page 1-7

Some properties of two – fuzzy pre – Hilbert space Noori F.AL – Mayahi & Layth S.Ibrahaim Department of Mathematics, College of Computer Science and Mathematics, University of AL – Qadissiya Recived : 18/6/2013 Revised: 1/9/2013 Accepted: 2/9/2013

Recived . 18 / 6 / 2013 Revised: 1 / 9 / 2013 Accepted: 2 / 9 / 2013

ABSTRACT: We introduce the definition of a two-fuzzy pre Hilbert space (two-fuzzy inner product space) and discuss some properties of this spaces ,and we use the definition of two-fuzzy pre Hilbert space to introduce the definitions of (level complete in two-fuzzy Hilbert , fuzzy orthogonality) . Also, introduce some important theorems with their proofs. Moreover, crisp inner product and orthogonality are established .

Keywords: fuzzy set, Two-fuzzy pre-Hilbert space, α-norm,

Mathematics Subject Classification : 30C45

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [2] in 1965 as an extension of the classical notion of set. A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler in [4]. The concept of fuzzy norm and α -norm were introduced by Bag and Samanta and the notions of convergent and Cauchy sequences were also discussed in [6]. Zhang [1] has defined fuzzy linear space in a different way. RM. Somasundaram and ThangarajBeaula defined the notion of fuzzy 2-normed linear space (F(X), N) or 2- fuzzy ,2-normed linear space. Some standard results in fuzzy 2-normed linear spaces were extended. The famous closed graph theorem and Riesz Theorem were also established in 2-fuzzy 2-normed linear space. In [5], we have introduced the new concept of 2-fuzzy inner product space on F(X), the set of all fuzzy sets of X. In this paper studysome properties of two-pere-fuzzy Hilbert spaces and results are discussed about the two concepts.

2. Preliminaries

Definition 2.1.[3]. Let F(X) be a vector space over the complex field C. The fuzzy subset η defined as a mapping from $F(X) \times F(X) \times C \rightarrow [0,1]$ such that for all $f, g, h \in F(X), \alpha \in C$

(1) For $s, t \in C, \eta(f + g, h, |t| + |s|) \ge \min\{\eta(f, h, |t|), \eta(g, h, |s|)\}$

(2) For $s, t \in C, \eta(f, g, |st|) \ge \min\{\eta(f, f, |s|^2), \eta(g, g, |t|^2)\}$

(3) For $t \in C$, $\eta(f,g,t) = \eta(g,f,t)$

(4) $\eta(\alpha f, g, t) = \eta(f, g, \frac{1}{|\alpha|}), \alpha(\neq 0) \in C, t \in C.$

(5) $\eta(f, f, t) = 0$, for all $t \in C/\mathbb{R}^+$

(6) $\eta(f,f,t) = 1$ for all t > 0 if and only if f = 0

(7) $\eta(f, f,): \mathbb{R} \to I(=[0,1])$ is a monotonic non-decreasing function of R and $\lim \eta(f, f, t) = 1$ as $t \to \infty$

Then η is said to be two - fuzzy pre-Hilbert (2 - FPHS) on F(X) and the pair $(F(X), \eta)$ is called a two-fuzzy pre-Hilbert space (2-FPHS).

Definition 2.2. [5].Let(F(X), η) be a 2-FPHS satisfying the condition

 $\{\eta(f, f, t^2) > 0, when t > 0\}$ implies that = 0. Then for all $\alpha \in (0, 1)$,

define $||f||_{\alpha} = inf\{t : \eta(f, f, t^2) \ge \alpha\}$ a crisp norm on F(X), called the a-norm on F(X) generated by η . Now using these definitions let us define fuzzy norm on F(X) and verify the conditions as follows:

Theorem 2.3.[5]. Let η be a two-fuzzy inner product on F(X). Then

 $N: F(X) \times \mathbb{R} \to [0,1] \text{ defined by}$ $N(f,t) = \begin{cases} \eta(f,f,t^2) & \text{when } t \in \mathbb{R}, t > 0\\ 0 & \text{when } t \in \mathbb{R} \ , t < 0 \end{cases}$

is a fuzzy norm on F(X).

