13 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$	2.2a	$\begin{gathered} 1.57 a \\ b \\ \hline \end{gathered}$	$\begin{gathered} 2.59 \mathrm{a} \\ \mathrm{e} \\ \hline \end{gathered}$
	Modest o	$\begin{gathered} 2.57 \\ \mathrm{a} \end{gathered}$	2.53a	3.47a	$\begin{gathered} 3.33 \mathrm{a} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 3.67 \mathrm{a} \\ \mathrm{c} \end{gathered}$	3 ab	$\begin{gathered} 4.23 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.3a	$\begin{gathered} 1.73 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.98 a \\ b \\ \hline \end{gathered}$
	Genex	$\begin{gathered} 2.67 \\ \mathrm{a} \end{gathered}$	2.83a	$\begin{gathered} 2.33 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	2.3ce	2.17d	$\begin{gathered} 2.73 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 3.33 b \\ d \end{gathered}$	$\begin{gathered} 5.933 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.59 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 2.59 \mathrm{a} \\ \mathrm{e} \end{gathered}$

[^3]
The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

4. Yield

Harvest frequencies

Continuous green pod removal gave the highest final green pod yield and the highest pod dry weight yield (table, 12-17). However, continuous green pod removal gave the worst dry pod yield (zero), dry seed yield (zero), green pod yield at $5^{\text {th }}$ harvest only, dry matter of green pod at $5^{\text {th }}$ harvest only, dry matter percentage of green pod and weight of 100 seeds at $2^{\text {nd }}$ to $5^{\text {th }}$ harvests and their final means for both, as compared to dry pod harvest treatments.Dry pod harvest treatment was categorized next at the fourth order in the sequence, since it gave the worst green pods yield (zero) among other investigated treatments (table, 12-17). It gave the lowest pod dry weight and 100 seeds weight at $1^{\text {st }}$ harvest (zero). On the other hand it showed the highest final mean of dry pod yield $350.72 \mathrm{~g} . \mathrm{m}^{-2}$ and the highest final mean of dry seeds yield $298.59 \mathrm{~g} . \mathrm{m}^{-2}$. Dry pod harvest treatment highly bypassed continuous green pods harvest treatment in dry pod yield and dry seeds yield by ∞, dry matter percentages of pods at $2^{\text {nd }}$ to $5^{\text {th }}$ by $20.3,20.96,14.23$ and 10.5%, respectively, weight of 100 seeds at $2^{\text {nd }}$ to $5^{\text {th }}$ harvests and final dry seeds yield by $28.58,25.51,25.87,33.04$ and 14.26%, respectively. These results suggested that as green pod frequencies increased dry pod and seedsyield were reduced, particularly continuous green pod removal left no chance for dry pods and dry seeds attainments, and thus yields were zero for both. However, growers aimed to produce dry seeds have not to harvest green pods and if they would like to take advantage of green pods green pod removal frequencies should not be exceeded four times for acceptable compromise. In this investigation, green pods yield was considered, since consumers mainly preferred immature and green paled mature cowpea green pods (Abdel and Al-slem, 2010). The controversial balance between green pod and dry seeds yields that accompanied harvest frequencies can be referred to the assimilate partitioning between vegetative and reproductive organs, where under pod removal circumstances the balance is shifted somehow to juvenility which induce plants to be more active in shoots, flower and pods generations. Therefore, plant senescence is delayed and plants are usually produces perfuse pods. In contrast, when pods are left on plants, shoots and pods generation are usually ceased earlier with limited pod number, such phenomenon if prevailed in crops where edible tissues are consumed immature for instance cucumber (Abdel, 2009).

Seed sources

Italian appeared to be the most potent Ramshorn seed source (tables 12-17). It manifested the highest final mean of green pod yield $\left(1429.97 \mathrm{~g} . \mathrm{m}^{-2}\right)$, final mean of 100 seeds weight $(22.5 \mathrm{~g})$. It highly exceeded Genex in green pod yields at $2^{\text {nd }}$ and $3^{\text {rd }}$ harvests by 16.08 and 16.55%, respectively, weight of 100 seeds at harvests $1^{\text {st }}$ to $5^{\text {th }}$ and $9^{\text {th }}$ harvests and final mean of 100 seeds weight by $13.46,13.86,20.86,18.52,15.34,24.57$ and 14.16%, respectively. Italian source showed superiority over Modesto in green pod yield at $2^{\text {nd }}$ to $4^{\text {th }}$ harvests and final mean of green pod yield by $30.64,28.9,26.4$ and 17.25%, respectively, green pod dry weight at $2^{\text {nd }}$ to $4^{\text {th }}$ harvests and green pod dry weight by $33.69,31.1,34.59$ and 20.15%, respectively, final yield of dry pod 17.92%, final mean of dry seeds yield 18.87%, green pod dry matter percentages at $7^{\text {th }}$ harvest and final green pod dry matter percentage by 25.15 and 6.48%, respectively, weight of 100 seeds at $1^{\text {st }}$ to $7^{\text {th }}$ and $9^{\text {th }}$ harvests and final mean of 100 seeds weight by $13.84,14.92,17.81,13.76,13.16,45.64,43.8,20.92$ and 20.64%, respectively. However, it showed the worst yield of green pod at $1^{\text {st }}$ and $9^{\text {th }}$ harvests.

Modesto was the worst seed source in green pod yield, dry seed yield and green pod dry weight, since it manifested the lowest green pod yield at $2^{\text {nd }}$ to $8^{\text {th }}$ harvests and final mean of green pod yield and weight of green pod dry matter at $2^{\text {nd }}$ to $8^{\text {th }}$ harvests and final mean of green pod dry matter, dry matter percentage of green pod at $2^{\text {nd }}$ to $9^{\text {th }}$ harvests and final mean of green pod dry matter percentages at $2^{\text {nd }}, 4^{\text {th }}$ to $7^{\text {th }}$ harvests and final dry pod yield at $2^{\text {nd }}$ and $4^{\text {th }}$ to $8^{\text {th }}$, final mean

The $2{ }^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

of dry pod yield, weight of 100 seeds at $1^{\text {st }}, 2^{\text {nd }}, 6^{\text {th }}$ and $7^{\text {th }}$ harvests, and final mean of 100 seeds weight. The superiority of Italian source plant might be due to its huge vegetative growth of perfuse branching as it was apparent in the field which reflected on pod generations. It was found that Ramshorn cowpea cultivars produced by Italian company commenced with vigorous and more uniform seedlings and produced larger plant size as compared to other sources (Abdel and Al-Slem, 2010).

Harvest frequencies and seed sources combinations

Green pod continuously removed from Genex pants dual treatment (tables 12-17) was the best as it gave the highest green pod yield at $1^{\text {st }}$ harvest, final mean of green pod yield, green pod dry matter weight at $1^{\text {st }}$ and $7^{\text {th }}$ harvests, final mean of green pod dry matter. However, it displayed the lowest green pod yield at $2^{\text {nd }}, 5^{\text {th }}$ and $9^{\text {th }}$ harvests, green pod dry weight at $3^{\text {rd }}, 5^{\text {th }}$ harvests, weight of 100 seeds at $1^{\text {st }}$ to $5^{\text {th }}, 8^{\text {th }}$ and $9^{\text {th }}$ harvests and the final mean of 100 seeds weight.

Genex plants harvested as dry pods treatment was the paramount treatment (tables, 12-17). It displayed the highest pod dry weight yield and seeds dry yield at $1^{\text {st }}$ and $4^{\text {th }}$ harvests, final mean of dry seeds yield, pod dry matter percentage at $5^{\text {th }}$ harvest. However, it showed the lowest of dry pod weight at $3^{\text {rd }}$ and $5^{\text {th }}$ to $8^{\text {th }}$ harvests, dry seeds yield at $5^{\text {th }}$ to $7^{\text {th }}$ harvests, pod dry matter percentage at $1^{\text {st }}$ harvest, final mean of 100 seeds weight and 100 seeds weight at $2^{\text {nd }}$ to $5^{\text {th }}$ harvests. All seed sources that were harvested as continuous green pod harvests manifested very low dry pod yield, yield of dry seeds. In contrast all seed sources which were harvested as dry pods revealed the lowest green pods yields.

