

Available online at: <u>www.basra-science-journal.org</u>

ISSN -1817 -2695

The Correlation Analysis of Substituents Effect on ¹³C NMR Chemical Shifts of E-2-(-4'-X-benzylidene)-1-indanones, tetralones, -benzosuberones and Chalcones

Sabih Abdul-wadood Othman Al-Shawi

Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq. E-mail address: <u>sabihdr@yahoo.com</u> Received 26-11-2013, Accepted 17-3-2014

Abstract

The ¹³C Substituent Chemical Shifts (SCS) effect on $(C_{\alpha})C_2$, C_{9a} , $(C_{\beta})C_{10}$ and $C_{1'}$ atoms for E-2-(-4'-X-benzylidene)-1-indanones, -tetralones, -benzosuberones and Chalcones (X= H, NMe₂, OMe, Me, F, Cl, Br, CN, NO₂) in CDCl₃ solvent. The effect was studied using two different types of substituent parameter: namely mono substituent parameter MSP (σ^{13} model, Hammett's and the Brown-Okamoto models), and dual substituent parameters DSP (modified Swain-Lupton, Reynolds, Taft and modified Godfrey models). Both MSP and DSP models reflected that the resonance effect contributes more on the chemical shift of (C_{α})C₂, while inductive effects primarily affect the chemical shift of (C_{β})C₁₀ of the enone moiety of all the four series. The latter effect, however, is far not as pronounced as that of the former one. It is found that DSP model (ρ_F and ρ_R values) of ¹³C SCS effect on C₂ can serve as a measure to study the conformation (or the planarity) of the investigated enones in the four series. Finally, MSP and DSP models performance are performed.

1. Introduction

The chemical shifts in ¹³C NMR spectra very convenient the studv are to effects transmission of electronic of substituents in organic molecules, being exceptionally sensitive to the distribution of electronic density at particular carbon atoms. The most frequently used analysis of ¹³Csubstituent chemical shifts (SCS) is based

on the principles of linear free energy relationships (LFER) comprising the MSP (mono substituent parameter) (equation 1) or DSP (dual substituent parameter) (equation 2) in the forms:

$SCS = \rho\sigma$		(1)
$SCS = \rho I \sigma I$	$+ \rho R \sigma R$	(2)

where SCS are the substituent chemical shifts, ρ is the proportionality constant reflecting the sensitivity of the ¹³C NMR chemical shifts to substituent effects, σ is the corresponding substituent constant. ρ_I and weighing factors for ρr are the field/inductive and resonance effect respectively.

It is well demonstrated in the literature that NMR chemical shifts are sensitive probes of electron-density distributions and are useful for the studying the transmission of electronic effects in organic molecules. Several workers have found very good linear free energy relationships between Hammett σ constants [1] or commonly between Brown and Okamoto's σ^+ constants [1] and the ^{13}C **NMR** chemical shifts of the β-carbon of chalcones and chalcone derivatives [2-4]. Revnolds et al. [5] demonstrated that. ¹³C NMR chemical shifts can be used to monitor changes in ground state electron distributions in styrene derivatives and that **DSP** correlations with field and resonance

2. Procedure

The ${}^{13}C$ NMR substituent chemical shifts C_2 , C_{9a} , C_{10} and C_1 of E-2-(Xof benzylidene)-1-indanones, -tetralones and benzosuberones [4, 5] with "basis set" substituents were modeled by different types of substituent parameter, DSP and MSP models. The single and multiple regressions were performed on **Pentium (IV) PC** with statistical program by using stepwise regression procedure by computer program, called Minitab version 11.11(MTB). The $\delta P = \rho [\sigma ST - \lambda (\sigma ST - \sigma I)]$ But.