(N1) By define N(f, t) = 0, for all $t \in \mathbb{R}$ and $t \leq 0$.

Proof: (N2) Again from (6), for all t > 0, $\eta(f, f, t^2) = 1$ if and only if f = 0therefore it follows that N(f,t) = 1 if and only if f = 0. (N3) For all t > 0 and $c \neq 0$, $N(cf,t) = \eta(cf,cf,t^2) = \eta(f,cf,\frac{t^2}{|c|}) = \eta(f,f,\frac{t^2}{|c|^2}) = N(f,\frac{t}{|c|})$. (N4) To prove that $N(f + g, s + t) \ge \min\{N(f,s), N(g,t)\}$ for every $s, t \in \mathbb{R}$, $f,g \in F(X)$, let us consider the following cases: (a) s + t < 0, (b) s = t = 0; s > 0, t < 0 or s < 0, t > 0, (c) s + t > 0; $s, t \ge 0$. Let us prove (c). $N(f + g, s + t) = \eta(f + g, f + g, (s + t)^2) = \eta(f + g, f + g, s^2 + st + st + t^2) \ge \eta(f, f, s^2) \wedge \eta(g, g, t^2) \wedge \eta(f, g, st) \ge \eta(f, f, s^2) \wedge \eta(g, g, t^2)$ = N(f, s) + N(g, t)(a) and (b) follows immediately.

(N5) From (7) $\eta(f, f, .)$ is a monotonic non-decreasing function and tends to 1 as $t \to \infty$ to. Thus N(f, .) is a monotonic non-decreasing function and tends to 1 as $t \to \infty$ to. **Theorem 2.4.[5]**. (Parallelogram Law) Let n be a two- fuzzy inner product on F(X), $\alpha \in (0,1)$ and $\| \|_{\alpha}$ be the α -norm generated from 2-FIP η on F(X). Then $\|f - g\|_{\alpha}^{2} + \|f + g\|_{\alpha}^{2} = 2(\|f\|_{\alpha}^{2} + \|g\|_{\alpha}^{2})$

Theorem 2.5.[5] If a two - fuzzy pre-Hilbert space $(F(X), \eta)$ is strictly convex, and if $\eta(f, g, t) = ||f||_{\alpha} ||g||_{\alpha}$ then f and g are linearly dependent

Theorem 2.6.[5]. Let $(F(X), \eta)$ be a two-fuzzy pre-Hilbert space. If

 $\eta(f, h, t) = n(g, h, t)$ for all $h \in F(X)$ then f and g are dependent.

Definition 2.7.[5]. A sequence $\{f_n\}$ in a fuzzy two-normed linear space (F(X), N) is called a Cauchy sequence with respect to a-norm if $\lim ||f_n - f_m|| = 0$ as $n, m \to \infty$. **Definition 2.8. [5].** A sequence $\{f_n\}$ in a fuzzy two-normed linear called a convergent sequence with respect to α -norm if there exists $f \in F(X)$ such that if

 $\lim \|f_n - f_m\| = 0 \text{as } n, m \to \infty$

Definition 2.9.[5]. A fuzzy two-normed linear space (F(X), N) is said to be complete if every Cauchy sequence converges.

Definition 2.10.[5] A complete fuzzy 2-normed linear space (F(X), N) is called two-fuzzy Banach space.

Definition 2.11.[5] A complex 2-fuzzy Banach space (F(X), N) is said to be 2-fuzzy Hilbert space if its norm is induced by the two-fuzzy inner product.

Theorem 2.12. [5] A closed convex two-fuzzy subset C of a two-fuzzy Hilbert space F(X) contains a unique element in F(X) with smallest a-norm.