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (12) The effects of harvesting frequencies on yield of green pod $\left(\mathrm{g} . \mathrm{m}^{-2}\right)$ at (Harvests $\left.1-9\right)$ of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	Total
Harvest ing types	Hgp	$\begin{gathered} 209.17 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 367.49 \\ a \end{gathered}$	$\begin{gathered} 305.98 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 298.91 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 124.32 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 79.84 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 228.4 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 301.8 \\ 1 \mathrm{a} \end{gathered}$	$\begin{gathered} 124.72 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 2040.7 \\ 4 \mathrm{a} \end{gathered}$
	Hds	0.00b	0.00b	0.00b	0.00b	0.00c	0.00b	0.00b	0.00b	0.00b	0.00d
	$\begin{gathered} \text { H4gp } \\ \text { +sd } \end{gathered}$	$\begin{gathered} 191.92 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 407.71 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 331.98 \\ a \end{gathered}$	$\begin{gathered} 329.77 \\ \mathrm{a} \end{gathered}$	0.00c	0.00b	0.00b	0.00b	0.00b	$\begin{gathered} 1261.3 \\ 8 \mathrm{c} \end{gathered}$
	H6gp	155.07	410.68	333.29	326.23	$\begin{gathered} 144.91 \\ \mathrm{~b} \end{gathered}$	91.46	0.00b	0.00b	0.00b	$\begin{gathered} 1461.6 \\ 3 \mathrm{~b} \end{gathered}$
	$\begin{gathered} \text { H8gp } \\ +\mathrm{sd} \end{gathered}$	$\begin{gathered} 190.94 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 360.22 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 330.78 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 292.21 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 186.59 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 91.85 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 219.1 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 299.2 \\ 5 \mathrm{a} \\ \hline \end{gathered}$	0.00b	$\begin{gathered} 1970.9 \\ 6 \mathrm{a} \\ \hline \end{gathered}$
Seeds Source	Italian	$\begin{gathered} 126.28 \\ b \end{gathered}$	$\begin{gathered} 353.14 \\ a \end{gathered}$	$\begin{gathered} 296.62 \\ a \end{gathered}$	265a	$\begin{gathered} 86.96 a \\ b \end{gathered}$	$\begin{gathered} 59.02 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 97.88 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 125.3 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 19.751 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 1429 . \\ 97 \mathrm{a} \end{gathered}$
	Modes to	$\begin{gathered} 159.13 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 270.31 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 230.11 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 209.66 \\ \mathrm{~b} \end{gathered}$	76.12b	$\begin{gathered} 42.47 \\ a \end{gathered}$	$\begin{gathered} 82.51 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 116.4 \\ 2 \mathrm{a} \end{gathered}$	$\begin{gathered} 31.854 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 1218.5 \\ 9 \mathrm{~b} \end{gathered}$
	Genex	$\begin{gathered} 162.84 \\ \quad \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 304.21 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 254.49 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 273.63 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 110.41 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 56.39 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{aligned} & 88 . \\ & \text { 16a } \\ & \hline \end{aligned}$	$\begin{gathered} 118.9 \\ 1 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 23.226 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 1392.2 \\ 7 \mathrm{a} \\ \hline \end{gathered}$
Hgp	Italian	$\begin{gathered} 188.76 \\ \mathrm{ac} \end{gathered}$	$\begin{gathered} 410.27 \\ \mathrm{ac} \end{gathered}$	$\begin{gathered} 340.35 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 317.49 \\ \text { ad } \\ \hline \end{gathered}$	$\begin{gathered} 116.06 \\ \text { cd } \end{gathered}$	$\begin{gathered} 71.73 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 249.2 \\ 5 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 322.8 \\ 8 \mathrm{a} \end{gathered}$	98.75b	$\begin{gathered} 2115.5 \\ a \end{gathered}$
	Modes to	206ab	$\begin{gathered} 323.03 \\ \text { bc } \end{gathered}$	$\begin{gathered} 278.83 \\ c \end{gathered}$	$\begin{gathered} 236.11 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 109.97 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 61.03 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 201.1 \\ 2 \mathrm{a} \end{gathered}$	$\begin{gathered} 309.2 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 159.27 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 1884.7 \\ \text { bc } \end{gathered}$
	Genex	$\begin{gathered} 232.75 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 369.16 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} 288.78 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 343.14 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 146.92 \\ \mathrm{bd} \\ \hline \end{gathered}$	$\begin{gathered} 106.7 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 235.0 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 273.3 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 116.13 \\ \text { b } \\ \hline \end{gathered}$	$\begin{gathered} 2122.0 \\ 3 \mathrm{a} \\ \hline \end{gathered}$
Hds	Italian	0d	0d	0d	0 e	0 e	0b	0b	0b	0c	0 e
	Modes to	0d	0d	0d	0e	0e	0b	0b	0b	0c	0 g
	Genex	0d	0d	0d	0 e	0 e	0b	0b	0b	0c	0 g
$\underset{\mathrm{d}}{\mathrm{H} 4 \mathrm{gp}+\mathrm{s}}$	Italian	$\begin{gathered} 156.45 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} \hline 476.76 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 382.24 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 366.23 \\ \mathrm{ab} \\ \hline \end{gathered}$	0e	0b	0b	0b	0c	$\begin{gathered} 1377.8 \\ \mathrm{e} \end{gathered}$
	Modes to	$\begin{gathered} 224.47 \\ a b \end{gathered}$	$\begin{gathered} 347.67 \\ \text { bc } \end{gathered}$	$\begin{gathered} 289.38 \\ \text { bc } \end{gathered}$	$\begin{gathered} 282.06 \\ \mathrm{ad} \end{gathered}$	0e	0b	0b	0b	0c	1143.6 f
	Genex	$\begin{gathered} 194.82 \\ a b \end{gathered}$	$\begin{gathered} 402.7 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 324.23 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 341.01 \\ \mathrm{ac} \end{gathered}$	0e	0b	0b	0b	0c	$\begin{gathered} 1262.8 \\ \text { ef } \end{gathered}$
$\underset{\mathrm{d}}{\mathrm{H} 6 \mathrm{~g}+\mathrm{s}}$	Italian	$\begin{gathered} 118.97 \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 469.03 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 375.62 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 331.85 \\ \mathrm{ac} \\ \hline \end{gathered}$	$\begin{gathered} 135.15 \\ \text { bd } \\ \hline \end{gathered}$	$\begin{gathered} 105.7 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	0b	0b	0c	$\begin{gathered} 1536.4 \\ \mathrm{~d} \\ \hline \end{gathered}$
	Modes to	$\begin{gathered} 162.83 \\ \text { ac } \end{gathered}$	$\begin{gathered} 361.34 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} 293.17 \\ \text { ac } \end{gathered}$	$\begin{gathered} 277.45 \\ \text { bd } \end{gathered}$	$\begin{gathered} 119.88 \\ \text { bd } \\ \hline \end{gathered}$	78.4a	0b	0b	0c	$\begin{gathered} 1293.0 \\ 6 \mathrm{ef} \\ \hline \end{gathered}$
	Genex	$\begin{gathered} 183.41 \\ \text { ac } \end{gathered}$	$\begin{gathered} 401.67 \\ \mathrm{ac} \\ \hline \end{gathered}$	$\begin{gathered} 331.07 \\ \mathrm{ac} \end{gathered}$	369.4a	$\begin{gathered} 179.69 \\ \text { ac } \end{gathered}$	$\begin{gathered} 90.19 \\ \mathrm{a} \end{gathered}$	0b	0b	0c	$\begin{gathered} 1555.4 \\ \mathrm{~d} \end{gathered}$
$\underset{\mathrm{d}}{\mathrm{H} 8 \mathrm{gp}+\mathrm{s}}$	Italian	$\begin{gathered} 167.21 \\ \mathrm{ac} \end{gathered}$	$\begin{gathered} 413.62 \\ \mathrm{ab} \\ \hline \end{gathered}$	384.8a	$\begin{gathered} 309.41 \\ \mathrm{ad} \\ \hline \end{gathered}$	$\begin{gathered} 183.59 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 117.5 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 240.1 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 303.7 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	0 c	$\begin{gathered} 2122.0 \\ 3 \mathrm{a} \\ \hline \end{gathered}$
	Modes to	$\begin{gathered} 202.37 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 319.52 \\ c \end{gathered}$	$\begin{gathered} 289.19 \\ \text { bc } \end{gathered}$	$\begin{gathered} 252.65 \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 150.76 \\ \mathrm{bd} \\ \hline \end{gathered}$	$\begin{gathered} 72.92 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 211.4 \\ \text { 1a } \\ \hline \end{gathered}$	$\begin{gathered} 272.8 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	0c	$\begin{gathered} 1777.7 \\ \text { c } \end{gathered}$
	Genex	$\begin{gathered} 203.24 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 347.52 \\ \text { bc } \end{gathered}$	$\begin{gathered} 318.35 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 314.58 \\ \text { ad } \\ \hline \end{gathered}$	$\begin{gathered} 225.43 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 85.04 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 205.7 \\ 9 \mathrm{a} \end{gathered}$	$\begin{gathered} 321.2 \\ \mathrm{a} \end{gathered}$	0c	$\begin{gathered} 2021.1 \\ 3 \mathrm{ab} \end{gathered}$

*Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; H8gp + sd= Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{H}=$ harvest .

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (13) The effects of harvesting frequencies on weight of poddry matter ($\mathrm{g} \cdot \mathrm{m}^{-2}$) at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	Total
Harvesti ng types	Hgp	52.04a	84.07a	$\begin{gathered} 70.58 \\ a \end{gathered}$	69.17a	$\begin{gathered} 29.47 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 18.07 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 52.42 \\ a \end{gathered}$	$\begin{gathered} 72.6 \\ 1 \mathrm{a} \end{gathered}$	$\begin{gathered} 28.8 \\ 1 \mathrm{a} \end{gathered}$	477.24a
	Hds	0b	0b	0b	0b	0c	0b	0b	0b	0b	0 e
	$\begin{gathered} \text { H4gp+ } \\ \text { sd } \end{gathered}$	44.52a	92.39a	$\begin{gathered} 76.11 \\ a \end{gathered}$	74.47a	0c	0b	0b	0b	0b	287.49d
	$\begin{gathered} \text { H6gp+ } \\ \text { sd } \\ \hline \end{gathered}$	35.53a	93.71a	$\begin{gathered} 75.82 \\ a \\ \hline \end{gathered}$	77.54a	$\begin{gathered} 33.08 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 21.01 \\ \mathrm{a} \\ \hline \end{gathered}$	0b	0b	0b	336.69c
	$\begin{gathered} \mathrm{H} 8 \mathrm{gp}+ \\ \mathrm{sd} \end{gathered}$	43.26a	78.4a	$\begin{gathered} 72.61 \\ a \\ \hline \end{gathered}$	65.11a	$\begin{gathered} 40.96 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 20.59 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 50.32 \\ a \\ \hline \end{gathered}$	$\begin{gathered} \hline 68.6 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	0b	439.86b
Seeds Source	Italian	29.87b	78.3a	$\begin{gathered} 66.46 \\ a \end{gathered}$	62.3a	$\begin{gathered} 19.55 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 12.75 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 22.23 \\ a \end{gathered}$	$\begin{gathered} 29.0 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 4.36 \\ b \end{gathered}$	324.87a
	Modes to	$\begin{gathered} 36.73 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	58.57b	$\begin{gathered} 50.69 \\ \mathrm{~b} \end{gathered}$	46.29b	$\begin{gathered} 16.68 \\ b \end{gathered}$	9.55a	$\begin{gathered} 18.38 \\ a \end{gathered}$	$\begin{gathered} 26.3 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 7.19 \\ \mathrm{a} \end{gathered}$	270.39b
	Genex	38.6a	72.28a	$\begin{gathered} 59.92 \\ \mathrm{ab} \\ \hline \end{gathered}$	63.19a	$\begin{gathered} 25.88 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 13.49 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 21.04 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 29.4 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 5.74 \\ \mathrm{ab} \\ \hline \end{gathered}$	329.52a
Hgp	Italian	$\begin{gathered} 50.82 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 96.72 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 79.73 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 74.8 \mathrm{ab} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 28.42 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 15.29 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 56.79 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 75.2 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 21.7 \\ 8 \mathrm{c} \end{gathered}$	499.65a
	$\begin{gathered} \text { Modes } \\ \text { to } \\ \hline \end{gathered}$	$\begin{gathered} 48.82 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	66.67c	$\begin{gathered} 61.25 \\ \mathrm{~b} \end{gathered}$	52.93c	$\begin{gathered} 26.02 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 14.26 \\ a b \\ \hline \end{gathered}$	$\begin{gathered} 42.85 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 73.1 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 35.9 \\ 4 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 421.95 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$
	Genex	56.46a	$\begin{gathered} 88.84 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 70.76 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 79.79 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 33.98 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 24.64 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 57.61 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 69.3 \\ 4 \mathrm{a} \end{gathered}$	$\begin{gathered} 28.7 \\ \mathrm{~b} \\ \hline \end{gathered}$	510.13a
Hds	Italian	0d	0d	0c	0d	0c	0b	0c	0b	0d	0h
	Modes to	0d	Od	0c	0d	0c	0b	0c	0b	0d	0h
	Genex	0d	0d	0c	0d	0c	0b	0c	0b	0d	0h
$\underset{\mathrm{d}}{\mathrm{H} 4 \mathrm{gp}+\mathrm{s}}$	Italian	$\begin{gathered} 33.65 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 105.64 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 88.19 \\ a \\ \hline \end{gathered}$	87.85a	0c	0b	0c	0b	0d	$\begin{gathered} 315.34 \mathrm{e} \\ \mathrm{f} \end{gathered}$
	Modes to	$\begin{gathered} 54.15 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 74.86 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 61.89 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 60.54 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	0c	0b	0c	0b	0d	251.43g
	Genex	$\begin{gathered} 45.76 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 96.67 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 78.26 \\ \text { ab } \end{gathered}$	$\begin{gathered} 75.03 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	0c	0b	0c	0b	0d	$\begin{gathered} 295.71 \mathrm{f} \\ \mathrm{~g} \end{gathered}$
$\underset{\mathrm{d}}{\mathrm{H} 6 \mathrm{~g}+\mathrm{s}}$	Italian	26.17c	$\begin{gathered} 104.81 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 83.05 \\ \mathrm{ab} \end{gathered}$	80.2ab	$\begin{gathered} 30.26 \\ b \end{gathered}$	$\begin{gathered} 23.53 \\ \mathrm{a} \end{gathered}$	0c	0b	0d	$\begin{gathered} 348.02 \mathrm{~d} \\ \text { ef } \end{gathered}$
	Modes to	$\begin{gathered} 37.18 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 81.81 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 65.39 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 64.28 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 25.92 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 17.41 \\ \mathrm{a} \\ \hline \end{gathered}$	0c	0b	0d	292fg
	Genex	$\begin{gathered} 43.23 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 94.52 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} \hline 79.01 \\ \mathrm{ab} \\ \hline \end{gathered}$	88.15a	$\begin{gathered} 43.07 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 22.07 \\ \mathrm{a} \\ \hline \end{gathered}$	0c	0b	0d	$\begin{gathered} 370.05 \mathrm{c} \\ \text { de } \end{gathered}$
$\underset{\mathrm{d}}{\mathrm{H8gp}+\mathrm{s}}$	Italian	$\begin{gathered} 38.71 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 84.33 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 81.34 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 68.65 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 39.09 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 24.94 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 54.35 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 69.9 \\ 2 \mathrm{a} \\ \hline \end{gathered}$	0d	$\begin{gathered} 461.33 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$
	Modes to	$\begin{gathered} 43.51 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 69.53 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 64.92 \\ \mathrm{ab} \end{gathered}$	53.71c	$\begin{gathered} 31.46 \\ b \end{gathered}$	$\begin{gathered} 16.08 \\ a \end{gathered}$	$\begin{gathered} 49.04 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 58.2 \\ 9 \mathrm{a} \end{gathered}$	0d	$\begin{gathered} 386.55 \mathrm{c} \\ \mathrm{~d} \end{gathered}$
	Genex	$\begin{gathered} 47.55 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 81.35 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 71.56 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 72.98 \mathrm{a} \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 52.32 \\ a \end{gathered}$	$\begin{gathered} 20.74 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 47.56 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 77.6 \\ 3 \mathrm{a} \end{gathered}$	0d	$\begin{gathered} 471.71 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$

*Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $H 8 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{H}=$ harvest .

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (14) The effects of harvesting frequencies on yield of dry pod for product seeds ($\mathrm{g} . \mathrm{m}^{-2}$) on at (Harvests 1-9) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		$\begin{gathered} \text { FNP } \\ \text { H1 } \end{gathered}$	$\begin{gathered} \text { FNP } \\ \text { H2 } \end{gathered}$	$\begin{gathered} \text { FNPH } \\ 3 \end{gathered}$	FNPH4	$\begin{gathered} \text { FNPH } \\ 5 \end{gathered}$	$\begin{gathered} \text { FNP } \\ \text { H6 } \end{gathered}$	$\begin{gathered} \text { FNP } \\ \text { H7 } \end{gathered}$	$\begin{gathered} \hline \text { FNP } \\ \text { H8 } \end{gathered}$	Totol
Harv estin g types	Hgp	0b	0b	0b	0b	0c	0c	0d	0c	0 e
	Hds	49.21a	81.68a	68.61a	51.84a	$\begin{gathered} 26.99 \\ \mathrm{~b} \end{gathered}$	14.07b	19.27c	39.04ab	350.72a
	H4gp+sd	0b	0b	0b	0b	$\begin{gathered} 69.49 \\ \mathrm{a} \end{gathered}$	42.54a	41.4b	27.66b	181.09b
	H6gp+sd	0b	0b	0b	0b	0c	0c	72.16a	43.61 ab	115.77c
	H8gp+sd	0b	0b	0b	0b	0c	0c	0d	57.21a	57.21 d
Seed S Sour ce	Italian	8.84a	18.68a	14.80a	9.78a	$\begin{gathered} 19.89 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 11.90 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	27.07a	36.24a	147.20a
	Modesto	9.52a	13.87a	13.61a	8.92a	$\begin{gathered} 16.25 \\ \mathrm{a} \end{gathered}$	7.20b	23.19a	32.29a	124.83b
	Genex	11.17a	16.46a	12.76a	12.4a	$\begin{gathered} 21.75 \\ \mathrm{a} \end{gathered}$	14.86a	29.44a	31.99a	150.83a
Hgp	Italian	0c	0c	0c	0c	0c	0c	Of	Of	0 i
	Modesto	0c	0c	0c	0c	0c	0c	Of	Of	0 i
	Genex	0c	0c	0c	0c	0c	0c	Of	Of	0 i
Hds	Italian	$\begin{gathered} 44.183 \\ \mathrm{~b} \end{gathered}$	93.4a	74.01a	48.89b	$\begin{gathered} 32.27 \\ \mathrm{~b} \end{gathered}$	14.17c	15.2ef	$\begin{gathered} 39.37 \mathrm{bc} \\ \mathrm{de} \end{gathered}$	361.5b
	Modesto	$\begin{gathered} 47.58 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	69.36b	$\begin{gathered} 68.03 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	44.61b	17bc	0c	13.35ef	$\begin{gathered} 35.17 \mathrm{~cd} \\ \mathrm{e} \\ \hline \end{gathered}$	295.09c
	Genex	55.85a	$\begin{gathered} 82.28 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	63.79b	62.01a	$\begin{gathered} 31.72 \\ \mathrm{~b} \end{gathered}$	28.03b	29.27 de	$\begin{gathered} \text { 42.59bc } \\ \text { de } \end{gathered}$	395.56a
$\begin{gathered} \mathrm{H} 4 \mathrm{gp} \\ +\mathrm{sd} \end{gathered}$	Italian	0c	0c	0c	0c	$\begin{gathered} \hline 67.22 \\ \mathrm{a} \\ \hline \end{gathered}$	45.34a	37.31 cd	30.24de	$\begin{gathered} 180.11 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$
	Modesto	0c	0c	0c	0c	$\begin{gathered} 64.23 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 35.97 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	35.63cd	22.59 e	158.42ef
	Genex	0c	0c	0c	0c	$\begin{gathered} 77.03 \\ \mathrm{a} \\ \hline \end{gathered}$	46.30a	51.25bc	30.15de	204.73d
$\begin{gathered} \text { H6gp } \\ + \text { sd } \end{gathered}$	Italian	0c	0c	0c	0c	0c	0c	82.83a	$54.16 \mathrm{ab}$ c	136.99d
	Modesto	0c	0c	0c	0c	0c	0c	66.98ab	$\begin{gathered} 36.38 \mathrm{bc} \\ \mathrm{de} \end{gathered}$	103.37h
	Genex	0c	0c	0c	0c	0c	0c	66.65ab	$\begin{gathered} \text { 40.29bc } \\ \text { de } \end{gathered}$	$\begin{gathered} 106.95 \mathrm{~g} \\ \mathrm{~h} \end{gathered}$
$\begin{gathered} \text { H8gp } \\ + \text { sd } \end{gathered}$	Italian	0c	0c	0c	0c	0c	0c	Of	57.41 ab	57.41j
	Modesto	0c	0c	0c	0c	0c	0c	Of	67.28a	67.28j
	Genex	0c	0c	0c	0c	0c	0c	Of	$\begin{gathered} \text { 46.93ab } \\ \text { cd } \end{gathered}$	46.93j

*Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $\mathrm{H} 8 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{H}=$ harvest .