parameters can be used to deduce mechanisms of transmission of electronic effects. Earlier Perjesi et al. performed such ¹³C NMR study on E-2-(X-benzylidene)-1cyclohexanones [6] and E-2-(Xbenzylidene)-1-indanones [7] to interpret to what extent the spectroscopic data reflect the stereostruture and the electronic distribution of the compounds. As a continuation of these previous works of Perjesi et al. reported on the ¹³C NMR investigations of transmission of substituent effects in the title E-2-(Xbenzylidene)-1-indanones, -tetralones and benzosuberones applying mono substituent parameter (MSP) and dual substituent parameter(DSP) analyses, comparative investigation on the transmission of the electronic effects by substituents in E-2-(Xbenzylidene)-1-indanones and chalcones is also reported. The aim of this study, to investigate the performance of different types of models MSP and DSP, and to compare performance in describing their the transmission of substituent effect.

statistical parameter f-Taft (SD/RMS) was used to judge the quality for these models, (where **SD** is standard deviation of estimation, and **RMS** is root mean squares of the analyzed data). The smaller the f value the better the fit. With values of **0.0-0.1** representing excellent correlations, while f values of 0.1-0.3 moderately good ones, and f values are greater than 0.3 representing only crude trends [8].

Modification of Godfrey model; -----(a) [Godfrey model][9] $\delta P = \rho [\sigma I + (1 - \lambda)\sigma R, ST] - - - - - - (e)$ $\delta P = \rho \sigma I + \rho (1 - \lambda)\sigma R, ST - - - - - - (f) [Modified Godfrey model]$ σST is the ¹³C_B SCS in the ring-substituted styrenes [5] expressed in units of 5 ppm. We can use modified Godfrey model as a DSP model.

3. Results and Discussion

The ¹³C substituent chemical shift SCS effects on the C_2 , C_{9a} , C_{10} and $C_{1'}$ of E-2-(X-benzylidene)-1-indanones, -tetralones and -benzosuberones, series [a, b, c and d] respectively [7, 10] Scheme 1, are listed in [Table 1]. The SCS effect represents the difference in the chemical shift between the substituted and unsubstituted derivatives. The data were modeled by two different types of parameter: substituent namely mono substituent parameter (MSP) (σ^{13} model [11] Hammett's and the Brown-Okamoto models [1]), and dual substituent parameter DSP (modified Swain-Lupton[1],

Reynolds' [5], Taft [12] and modified Godfrey [9] models).

The statistical **f-Taft (SD/RMS)** was used to judge the quality of correlation, which is more sensitive than linear correlation coefficient (**r**), or multiple regression coefficient (**R**), and **F-Snedecor** in comparisons of narrowly different model [**13**], "normal" and "reverse" effects to refer to the situations when electron with-drawing substituents induce downfield and upfield chemical shifts, respectively (and vice-versa for donors) [**14**].

d

a (n=1); b (n=2); c (n=3) X= H, NMe₂, OMe, Me, F, Cl, Br, CN, NO₂

Scheme 1.

Table 1. ¹³C SCS effects on C₂, C_{9a}, C₁₀ and _{C1}, of the series [a, b, c and d]: E-2-(4'-X-benzylidene)-1indanones, -tetralones, -benzosuberones and chalcones respectively;

			[a]				[b]	
Substituent	C ₂	C _{9a}	C ₁₀	C _{1'}	C ₂	C _{9a}	C ₁₀	C _{1'}
Н	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NMe ₂	-5.0	0.8	1.0	-12.2	-4.4	0.6	1.2	-12.3
OMe	-2.4	0.3	-0.2	-7.2	-1.9	0.2	0.0	-7.5
Me	-1.0	0.2	0.0	-2.7	-0.7	0.1	0.2	-2.9
F	-0.5	0.0	-1.3	-3.6	-0.2	0.0	-1.1	-3.9
Cl	0.4	-0.1	-1.5	-1.5	0.5	-0.1	-1.4	-1.6
Br	0.6	-0.1	-1.5	-1.1	0.6	-0.1	-11.4	-1.1
CN	3.1	-0.4	-2.6	4.4	2.6	-0.4	-2.6	4.7
NO ₂	3.8	-0.4	-3.1	6.4	3.1	-0.4	-3.0	6.7