Definition 2.13.[5] Let F(X) be a vector space over the complex field C. Let η be a two-fuzzy inner product on F(X). Let

$$\begin{split} N(f,t) &= \begin{cases} \eta(f,f,t^2) & \text{when } t \in \mathbb{R}, t > 0 \\ 0 & \text{when } t \leq 0 \end{cases} \\ \text{be the fuzzy norm induced by the two-fuzzy inner product. Let} \\ \|f\|_{\alpha} &= \inf \{t > 0 : N(f,t) \geq \alpha\}. \\ \text{if } \| \|_{\alpha} \text{ a satisfies parallelogram law then define} \alpha - \text{two-inner product as} \\ \langle f,g \rangle_{\alpha} &= F_{\alpha} + iG_{\alpha}, \\ \text{where } F_{\alpha} &= \frac{1}{4} (\|f + g\|_{\alpha}^{2} - \|f - g\|_{\alpha}^{2}) \text{ and} \\ G_{\alpha} &= \frac{1}{4} (\|f + ig\|_{\alpha}^{2} - \|f - ig\|_{\alpha}^{2}), \alpha \in (0,1) \dots (\#). \end{split}$$

3.Main results:

In this section, some of the basic results related to this work are given. **Theorem 3.1.**Every two-fuzzy pre-Hilbert space is a two-fuzzy normed space. Proof: let $(F(X), \eta, *)$ be a fuzzy pre-Hilbert space. Define

 $N(f,t) = \begin{cases} \eta(f,f,t^2) & ,t > 0 \\ 0 & ,t \le 0 \end{cases}$ For all $f,g \in F(X), t \in R$. The axioms (1, 3, 4, 5, 6) in Definition (3.3.1) satisfied Now to prove (2) $N(f + g, t + s) = \eta(f + g, f + g, (t + s)^2)$ $= \eta(f + g, f + g, t^2 + ts + ts + s^2)$ $\ge \eta(f + g, f + g, t^2) \land \eta(f + g, f + g, s^2) \land \eta(f + g, f + g, ts)$ $\ge \eta(f, f, t^2) \land \eta(g, g, s^2) = N(f, t) * N(g, s).$ Therefore (F(X), N, *) is a two- fuzzy normed space.

The relation between two-fuzzy metric space and two-fuzzy pre-Hilbert space is given in next theorem .

Theorem 3.2. Every two-fuzzy pre-Hilbert space is a two-fuzzy metric space. Proof: Let (X, F, *) be a fuzzy pre-Hilbert space.

 $\begin{array}{ll} \text{Defined } M(f,g,t) = \begin{cases} \eta(f-g,f-g,t^2) & ,t > 0 \\ 0 & ,t \leq 0 \end{cases} \\ \text{for all } f,g,h \in F(X) \text{ and } t,s \in R. \end{cases} \\ \begin{array}{ll} (1) & M(f,g,t) = \eta(f-g,f-g,t^2) > 0 & \text{for all } t > 0 \\ (2) & M(f,g,t) = 1 \Leftrightarrow M(f,g,t) = \eta(f-g,f-g,t^2) = 1 \\ \Leftrightarrow f-g = 0 \Leftrightarrow f = g \text{ for all } t > 0; \\ (3) & M(f,g,t) = \eta(f-g,f-g,t^2) = \eta(g-f,g-f,t^2) = M(g,f,t); \\ (4) & M(f,g,t) * & M(g,h,s) = \eta(f-g,f-g,t^2) \wedge \eta(g-h,g-h,s^2) \\ \leq \eta(f-g,f-g,t^2) \wedge \eta(g-h,g-h,s^2) \wedge \eta(f-g,f-g,ts) \\ = \eta(f-g,f-g,t^2+s^2+st) = \eta(f-g,f-g,(t+s)^2) \\ = M(f,h,t+s); \end{aligned}$

(5) $M(f, g, \bullet) = \eta(f - g, f - g, t^2): (0, \infty) \rightarrow [0, 1]$ is continuous. Therefore (F(X), M, *) is a two-fuzzy metric space.