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (15) The effects of harvesting frequencies on pod dry matter percentage (\%) at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	means
Harvesti ng types	Hgp	$\begin{gathered} 24.0 \\ 5 \mathrm{a} \end{gathered}$	$\begin{gathered} 22.56 \\ b \end{gathered}$	$\begin{gathered} 22.85 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 22.91 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 23.13 \\ b \end{gathered}$	$\begin{gathered} 17.48 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 22.95 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 23.08 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 23.02 \\ \mathrm{a} \end{gathered}$	22.45a
	Hds	0b	$\begin{gathered} 27.14 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 27.64 \\ \mathrm{a} \\ \hline \end{gathered}$	26.17a	$\begin{gathered} 25.56 \\ a \end{gathered}$	$\begin{gathered} 16.62 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 13.87 \\ \mathrm{~b} \end{gathered}$	22.7a	$\begin{gathered} 23.56 \\ a \end{gathered}$	22.91a
	$\begin{gathered} \mathrm{H} 4 \mathrm{gp}+ \\ \text { sd } \end{gathered}$	$\begin{gathered} \hline 22.7 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 22.05 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 22.73 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 22.46 \\ b \end{gathered}$	0d	$\begin{gathered} 24.06 \\ \text { a } \end{gathered}$	$\begin{gathered} 25.98 \\ \mathrm{a} \end{gathered}$	25.7a	$\begin{gathered} 19.21 \\ \mathrm{a} \\ \hline \end{gathered}$	23.12a
	$\begin{gathered} \text { H6gp+ } \\ \text { sd } \end{gathered}$	$\begin{gathered} 22.8 \\ 5 \mathrm{a} \end{gathered}$	22.7 b	$\begin{gathered} 22.76 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 23.77 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 22.68 \\ \text { bc } \end{gathered}$	$\begin{gathered} 23.09 \\ \mathrm{a} \end{gathered}$	0c	$\begin{gathered} 26.19 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 25.81 \\ \mathrm{a} \end{gathered}$	23.73a
	$\begin{gathered} \text { H8gp+ } \\ \text { sd } \end{gathered}$	$\begin{gathered} 22.3 \\ 8 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 21.89 \\ b \\ \hline \end{gathered}$	$\begin{gathered} 22.71 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 22.14 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 21.56 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 20.03 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 23.28 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 22.96 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 27.12 \\ a \end{gathered}$	22.67a
Seeds Source	Italian	$\begin{gathered} 18.2 \\ 5 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 22.72 \\ \mathrm{~b} \\ \hline \end{gathered}$	23.9a	24.04a	$\begin{gathered} 18.45 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 21.51 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 17.62 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 23.49 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 24.42 \\ \mathrm{a} \\ \hline \end{gathered}$	23.17a
	Modest 0	$\begin{gathered} 18.2 \\ 2 \mathrm{a} \end{gathered}$	$\begin{gathered} 22.71 \\ \mathrm{~b} \end{gathered}$	23.1a	22.72a	17.9a	16.8a	$\begin{gathered} 14.08 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 24.11 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 23.03 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 21.76 \\ \mathrm{~b} \end{gathered}$
	Genex	$\begin{gathered} 18.7 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 24.38 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 24.21 \\ \mathrm{a} \end{gathered}$	23.71a	19.4a	$\begin{gathered} 22.46 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 19.95 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 24.78 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 23.78 \\ \mathrm{a} \end{gathered}$	23.99a
Hgp	Italian	$\begin{gathered} 25.1 \\ 2 \mathrm{a} \end{gathered}$	22.5c	$\begin{gathered} 23.08 \\ c \end{gathered}$	$\begin{gathered} 23.24 a \\ d \end{gathered}$	$\begin{gathered} 24.03 \\ \text { ac } \end{gathered}$	$\begin{gathered} 13.94 \\ a b \end{gathered}$	23ab	$\begin{gathered} 23.23 \\ a b \end{gathered}$	$\begin{gathered} 22.53 \\ \text { ac } \end{gathered}$	$\begin{gathered} 22.27 \\ \text { bd } \end{gathered}$
	Modest o	$\begin{gathered} 22.9 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 21.52 \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 21.87 \\ c \end{gathered}$	$\begin{gathered} 22.36 \\ b d \end{gathered}$	$\begin{gathered} 22.43 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 15.5 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 21.54 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 23.6 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	22.3ac	$\begin{gathered} 21.57 \mathrm{c} \\ \mathrm{~d} \end{gathered}$
	Genex	$\begin{gathered} 24.0 \\ 8 \mathrm{a} \end{gathered}$	$\begin{gathered} 23.94 \\ \text { ac } \end{gathered}$	$\begin{gathered} 23.59 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} 23.12 \mathrm{a} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 22.91 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 22.99 \\ \text { ab } \end{gathered}$	$\begin{gathered} 24.32 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 22.41 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 24.21 \\ a b \\ \hline \end{gathered}$	$\begin{gathered} 23.51 \mathrm{a} \\ \mathrm{c} \end{gathered}$
Hds	Italian	0b	$\begin{gathered} 26.97 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 28.19 \\ \mathrm{a} \\ \hline \end{gathered}$	26.55a	$\begin{gathered} 25.19 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 25.06 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 16.27 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 17.76 \\ b \end{gathered}$	$\begin{gathered} 23.31 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 23.66 \mathrm{a} \\ \mathrm{c} \\ \hline \end{gathered}$
	Modest	0b	$\begin{gathered} 27.25 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 27.58 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 25.73 \mathrm{a} \\ \mathrm{c} \\ \hline \end{gathered}$	24.42 ac	8.04b	0c	$\begin{gathered} 24.78 \\ \mathrm{ab} \\ \hline \end{gathered}$	22.7ac	$\begin{gathered} 20.06 \\ \mathrm{~d} \end{gathered}$
	Genex	0b	$\begin{gathered} 27.22 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 27.16 \\ \text { ab } \end{gathered}$	$\begin{gathered} 26.23 a \\ b \end{gathered}$	$\begin{gathered} 27.06 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 16.77 \\ a b \end{gathered}$	$\begin{gathered} 25.35 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 25.56 \\ a b \end{gathered}$	$\begin{gathered} 24.67 \\ \mathrm{a} \\ \hline \end{gathered}$	25a
$\underset{\mathrm{d}}{\mathrm{H} 4 \mathrm{gp}+\mathrm{s}}$	Italian	$\begin{gathered} 21.2 \\ 8 \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 21.72 \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 22.87 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 24 . \\ 09 \mathrm{ad} \end{gathered}$	0d	$\begin{gathered} 24.27 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 25.17 \\ \mathrm{a} \end{gathered}$	26.4a	$\begin{gathered} 25.59 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 23.93 \mathrm{a} \\ \mathrm{c} \end{gathered}$
	Modest o	$\begin{gathered} 24.0 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 20.41 \\ c \end{gathered}$	21.3c	$\begin{gathered} 21.36 \\ \mathrm{~d} \end{gathered}$	0b	23.9a	$\begin{gathered} 25.83 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 25.4 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 16.39 \\ \text { bc } \end{gathered}$	$\begin{gathered} 22.33 \\ \text { bd } \end{gathered}$
	Genex	$\begin{gathered} 22.9 \\ 6 \mathrm{a} \end{gathered}$	$\begin{gathered} 24.02 \\ \mathrm{ac} \end{gathered}$	$\begin{gathered} 24.02 \\ \text { bc } \end{gathered}$	$\begin{gathered} 21.91 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	0b	24a	$\begin{gathered} 26.94 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 25.3 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 15.64 \\ c \end{gathered}$	23.1ac
$\underset{d}{\mathrm{H} 6 \mathrm{gp}+\mathrm{s}}$	Italian	$\begin{gathered} \hline 21.6 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 22.15 \\ c \end{gathered}$	$\begin{gathered} 22.24 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 24.06 \mathrm{a} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 22.13 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 22.85 \\ \mathrm{ab} \\ \hline \end{gathered}$	0c	$\begin{gathered} 26.96 \\ a \end{gathered}$	$\begin{gathered} 24.16 \\ a b \\ \hline \end{gathered}$	$\begin{gathered} 23.28 \mathrm{a} \\ \mathrm{c} \end{gathered}$
	Modest	$\begin{gathered} 23.0 \\ 9 \mathrm{a} \\ \hline \end{gathered}$	22.5c	$\begin{gathered} 22.33 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 23.13 \mathrm{a} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 21.88 \\ b c \end{gathered}$	$\begin{gathered} 21.98 \\ \mathrm{ab} \\ \hline \end{gathered}$	0c	$\begin{gathered} 25.04 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 26.47 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} \text { 23.31a } \\ c \end{gathered}$
	Genex	$\begin{gathered} 23.7 \\ 7 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 23.45 \\ \text { bc } \end{gathered}$	$\begin{gathered} 23.71 \\ \mathrm{bc} \\ \hline \end{gathered}$	$\begin{gathered} 24.12 \mathrm{a} \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 24.02 \\ \mathrm{ac} \\ \hline \end{gathered}$	$\begin{gathered} 24.46 \\ \mathrm{a} \\ \hline \end{gathered}$	0c	$\begin{gathered} 26.56 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 26.79 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 24.61 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$
$\underset{\mathrm{d}}{\mathrm{H} 8 \mathrm{gp}+\mathrm{s}}$	Italian	$\begin{gathered} 23.1 \\ 7 \mathrm{a} \end{gathered}$	$\begin{gathered} 20.55 \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 23.11 \\ c \end{gathered}$	$\begin{gathered} 22.24 \\ b d \end{gathered}$	$\begin{aligned} & \hline 20 . \\ & 91 \mathrm{c} \end{aligned}$	$\begin{gathered} 21.42 \\ a b \end{gathered}$	$\begin{gathered} 23.02 \\ a b \end{gathered}$	$\begin{gathered} 23.09 \\ a b \end{gathered}$	$\begin{gathered} 26.49 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 22.74 a \\ c \end{gathered}$
	Modest	$\begin{gathered} 20.9 \\ 5 \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 21.88 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 22.44 \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 21.03 \\ d \end{gathered}$	$\begin{gathered} 20.75 \\ c \end{gathered}$	$\begin{gathered} 14.6 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 23.02 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 21.7 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	27.3a	$\begin{gathered} 21.52 \mathrm{c} \\ \mathrm{~d} \end{gathered}$
	Genex	$\begin{gathered} 23.0 \\ 4 a \end{gathered}$	$\begin{gathered} 23.25 \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 22.58 \\ c \end{gathered}$	$\begin{gathered} 23.16 a \\ d \end{gathered}$	23 bc	$\begin{gathered} 24.06 \\ \text { a } \end{gathered}$	$\begin{gathered} 23.15 \\ a b \end{gathered}$	$\begin{gathered} 24.08 \\ a b \end{gathered}$	$\begin{gathered} 27.56 \\ a \end{gathered}$	$\begin{gathered} 23.76 a \\ c \end{gathered}$