			[c]				[d]	
Substituent	C ₂	C _{9a}	C ₁₀	C _{1'}	C ₂	C _{9a}	C ₁₀	C _{1'}
Н	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NMe ₂	-4.7	0.8	0.5	-12.5	-5.2	0.8	1.0	-12.3
OMe	-2.1	0.3	-0.3	-7.5	-2.4	0.3	-0.2	-7.3
Me	-0.8	0.1	0.0	-2.9	-1.0	0.1	0.1	-2.8
F	-0.3	-0.1	-1.3	-3.9	-0.3	-0.1	-1.3	-3.8
Cl	0.6	-0.2	-1.5	-1.5	0.3	-0.2	-1.6	-1.5
Br	0.7	-0.2	-1.4	-1.1	0.4	-0.2	-1.5	-1.1
CN	2.8	-0.7	-2.5	4.7	2.9	-0.7	-2.8	4.2
NO ₂	3.3	-0.8	-2.9	6.7	3.6	-0.7	-3.4	6.1

of ${}^{13}C$ The correlation analysis SCS effects on C_2 , C_{9a} , C_{10} and $C_{1'}$ of Series [a, b, c and d]: E-2-(X-benzylidene)-1-indanones, -tetralones, -benzosuberones and chalcones respectively when σ^{13} model is used [Table 2], C₂, gave an excellent correlation in series [b, c and d] while series **[a]** gave a moderately good, with normal ρ values [3.202, 2.724, 2.927 and 3.178] for series [a, b, c and d] respectively. The lower transmission efficiency in the E-2-(Xbenzylidene)-1-tetralones, and benzosuberones is evidently caused by the preference of the non-planar enone structure and the non-planar arrangement of the aryl ring and the enone moiety of the compounds determined X-ray as it was bv crystallography [15, 16]. On the contrary, the

open-chain s-cis chalcones [17] and E-2-(Xbenzylidene)-1-indanones, in particular [18], adopt a rather planar structure. C_{1} gave a moderately good correlation with all series, with normal ρ values [6.657, 6.839, 6.904 and 6.09] for series [a, b, c and d] respectively. C_{10} , is less sensitive to the substituent effects, with negative (reverse substituent effect) ρ values [-1.476, -1.541, -1.248 and -1.578] for series [a, b, c and d] respectively, which show crude trends correlation with all series. The ρ values obtained do not show clear relationship with planarity of the compounds of the four series. C_{9a} , shows the same behavior as C_{10} , but with a moderately good correlation with all series.

Table 2. Correlation analysis of ¹³C SCS effects on C₂, C_{9a}, C₁₀ and C₁ for the series [a, b, c and d]: E-2-(X-benzylidene)-1-indanones, -tetralones, –benzosuberones and chalcones respectively on using σ^{13} model.

a.					
C atom	ρ	S.D	r	F	f-Taft
C ₂	3.202±0.14	0.3357	0.9930	493.97	0.134
C _{9a}	-0.448±0.02	0.0414	0.9945	635.96	0.118
C ₁₀	-1.476±0.25	0.5818	0.9127	34.94	0.359
C _{1'}	6.657±0.51	1.1960	0.9798	168.30	0.213

n (number of substituents) = 9; r = linear correlation coefficie	ent; F = F-Snedecor
b:	

C atom	ρ	S.D	r	F	f-Taft
C ₂	2.724±0.07	0.1577	0.9980	1619.21	0.074
C _{9a}	-0.370±0.01	0.0305	0.9955	796.86	0.106
C ₁₀	-1.541±0.24	0.5591	0.9247	41.25	0.355
C _{1'}	6.839±0.57	1.327	0.9767	144.18	0.229

n = 9; r = linear correlation coefficient; F = F-Snedecor.