The proof of the next theorem is straightforward it is omitted .

Theorem 3.3. Let F(X) be a linear space over the complex field C. Let η be a two-fuzzy inner product on F(X)

(i) For $f,g,h \in F(X)$ and $t,s \in C,\eta(f,g + h,t + s) \ge \eta(f,g,t) \land \eta(f,h,s)$. (ii) For $\lambda \in C$ and $\lambda \neq 0$, $\eta(f,\lambda g,t) = \eta(\lambda f,g,t)$. (iii) $\forall t \in \mathbb{R}$ and t > 0, $\eta(0,0,t) = 1 \ge \eta(f,g,t)$, $\forall f,g \in F(X)$. Remark 3.4. (i) let $f \in F(X)$, $\eta(f,f,t^2) > 0 \Longrightarrow f = 0$ (ii) $\forall f,g \in F(X)$ and $p,q \in \mathbb{R}$, $\eta(f + g, f + g, 2q^2) \land \eta(f - g, f - g, 2p^2) \ge \eta(f,f,p^2) \land \eta(g,g,q^2)$

3.5. Minimizing vector

Definition 3.5.1. Let $(F(X), \eta)$ be a two-fuzzy pre-Hilbert satisfying (Remark3.4). F(X) is said to be level complete (I-complete) if for any $\alpha \in (0, 1)$, every Cauchy sequence converges in F(X) w.r.t the α – norm, $\| \|_{\alpha}$, generated by the fuzzy norm N which is induced by two – fuzzy inner product η .

Theorem 3.5.2. Let $(F(X), \eta)$ be a two- FPH space satisfying (Remark3.4) and $M \neq \emptyset$ be a convex subset of F(X) which is level complete. Let $f \in F(X)$. Then for each $\alpha \in (0,1)$, $\exists a unique g_0^{\alpha} \in M$ such that $m_{g_0^{\alpha}}^{(\alpha)} = inf_{g \in M} \{m_g^{(\alpha)}\}$, where $m_g^{(\alpha)} = \Lambda \{t \in \mathbb{R}^+, N(f, t) \ge \alpha\}$, N being the fuzzy norm induced by the two- FIP function η . Proof : Observe that for each $\alpha \in (0,1)$ and $g \in M$,

- 4 -

 $m_g^{(\alpha)} = \inf\{t \in \mathbb{R}^+ : N(f - g, t) \ge \alpha\} \|f - g\|_{\alpha}$ where $\|\|_{\alpha}$ the α - norm induced from the fuzzy norm N which is obtained from the two-fuzzy inner product η . By Definition 2-3-14, $(F(X), \langle , \rangle_{\alpha})$ is an two-fuzzy pre-Hilbert space for each $\alpha \in (0, 1)$, where $\langle , \rangle_{\alpha}$ is given by (#). Also M is level complete and convex. So for each $\alpha \in (0, 1)$, M is a convex complete subset of

$(F(X), \langle , \rangle_{\alpha}).$

Hence by the minimizing vector theorem in crisp two- pre-Hilbert space we get the result.

3.6. Tow-Fuzzy Orthogonality

This section deals with the concept of two-fuzzy pre-Hilbert space and some of its properties.

Definition 3.6.1.[5] Let $(F(X), \eta)$ be two-fuzzy inner product space. If $f, g \in F(X)$ be such that $\langle f, g \rangle_{\alpha} = 0$, for all $\alpha \in (0,1)$ then f and g are two-fuzzy orthogonal to each other and is denoted by $f \perp_{\alpha} g$. With the help of this many more results can be established.