[^4]
The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (16) The effects of harvesting frequencies on yield of dry seeds ($\mathrm{g} . \mathrm{m}^{-2}$) at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	Totol
Harvestin g types	Hgp	0b	0b	0b	0b	0c	0c	0d	0c	0e
	Hds	41.94a	70.79a	$\begin{gathered} 59.66 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 44.70 \\ \mathrm{a} \end{gathered}$	22.29b	12.19b	15.90c	32.12ab	298.59a
	$\underset{d}{\mathrm{H} 4 \mathrm{gp}+\mathrm{s}}$	0b	0b	0b	0b	56.1a	36.15a	34.23b	22.64 b	149.12b
	$\underset{\mathrm{d}}{\mathrm{H} 6 \mathrm{gp}+\mathrm{s}}$	0b	0b	0b	0b	0c	0c	57.8a	35.68ab	93.48c
	$\underset{d}{\mathrm{H} 8 \mathrm{gp}+\mathrm{s}}$	0b	0b	0b	0b	0c	0c	0d	47.25a	47.25d
Seeds Source	Italian	7.65a	16.19a	$\begin{gathered} 12.37 \\ \mathrm{a} \end{gathered}$	8.58a	15.93a	$\begin{gathered} 10.30 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	21.70a	29.99a	122.70a
	Modest o	7.96a	11.92a	$\begin{gathered} 11.94 \\ \mathrm{a} \end{gathered}$	7.51a	12.86a	6.14b	18.93a	25.98a	103.22b
	Genex	9.56a	14.37a	$\begin{gathered} 10.89 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 10.73 \\ \mathrm{a} \end{gathered}$	18.24a	12.57a	24.13a	26.65a	127.13a
Hgp	Italian	0c	0c	0b	0c	0c	0c	0 e	0 e	0h
	Modest o	0c	0c	0b	0c	0c	0c	0 e	0 e	0h
	Genex	0c	0c	0b	0c	0c	0c	0 e	0 e	0h
Hds	Italian	38.26b	80.94a	$\begin{gathered} 61.86 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 42.90 \\ \mathrm{~b} \end{gathered}$	26.20b	11.27c	11.70e	31.44 bcd	304.57b
	Modest o	$\begin{gathered} 39.78 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	59.59b	$\begin{gathered} 59.67 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 37.54 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 12.57 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	0c	10.66e	28.85cd	248.84c
	Genex	47.79a	$\begin{gathered} 71.84 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 54.45 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 53.64 \\ \mathrm{a} \\ \hline \end{gathered}$	27.91b	25.31b	25.33d	$\begin{gathered} 36.09 \mathrm{abc} \\ \mathrm{~d} \end{gathered}$	342.36a
H4gp+sd	Italian	0c	0c	0b	0c	53.44a	40.22a	$\begin{gathered} 31.20 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	25.1 cd	$\begin{gathered} 149.97 \mathrm{~d} \\ \mathrm{e} \end{gathered}$
	$\begin{gathered} \text { Modest } \\ 0 \\ \hline \end{gathered}$	0c	0c	0b	0c	51.56a	$\begin{gathered} 30.67 a \\ b \\ \hline \end{gathered}$	$\begin{gathered} 29.45 \mathrm{c} \\ \mathrm{~d} \\ \hline \end{gathered}$	17.89de	$\begin{gathered} 129.57 \mathrm{e} \\ \mathrm{f} \\ \hline \end{gathered}$
	Genex	0c	0c	0b	0c	63.29a	$\begin{gathered} 37.55 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 42.03 b \\ c \end{gathered}$	24.93 cd	167.81d
H6gp+sd	Italian	0c	0c	0b	0c	0c	0c	65.58a	44.33abc	$\begin{gathered} 109.91 \mathrm{f} \\ \mathrm{~g} \end{gathered}$
	Modest o	0c	0c	0b	0c	0c	0c	$\begin{gathered} 54.56 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	29.09cd	83.64 g
	Genex	0c	0c	0b	0c	0c	0c	$\begin{gathered} 53.27 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	33.61 bcd	86.88 g
H8gp+sd	Italian	0c	0c	0b	0c	0c	0c	0 e	49.06ab	49.06h
	$\begin{gathered} \text { Modest } \\ \mathrm{o} \\ \hline \end{gathered}$	0c	0c	0b	0c	0c	0c	0 e	54.07a	54.07h
	Genex	0c	0c	0b	0c	0c	0c	0 e	38.63 abc	38.63h

*Hgp=Harvesting green pod ; Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $H 8 g p+s d=$ Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{H}=$ harvest

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

Table (17) The effects of harvesting frequencies on weight of 100 seeds (g) at (Harvests $1-9$) of Ramshorn cowpea cultivar obtained from three varying sources*