<u> </u>					
C atom	ρ	S.D	r	F	f-Taft
C ₂	2.927±0.09	0.1991	0.9970	1172.73	0.080
C _{9a}	-0.584±0.03	0.0760	0.9894	320.36	0.163
C ₁₀	-1.248±0.26	0.6120	0.8735	22.59	0.402
C _{1'}	6.904±0.55	1.2930	0.9783	154.87	0.222

n = 9;	r = linear	correlation	coefficient	; $\mathbf{F} = \mathbf{F}$	-Snedecor.
--------	------------	-------------	-------------	-----------------------------	------------

c.

d٠

u.					
C atom	ρ	S.D	r	F	f-Taft
C ₂	3.178±0.09	0.2187	0.9970	1146.37	0.088
C _{9a}	-0.563±0.03	0.0764	0.9910	379.31	0.150
C ₁₀	-1.578±0.28	0.6519	0.9055	31.81	0.377
C _{1'}	6.609±0.51	1.1920	0.9798	166.99	0.212

n = 9 r = linear correlation coefficient; F = F-Snedecor.

On using Hammett's $[\sigma]$ and the Brown-Okamoto $[\sigma^+]$ models [Table 3], the results of analysis of the C_2 , C_{9a} , C_{10} and C_1 , of ¹³C SCS effect with both σ and σ^+ constants resulted in a moderately good correlations in all series, except C_{10} with σ^+ representing only crude trends. The C_2 and C_1 , with the higher ρ values, indicating a significant resonance interaction between the substituents and the C_2 and the C_1 carbon atoms. Similar conclusion could be drawn from the MSP analysis of the IR carbonyl stretching wave numbers of series [a, b and It is worth mentioning that the c] [4]. respective regression coefficient of ρ values obtained for the MSP analysis of the IR carbonyl stretching wave number (e.g. for the σ values $\rho = 12.00, 7.95, 6.41$ and 9.41 [2] in the series [a, b, c and d], respectively) follows a similar decreasing tendency as that obtained for the ¹³C SCS of C₂ (for the σ values: $\rho = 5.422, 4.595, 4.952$ and 5.356 for series [a, b, c and d], respectively) in the four series. Accordingly, sensitivity of the IR carbonyl stretching wave numbers and that of the ¹³C SCS effect of C_2 to the polar effects of substituents (expressed by the

Hammett σ constants) seem to be mainly the inductive effect due to the planarity of chalcones and their cyclic analogues.

The chemical shift of the C_{10} atom is less sensitive to the substituent effects (for the σ values: $\rho = -2.629, -2.736, -2.258$ and -2.824 for the series [a, b, c and d], respectively) than that of C_2 and its correlation with the σ and σ^+ parameters gives a linear relationship of opposite (negative) slope. Similar conclusion has been drawn on earlier ¹³C NMR investigation of chalcones as well [4]. In addition, this study demonstrated that the MSP regression coefficients ρ obtained for the ¹³C SCS effect values of C_{10} do not show clear relationship with planarity of the compounds of the four series. The C_{9a} atoms, shows the same behavior as C_{10} atoms.

A comparison between **Hammett's** model and σ^{13} model, C₂ and C₁ for all series are the best in σ^{13} model, while for C₁₀, Hammett's model is the best one. For C_{9a}, series [a], both models are the same quality, while for series [b], σ^{13} model, is the best, but for both series [c and d], Hammett's model is the best.

Table 3. Correlation analysis of ¹³C SCS effects on C2, C9a, C10 and C1. for the series [a, b, c and d]on using Hammett's (σ) and the Brown-Okamoto (σ^+) models.