Definition 3.6.2. Let $\alpha \in (0,1)$ and $(F(X),\eta)$ be a 2 - FPH space satisfying (Remark 3.3.16). Now if $f, g \in F(X)$ be such that $\langle f, g \rangle_{\alpha} = 0$, then we say that f, g are $\alpha - \text{fuzzy}$ orthogonal to each other and is denoted by $f \perp_{\alpha} g$. Let M be a subset of V and $x \in V$. Now if $\langle f, g \rangle_{\alpha} = 0 \forall g \in M$, then we say that f is $\alpha - \text{fuzzy}$ orthogonal to M and is denoted by $f \perp_{\alpha} M$

Lemma 3.6.3.(orthogonality) Let $(F(X), \eta)$ be a two – FPH space

satisfying(Remark3.4).. Let $Y \neq \emptyset$ be a subspace of F(X) which is level complete and $f \in F(X)$ be fixed. Then for each $\alpha \in (0,1)$, $h^{\alpha}(=f-g_0^{\alpha})$ is a-fuzzy orthogonal to Y, where $g_0^{\alpha} \in Y$ is such that $m_{g_0^{\alpha}}^{(\alpha)} = inf_{g \in M} \{m_g^{(\alpha)}\}$

Proof :

As $(F(X), \langle , \rangle_{\alpha})$ is a crisp two- pre-Hilbert space and Y is closed w.r.t the $\alpha - norm$, $\| \|_{\alpha}$, the result follows.

Definition 3.6.4. Let $(F(X),\eta)$ be a 2 – FPH space satisfying (Remark 3.4). Now if $f, g \in F(X)$ be such that $\langle f, g \rangle_{\alpha} = 0$, $\forall \alpha \in (0,1)$, then we say that f, g are fuzzy orthogonal to each other and is denoted by $f \perp g$.

Thus $f \perp g$ iff $f \perp_{\alpha} g$, $\forall \alpha \in (0,1)$.

Theorem 3.6.5.Let $(F(X), \eta)$ be a two-FPH space satisfying (Remark3.4). such that $\eta(f, f, \bullet)$ is strictly increasing and lower semi continuous for any $f \in F(X)$. Then for $f, g \in F(X), f \perp g \ iff \eta(f + g, f + g, t^2) = \eta(f - g, f - g, t^2)$ And $\eta(f + ig, f + ig, t^2) = \eta(f - ig, f - ig, t^2), \forall t > 0$. **Proof:**The condition is necessary. Let $f \perp g$, then $< f, g >_{\alpha} = F_{\alpha} + iG_{\alpha} = 0, \forall \alpha \in (0, 1)$ where $F_{\alpha} = 4(||f + g||_{\alpha}^2 - ||f - g||_{\alpha}^2) \forall \alpha \in (0, 1)$ and $G_{\alpha} = 4(||f + ig||_{\alpha}^2 - ||f - ig||_{\alpha}^2), \alpha \in (0, 1)$. Then $||f + g||_{\alpha}^2 - ||f - g||_{\alpha}^2 = 0, \forall \alpha \in (0, 1)$(i) And $||f + ig||_{\alpha}^2 - ||f - ig||_{\alpha}^2 = 0, \forall \alpha \in (0, 1)$(ii)