Detected Traits		H1	H2	H3	H4	H5	H6	H7	H8	H9	means
Harvesti ng types	Hgp	$\begin{gathered} 19.51 \\ \mathrm{a} \end{gathered}$	19.07b	$\begin{gathered} 19.52 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 19.23 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 17.92 \\ \mathrm{c} \end{gathered}$	14.6b	$\begin{gathered} 19.92 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 20.01 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 19.44 \\ \mathrm{a} \end{gathered}$	18.8c
	Hds	0b	24.52a	24.5a	$\begin{gathered} 24.21 \\ \mathrm{a} \end{gathered}$	23.9a	16.3ab	13.9c	$\begin{gathered} 20.96 \\ a \end{gathered}$	$\begin{gathered} 23.52 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 21.48 \\ \mathrm{a} \end{gathered}$
	$\begin{aligned} & \text { H4gp+ } \\ & \text { sd } \end{aligned}$	$\begin{gathered} 19.82 \\ a \end{gathered}$	19.28b	19b	$\begin{gathered} 19.51 \\ \mathrm{~b} \end{gathered}$	0d	23.83a	24.5a	$\begin{gathered} 24.16 \\ a \end{gathered}$	$\begin{gathered} 19.21 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 21.16 \\ a \end{gathered}$
	$\begin{aligned} & \text { H6gp+ } \\ & \text { sd } \\ & \hline \end{aligned}$	$\begin{gathered} 18.66 \\ \mathrm{a} \end{gathered}$	19.58b	$\begin{gathered} 19.78 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 19.71 \\ \mathrm{~b} \end{gathered}$	19.2b	18.4ab	0d	$\begin{gathered} 24.64 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 23.87 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 20.48 \\ a b \end{gathered}$
	$\begin{aligned} & \text { H8gp+ } \\ & \text { sd } \\ & \hline \end{aligned}$	$\begin{gathered} 19.56 \\ a \\ \hline \end{gathered}$	19.51b	$\begin{gathered} 19.31 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 18.99 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 18.61 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 16.63 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 18.99 \\ \mathrm{~b} \\ \hline \end{gathered}$	19.6a	$\begin{gathered} 24.33 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 19.5 \mathrm{~b} \\ \mathrm{c} \end{gathered}$
Seeds Source	Italian	$\begin{gathered} 16.86 \\ \mathrm{a} \end{gathered}$	22.26a	$\begin{gathered} 22.89 \\ \mathrm{a} \end{gathered}$	22.4a	$\begin{gathered} 17.37 \\ \mathrm{a} \end{gathered}$	20.87a	17.5a	$\begin{gathered} 22.91 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 25.25 \\ \mathrm{a} \end{gathered}$	22.5a
	Modes to	$\begin{gathered} 14.81 \\ \mathrm{~b} \end{gathered}$	19.37b	$\begin{gathered} 19.43 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 19.69 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 15.35 \\ \mathrm{~b} \end{gathered}$	14.33b	$\begin{gathered} 12.17 \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 21.59 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 20.71 \\ b \end{gathered}$	$\begin{gathered} 18.65 \\ c \end{gathered}$
	Genex	$\begin{gathered} 14.86 \\ b \end{gathered}$	19.55b	$\begin{gathered} 18.94 \\ \mathrm{~b} \end{gathered}$	18.9b	$\begin{gathered} 15.06 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 18.66 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 16.71 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 21.12 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 20.27 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 19.71 \\ \mathrm{~b} \end{gathered}$
Hgp	Italian	$\begin{gathered} 20.83 \\ \text { ac } \end{gathered}$	20.2cf	$\begin{gathered} 22.27 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 20.77 \\ c d \end{gathered}$	$\begin{gathered} 18.57 \\ \mathrm{~d} \end{gathered}$	12.7 bc	$\begin{gathered} 21.9 \mathrm{a} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 22.17 \\ \mathrm{ac} \end{gathered}$	$\begin{gathered} 20.87 \\ \text { ad } \end{gathered}$	$\begin{gathered} 20.03 \\ \text { ce } \end{gathered}$
	Modes to	$\begin{gathered} 18.8 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 18.37 \mathrm{e} \\ \mathrm{f} \end{gathered}$	$\begin{gathered} 19.2 \mathrm{~d} \\ \mathrm{e} \end{gathered}$	17.9ef	$\begin{gathered} 17.37 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 12.37 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 18.73 \\ \mathrm{~b} \end{gathered}$	19bc	$\begin{gathered} 18.43 \\ \mathrm{~cd} \end{gathered}$	$\begin{gathered} 17.79 \\ \mathrm{e} \\ \hline \end{gathered}$
	Genex	$\begin{gathered} 18.9 \mathrm{c} \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 18.63 \mathrm{~d} \\ \mathrm{f} \\ \hline \end{gathered}$	17.1e	$\begin{gathered} 19.03 \\ \text { df } \\ \hline \end{gathered}$	$\begin{gathered} 17.83 \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 18.73 \mathrm{a} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 19.13 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 18.87 \\ \text { bc } \end{gathered}$	$\begin{gathered} 19.03 \\ \text { bd } \\ \hline \end{gathered}$	$\begin{gathered} 18.59 \\ \mathrm{e} \\ \hline \end{gathered}$
Hds	Italian	0 e	26.7a	27.4a	$\begin{gathered} 27.07 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 26.67 \\ a \end{gathered}$	25.9a	$\begin{gathered} 18.23 \\ \mathrm{~b} \\ \hline \end{gathered}$	17.3c	$\begin{gathered} 25.83 \\ a b \end{gathered}$	$\begin{gathered} 24.45 \\ \mathrm{a} \\ \hline \end{gathered}$
	Modes to	0 e	$\begin{gathered} 22.97 \mathrm{~b} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 23.93 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 22.37 \\ \mathrm{bc} \end{gathered}$	22bc	7.53c	0c	$\begin{gathered} 23.07 \\ \text { ac } \end{gathered}$	$\begin{gathered} 23.3 \mathrm{a} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 18.05 \\ \mathrm{e} \end{gathered}$
	Genex	0 e	23.9b	$\begin{gathered} 22.93 \\ \mathrm{bc} \end{gathered}$	23.2b	$\begin{gathered} 23.03 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 15.47 \mathrm{a} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 23.47 \\ a b \end{gathered}$	$\begin{gathered} 21.97 \\ \text { ac } \end{gathered}$	$\begin{gathered} 21.43 \\ \text { ac } \end{gathered}$	$\begin{gathered} 21.93 \\ \text { bd } \end{gathered}$
$\begin{aligned} & \mathrm{H} 4 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	Italian	22.2a	$\begin{gathered} 21.37 \mathrm{~b} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 20.8 \mathrm{c} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 21.87 \\ \mathrm{bc} \end{gathered}$	0 e	26.03a	$\begin{gathered} 26.93 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 26.33 \\ a b \end{gathered}$	26.8a	$\begin{gathered} 24.04 \\ a b \end{gathered}$
	Modes to	$\begin{gathered} 18.93 \\ \text { cd } \end{gathered}$	$\begin{gathered} 19.03 \mathrm{~d} \\ \text { ef } \\ \hline \end{gathered}$	18e	$\begin{gathered} 18.23 \\ \text { ef } \\ \hline \end{gathered}$	0e	$\begin{gathered} 22.53 a \\ b \\ \hline \end{gathered}$	$\begin{gathered} 23.3 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 23.17 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 15.57 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 19.85 \\ \text { de } \end{gathered}$
	Genex	$\begin{gathered} 18.33 \\ \mathrm{~d} \\ \hline \end{gathered}$	17.43f	18.2e	$\begin{gathered} 18.43 \\ \text { df } \\ \hline \end{gathered}$	0 e	$\begin{gathered} 22.93 \mathrm{a} \\ \mathrm{~b} \\ \hline \end{gathered}$	$\begin{gathered} 23.27 \\ \mathrm{ab} \\ \hline \end{gathered}$	$\begin{gathered} 22.97 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 15.27 \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 19.6 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$
$\begin{aligned} & \mathrm{H} 6 \mathrm{~g} p+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	Italian	$\begin{gathered} 19.93 \\ \text { bd } \end{gathered}$	$\begin{gathered} 21.17 \mathrm{~b} \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 21.77 \\ \text { bc } \\ \hline \end{gathered}$	$\begin{gathered} 21.97 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 21.07 \\ c \\ \hline \end{gathered}$	$\begin{gathered} 19.73 \mathrm{a} \\ \mathrm{bc} \\ \hline \end{gathered}$	0c	$\begin{gathered} 27.17 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 26.43 \\ \mathrm{a} \\ \hline \end{gathered}$	$\begin{gathered} 22.4 \mathrm{a} \\ \mathrm{c} \\ \hline \end{gathered}$
	Modes to	$\begin{gathered} 17.73 \\ \mathrm{~d} \\ \hline \end{gathered}$	$\begin{gathered} 18.81 \mathrm{~d} \\ \mathrm{f} \\ \hline \end{gathered}$	$\begin{gathered} 18.9 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$	$\begin{gathered} 18.57 \\ \mathrm{df} \end{gathered}$	$\begin{gathered} 18.37 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 17.37 \mathrm{a} \\ \mathrm{c} \\ \hline \end{gathered}$	0c	$\begin{gathered} 23.37 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 22.87 \\ \text { ac } \\ \hline \end{gathered}$	$\begin{gathered} 19.5 \mathrm{~d} \\ \mathrm{e} \\ \hline \end{gathered}$
	Genex	18.3d	$\begin{gathered} 18.77 \mathrm{~d} \\ \mathrm{f} \end{gathered}$	$\begin{gathered} 18.67 \\ \text { de } \end{gathered}$	$\begin{gathered} 18.6 \mathrm{~d} \\ \mathrm{f} \\ \hline \end{gathered}$	$\begin{gathered} 18.17 \\ \mathrm{~d} \end{gathered}$	18.1ac	0c	$\begin{gathered} 23.4 \mathrm{a} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 22.3 \mathrm{a} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 19.54 \\ \text { de } \end{gathered}$
$\begin{aligned} & \mathrm{H} 8 \mathrm{gp}+\mathrm{s} \\ & \mathrm{~d} \end{aligned}$	Italian	$\begin{gathered} 21.33 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 21.87 \mathrm{~b} \\ \mathrm{c} \\ \hline \end{gathered}$	$\begin{gathered} 22.23 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 20.33 \\ \text { ce } \end{gathered}$	$\begin{gathered} 20.53 \\ c \end{gathered}$	20 ac	$\begin{gathered} 20.43 \\ \mathrm{ab} \end{gathered}$	$\begin{gathered} 21.03 \\ \text { ac } \end{gathered}$	$\begin{gathered} 26.33 \\ \mathrm{a} \end{gathered}$	$\begin{gathered} 21.57 \\ c d \end{gathered}$
	Modes to	$\begin{gathered} 18.57 \\ \mathrm{~d} \end{gathered}$	17.67f	17.9e	$\begin{gathered} 17.43 \\ \mathrm{f} \end{gathered}$	$\begin{gathered} 17.57 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 11.83 b \\ c \end{gathered}$	$\begin{gathered} 18.83 \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} 19.37 \\ \mathrm{bc} \end{gathered}$	$\begin{gathered} 23.37 \\ \text { ac } \end{gathered}$	$\begin{gathered} 18.06 \\ \mathrm{e} \end{gathered}$
	Genex	$\begin{gathered} 18.77 \\ \text { cd } \end{gathered}$	19df	17.8e	$\begin{gathered} 19.2 \mathrm{~d} \\ \mathrm{f} \end{gathered}$	$\begin{gathered} 17.73 \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} 18.07 \mathrm{a} \\ \mathrm{c} \end{gathered}$	17.7b	18.4c	$\begin{gathered} 23.3 \mathrm{a} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} 18.89 \\ \mathrm{e} \end{gathered}$