a:						
C atom	Parameter	ρ	S.D	R	F	f-Taft
C ₂	σ	5.422±0.26	0.3515	0.9925	450.01	0.140
	σ^{+}	3.469±0.24	0.5019	0.9844	217.13	0.200
C _{9a}	σ	-0.753±0.05	0.0630	0.9874	270.14	0.179
	σ^{+}	-0.789 ± 0.02	0.0422	0.9945	610.05	0.120
C ₁₀	σ	-2.629±0.29	0.4001	0.9597	81.68	0.247
	σ^{+}	-1.580±0.30	0.6376	0.8944	27.91	0.394
C ₁ ,	σ	11.079±1.18	1.6280	0.9623	87.61	0.289
	σ^{+}	7.223±0.65	1.3890	0.9726	122.95	0.247
h۰						
C atom	Parameter	0	S.D	R	F	f-Taft
C ₂	с.	4.595+0.20	0.2765	0.9935	522.38	0.130
02	σ ⁺	2.959±0.14	0.3080	0.9920	419.63	0.145
Cas	۳ ۲	-0.626+0.03	0.0348	0.9945	611.82	0.121
~ 9a	σ ⁺	-0.402 ± 0.02	0.0474	0.9894	326.12	0.164
C10	n n	-2.736+0.26	0.3624	0.9690	107.82	0.230
- 10	σ ⁺	-1.652 ± 0.29	0.6182	0.9072	32.45	0.392
C ₁ ,	<u>σ</u>	11.407±1.24	1.7000	0.9612	85.10	0.294
-1	σ^+	7.412±0.72	1.5370	0.9685	105.66	0.265
<u> </u>	Ū		I			
c:			(D	D	Г	CTT C
C atom	Parameter	ρ	S.D	R	F	f-laft
C_2	σ	4.952 ± 0.21	0.2934	0.9935	536.61	0.129
0	σ	5.160±0.10	0.3362	0.9913	401.69	0.140
C_{9a}	σ	$-0.99/\pm0.03$	0.0392	0.9970	1224.92	0.084
0	σ	-0.030±0.03	0.1083	0.9783	134.14	0.232
C_{10}	σ	-2.258 ± 0.33	0.4534	0.9327	46.88	0.298
0	σ	-1.529±0.51	0.0004	0.0515	10.41	0.433
$C_{1'}$	σ +	11.511 ± 1.25 7.486±0.70	1.6900	0.9623	8/.//	0.290
	σ	7.460±0.70	1.5000	0.9700	115.16	0.237
d:						
C atom	Parameter	ρ	S.D	R	F	f-Taft
C ₂	σ	5.356±0.27	0.3656	0.9915	405.81	0.147
	σ^+	3.448±0.19	0.4030	0.9894	332.82	0.162
C _{9a}	σ	-0.959±0.03	0.0462	0.9955	814.19	0.103
	σ^{+}	-0.610 ± 0.04	0.0946	0.9818	189.37	0.211
C ₁₀	σ	-2.824±0.33	0.4497	0.9560	74.57	0.260
	σ^{+}	-1.684±0.34	0.7167	0.8843	25.11	0.414
C ₁ ,	σ	10.987±1.19	1.6410	0.9612	84.76	0.292
	σ^{+}	7.178±0.64	1.3570	0.9737	127.13	0.241

 σ^+ 7.178±0.64 1.3570 0.9 n = 9; r = linear correlation coefficient; F = F-Snedecor.

In order to get a further estimation of the relative importance of the substituent's inductive (field) and resonance effects, DSP analysis of the ¹³C SCS effect were performed employing Eq. (2). The results of the DSP correlation obtained for the selected ¹³C NMR chemical shifts of the series [a, b, c and d] are listed in [Tables 4-7], using modified Swain-Lupton, Reynolds, Taft and modified Godfrey models respectively.

On using a modified Swain-Lupton model **[Table 4]**, C_2 gave an excellent correlations for all series, with a normal reaction constants for both a field (**f**) and a resonance (**r**), with a blending constants λ in the range (1.402-1.464). The C_{9a} atoms, gave

an excellent correlations for series [**b** and **c**], while series [**a** and **d**] gave a moderately good correlations, with a reverse reaction constants for both a field and a resonance, with a blending constants λ in the range (1.062-1.358). The **C**₁₀, gave an excellent correlations for series [**a**, **b** and **d**], while series [**c**] gave a moderately good correlation, with a reverse reaction constants for both a field and a resonance, with a blending constants λ in the range (0.353-0.494). The **C**_{1'}, gave a moderately good correlations for all series, with normal reaction constants for both a field and a resonance, with a blending constants λ in the range (2.497-2.684).

Table 4. DSP Correlation analysis of ¹³C SCS effects of the C_2 , C_{9a} , C_{10} and $C_{1'}$ for the series [a, b, c and d] on using modified Swain-Lupton model.