From (i)we get $||f + g||_{\alpha} = ||f - g||_{\alpha} \,\forall \alpha \in (0,1) \dots \dots$ (iii) $\wedge \{t > 0; N(f + g, t) \ge \alpha\} = \wedge \{s > 0; N(x - y, s) > \alpha\}, \forall \alpha \in (0, 1)$ $\Rightarrow \Lambda\{t > 0; \eta(f + g, f + g, t^2) \ge \alpha\} =$ $\wedge \{s > 0; \eta(f - g, f - g, s^2) \ge \alpha\}, \forall \alpha \in (0, 1).$ Now if possible let $\eta(f + g, f + g, s^2) \neq \eta(f - g, f - g, s^2)$ for some s > 0. Without loss of generality let $\eta(f+g,f+g,s^2) > \eta(f-g,f-g,s^2) \text{ for some } s > 0 = \alpha_0 \text{ (say)}$ Then by our assumption that $\eta(f, f, \bullet)$ is strictly increasing and lower semi continuous $\forall f \in F(X)$, we get:- $\wedge \{t > 0; \eta(f + g, f + g, t^2) \ge \alpha_0\} < \wedge \{r > 0; \eta(f - g, f - g, r^2) \ge \alpha_0\} = s$ $\Rightarrow \|f + g\|_{\alpha_0} < \|f - g\|_{\alpha_0}$, which is a contradiction of (iii). $So_{\eta}(f + g_{\eta}f + g_{\eta}t^{2}) = \eta(f - g_{\eta}f - g_{\eta}t^{2}), t > 0$ Similarly from (ii) we can prove that $\eta(f + ig, f + ig, t^2) = \eta(f - ig, f - ig, t^2) \forall t > 0$ The sufficiency of the conditions readily follows. **Theorem 3.6.6**. Let $(F(X), \eta)$ be a two – FPH space satisfying (Remark 3.4). and $\alpha \in (0,1)$. If $\eta(f, f, \bullet)$ is strictly increasing and continuous $\forall f \in F(X)$, then $f \perp_{\alpha} g iff$ $\{(\eta(f+g,f+g,t^2) \ge \alpha iff \eta(f-g,f-g,t^2) \ge \alpha, \forall t > 0) \text{ and } \}$ $(\eta(f+ig,f+ig,t^2) \ge \alpha \, iff \, \eta(f-ig,f-ig,t^2) \ge \alpha, \forall t > 0)\}.$ Proof: Let $f \perp_{\alpha} g$ Then $\langle f, g \rangle_{\alpha} = 0 = F_{\alpha} + iG_{\alpha}$ $\Rightarrow F_{\alpha} = 0$ and $G_{\alpha} = 0$ Now from (i) we have, $L = \Lambda \{t > 0; \eta(f + g, f + g, t^2) \ge \alpha\} = \Lambda \{s > 0; \eta(f - g, f - g, s^2) \ge \alpha\}$ = MIf possible let $\eta(f + g, f + g, p^2) \ge \alpha$ and $\eta(f - g, f - g, p^2) < \alpha$ for some $p \in R^+$ and p > 0. Then $\exists r, s$ such that $\eta(f - g, f - g, p^2) < r < s < \alpha \leq \eta(f + g, f + g, p^2)$ We consider the following cases. If $\eta(f + g, f + g, p^2) > \alpha > \eta(f - g, f - y, p^2)$, Then M > p > L (Since n is strictly increasing and continuous and hence upper semi continuous $\forall f \in F(X)$), which can not hold. $If \eta(f + g, f + g, p^2) = \alpha > \eta(f - g, f - g, p^2),$ Then L = p < M (Since η is strictly increasing and continuous and hence lower semi continuous $\forall f \in F(X)$, which also can not hold.

Thus $\eta(f + g, f + g, t^2) \ge \alpha iff \ \eta(f - g, f - g, t^2) \ge \alpha, Vt > 0$ Similarly we can prove that

 $\eta(f + g, f + ig, t^2) \ge \alpha iff \eta(f - g, f - ig, t^2) \ge \alpha, \forall t > 0$ The converse part readily follows.

REFERENCES

[1] J. Zhang, The continuity and boundedness of fuzzy linear operators in fuzzy normed space, J.Fuzzy Math. 13(3) (2005) 519-536.

[2] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

[3] RM. Somasundaram and ThangarajBeaula, Some Aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc. 32(2) (2009) 211-222.

[4] S. Gahler, Lineare 2-normierte Raume, Math. Nachr. 28 (1964) 1-43.

[5] ThangarajBeaula, R. Angeline SargunaGifta. Some aspects of 2-fuzzy inner product space. Annals of Fuzzy Mathematics and Informatics Volume 4, No. 2, (October 2012), pp. 335-342

[6] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003) 687-705.