[^5] rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; H8gp + sd= Harvesting green pods eight tims and the rest were left for dry seed; $\mathrm{H}=$ harvest .

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

5. Protein content

Harvest frequencies

Four harvest green pod treatment displayed the highest protein content (28.65) of green seeds (table, 18). It exceeded continuous harvest by 34.7%. Dry pod harvest came next as it bypassed continuous harvest by 32.68%,followed by six harvest treatment which exceeded continuous harvest by 30.37%. The fourth treatment was eight harvest which exceeded the continuous harvest by $22.7 \mathrm{a} \%$. These results were in accordance with those obtained by Rachie (1979). Dry cowpea seeds are rich in protein and 100 g dry seeds contain 22.8 g protein and fresh green seeds contain 3.3g (Watt and Merrill, 1963). Even cowpea leaves were found to contain 29 to 43% protein on dry basis (Nielsen et al., 1994). Modesto source appeared to possess the highest protein content for both dry seeds and green matured seeds (26.73%). However, Genex showed the lowest protein content of seeds 26.07%. Dry pod harvest of Modesto source manifested the highest seed protein content (31.06%), which was significantly exceeded other sources harvested as continuous green pod harvests, and eight harvests. The worst treatment was Genex plants harvested continuously 19.76%.

Table (18) The effects of harvesting frequencies on protein percentage in green and dry seeds (\%) of Ramshorn cowpea cultivar obtained from three varying sources*

SeedsSour ce	Hds	Hgp	H4gp+sd	H6gp+sd	H8gp+sd	means
Italian	26.96 ac	21.63 de	29.8 ab	27.77 ab	25.75 bd	26.38 a
Modesto	31.06 a	22.43 ce	27.55 ac	26.55 ad	26.07 ad	26.73 a
Genex	26.64 ad	19.76 e	28.6 ab	28.87 ab	26.49 ad	26.07 a
means	28.22 a	21.27 b	28.65 a	27.73 a	26.1 a	

*Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; H8gp+sd= Harvesting green pods eight tims and the rest were left for dry seed

References

1.Ahmed F. E. and A. S. H. Suliman (2010). Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of Cowpea Agric. Biol. J. N. Am., 1, 4: 534540.
2. Turk K. J and A. E. Hall (1980). Drought adaptation of cowpea. IV: Influence of drought on water use and relation with growth and seed yield. Agron J 72: 440-448.
3.Ravindra V, P. C. Nautiyyal and Y. C. Joshi (1990). Physiological analysis of drought resistance and yield in groundnut (Arachis hypogea L.). Trop Agric 67:290-296.
4. Abdel C. G. (2011). The Response of Some Legume Crops to Irrigation and Growth Regulators. LAMBERT ACADEMIC PUBLISHING, GERMANY.
5. Abdel C. G. and M. S. S. D. Al-Slem (2010). Influence of three irrigation levels on growth stomata behaviour and yield of Cowpea (Vigna unguiculata L. Walp, cv. Ramshorn) produced by three varying seed companies. J. of Tikrit Univ. for Agric. Sci. 10, 2: 1-14.
6. Abdelbagi M. I. and A. E. Hall (2000). Semidawf and standard height cowpea responses to row spacing in different environments. Crop Sci: 40:1618-1623.
7. Abdel C. G. (2006). Improving yield and yield quality of four faba bean cultivars grown under rainfalls: 2- Application of growth regulators. Mesopotamia J. of Agric. Sci. 34 (4): 21-30.

The $2^{\text {nd }}$ Scientific Conference the Collage of Agriculture 2012

8. Ahmed F. E.; A. E. Hall and M. A. Madore (1993). Interactive effects of high temperature and elevated carbon dioxide on cowpea (Vigna unguiculata L. Walp). Plant Cell and Environment, 16 (7): 835-842.
9. Faisal E. A. and A. E. Hall (1993). Heat injury during early floral bud development in Cowpea . Crop Sci. 33:764-767.
10. Abdel C. G. and I. M. T. Al-Rawi (2011). Response of mungbean (Vigna radiata L., Wilczek) to gibberellic acid (GA3) rates and varying irrigation frequencies. International Journal of Biosciences (IJB) 1, 3: 85-92.
11. Ehler J. D. and A. E. Hall (1996). Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci. 36: 673-679.
12. Abdel C. G. (2009) Evaluation the productivity of five cucumber (Cucumis sativus L.) cultivars and their responses to varying rates of Gibberellic acid (GA3). J. Dohuk Univ. Agric\& Vet.12, 1:1-10.

[^0]: *Hgp=Harvesting green pod;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $\mathrm{H} 8 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed; $\mathrm{PNPH}=$ pods number per plant harvest.

[^1]: *Hgp=Harvesting green pod;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $\mathrm{H} 8 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed; $\mathrm{H}=$ harvest.

[^2]: *Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $\mathrm{H} 8 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{H}=$ harvest.

[^3]: *Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $H 8 g p+s d=$ Harvesting green pods eight tims and the rest were left for dry seed ; $\mathrm{H}==$ harvest .

[^4]: *Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the rest were left for dry seed; H6gp+sd= Harvesting green pods six tims and the rest were left for dry seed; $\mathrm{H} 8 \mathrm{gp}+\mathrm{sd}=\mathrm{H} 4 \mathrm{gp}+\mathrm{sd}=$ Harvesting green pods eight tims and the rest were left for dry seed; $\mathrm{H}=$ harvest .

[^5]: *Hgp=Harvesting green pod ;Hds=Harvesting dry seeds; H4gp+sd= Harvesting green pods four tims and the