C atom	f	r	λ	S.D	R	F	f-Taft
C ₂	4.277±0.35	6.010±0.22	1.405	0.2108	0.9975	632.40	0.084
C _{9a}	-0.609±0.09	-0.827±0.06	1.358	0.0553	0.9915	177.10	0.157
C ₁₀	-4.145±0.18	-1.851±0.12	0.447	0.1097	0.9975	587.29	0.068
C _{1'}	5.450±1.36	13.969±0.87	2.563	0.8260	0.9920	180.72	0.147
b:			·	·			
C atom	f	r	λ	S.D	R	F	f-Taft
C ₂	3.584±0.18	5.114±0.11	1.427	0.1073	0.9990	1754.13	0.051
C _{9a}	-0.520±0.04	-0.680±0.02	1.309	0.0236	0.9980	670.80	0.082
C ₁₀	-4.111±0.16	-2.031±0.10	0.494	0.0975	0.9980	790.87	0.062
C _{1'}	5.735±1.59	14.319±1.01	2.497	0.9630	0.9894	140.58	0.166
c:							
C atom	f	r	λ	S.D	R	F	f-Taft
C ₂	3.865±0.18	5.494±0.12	1.422	0.1108	0.9990	1901.37	0.049
C _{9a}	-0.957±0.07	-1.017±0.04	1.062	0.0409	0.9975	561.72	0.088
C ₁₀	-3.944±0.26	-1.393±0.16	0.353	0.1547	0.9935	228.60	0.102
C ₁ ,	5.765±1.49	14.460±0.95	2.508	0.9060	0.9910	161.80	0.155

d:							
C atom	f	r	λ	S.D	R	F	f-Taft
C ₂	4.099±0.31	6.001±0.20	1.464	0.1895	0.9980	765.70	0.076
C _{9a}	-0.892±0.08	-0.994±0.05	1.115	0.0463	0.9965	405.92	0.103
C ₁₀	-4.507±0.24	-1.960±0.15	0.435	0.1430	0.9965	400.32	0.083
C _{1'}	5.201±1.28	13.957±0.81	2.684	0.7728	0.9930	203.93	0.137

n = 9; $\lambda =$ blending constant (r/f); R = Multiple regression coefficient; F = F-Snedecor.

On using Reynolds' model [Table 5], the C_2 gave excellent correlations for series [a], while the series [b, c and d] gave moderately good correlations, with normal reaction constants for both a field (ρ_F) and a resonance (ρ_R), with blending constants λ in the range (2.032-2.137). The C_{9a} , gave moderately good correlations for series [b, c and d], while the series [a] represent crude trends, with reverse reaction constants for both field and resonance, with a blending constants λ in the range (1.505-1.796). Both atoms C_{10} and $C_{1'}$, gave excellent correlations for all series, with reverse reaction constants for both field and resonance for C_{10} , and blending constants λ in the range (0.445-0.653), while the $C_{1'}$, with normal reaction constants for both field and resonance, with blending constants λ in the range (3.993-4.233).

Table 5. DSP Correlation analysis of 13 C SCS of C2, C9a, C10 and C1 for the series [a, b, c and d] on using Reynolds' model.

C atom ρ_F ρ_R λ S.D R F f-	-Taft
C2 4.228±0.39 8.809±0.41 2.083 0.2417 0.9970 480.14	0.096
C_{9a} -0.636±0.17 -1.141±0.18 1.796 0.1065 0.9685 45.53	0.303
C10 -4.064±0.18 -2.355±0.19 0.580 0.1123 0.9975 559.78	0.069
C1' 5.253±0.58 21.348±0.62 4.064 0.3603 0.9985 962.49	0.064

b:							
C atom	$ ho_F$	ρ_R	λ	S.D	R	F	f-Taft
C ₂	3.611±0.56	7.367±0.60	2.040	0.3519	0.9910	160.40	0.166
C _{9a}	-0.537±0.11	-0.950±0.12	1.771	0.0676	0.9813	79.07	0.234
C ₁₀	-4.039±0.11	-2.639±0.12	0.653	0.0711	0.9990	1487.29	0.045
C _{1'}	5.487±0.37	21.979±0.39	4.005	0.2290	0.9995	2535.41	0.040

c:

c.							
C atom	$ ho_F$	ρ_R	λ	S.D	R	F	f-Taft
C ₂	3.897±0.58	7.918±0.62	2.032	0.3616	0.9913	175.92	0.159
C _{9a}	-0.957±0.10	-1.441±0.11	1.505	0.0628	0.9935	236.71	0.135
C ₁₀	-3.854±0.12	-1.716±0.13	0.445	0.0754	0.9985	972.43	0.049
C ₁ ,	5.544 <u>±</u> 0.44	22.138±0.48	3.993	0.2778	0.9990	1749.95	0.048

d:							
C atom	$ ho_F$	ρ_R	λ	S.D	R	F	f-Taft
C ₂	4.088±0.58	8.735±0.63	2.137	0.3657	0.9925	203.37	0.147
C _{9a}	-0.913±0.13	-1.387±0.14	1.519	0.0810	0.9889	130.66	0.181
C ₁₀	-4.390±0.17	-2.531±0.18	0.576	0.1065	0.9980	724.75	0.062
C _{1'}	5.035±0.59	21.315±0.63	4.233	0.3706	0.9985	896.63	0.066

n = 9; λ = blending constant (ρ_R/ρ_F); R = Multiple regression coefficient; F = F-Snedecor.

On using Taft model **[Table 6]**, The C_2 gave moderately good correlations for all the series, with normal reaction constants for both field (ρ_I) and resonance (ρ_R), with blending constants λ (1.808) with σ_R° of series [a], and in the range (0.820-0.843) with σ_R^+ of the series [b,c and d]. The C_{9a} , gave an excellent correlation for series [a], and moderately good correlations for series [b, c and d], with reverse reaction constants for both field and resonance, with a blending

...

h۰

constants λ in the range (0.632-0.758) with σ_{R}^{+} of the series [**a**, **b** and **d**] and (0.609) of series [**c**]. **C**₁₀, gave excellent correlations for all series, with reverse reaction constants for both a field and a resonance, with blending constants λ in the range (0.512-0.682) with σ_{R}^{0} scale. **C**₁, gave moderately good correlations for all series, with normal reaction constants for both a field and a resonance, with blending constants λ in the range (3.069-3.160) with σ_{R}^{0} scale.

Table 6. DSP Correlation analysis of 13 C SCS of C2, C9a, C10 and C1 for the series [a, b, c and d] on using Taft's model.

a.							
C atom	ρι	ρ_R	λ	S.D	R	F	f-Taft
C ₂	4.580±0.67	8.279±0.72 [o]	1.808	0.4623	0.9884	129.12	0.184
C _{9a}	-0.603±0.04	-0.457±0.02 [+]	0.758	0.0298	0.9975	614.59	0.085
C ₁₀	-3.929±0.22	-2.412±0.24 [o]	0.614	0.1502	0.9950	311.56	0.093
C _{1'}	6.437±1.45	19.829±1.57 [o]	3.080	0.9997	0.9879	122.42	0.178

n = 9;	$\lambda =$ blending constant (ρ_R	/ρ _I);	R = Multiple regression coefficient; F = F -Snedecor.
[0]: σ _I	and σ_R^{o} parameters;	[+] : (σ_{I} and σ_{R}^{+} parameters

D .							
C atom	ρι	ρ _R	λ	S.D	R	F	f-Taft
C ₂	3.439±0.41	2.831±0.17 [+]	0.823	0.2742	0.9945	266.04	0.129
C _{9a}	-0.506±0.05	-0.373±0.02 [+]	0.737	0.0361	0.9950	285.07	0.125
C ₁₀	-3.925±0.17	-2.676±0.18 [o]	0.682	0.1169	0.9975	548.79	0.074
C ₁ ,	6.629±1.29	20.521±1.39 [o]	3.096	0.8870	0.9910	166.26	0.153

Al-Shawi : The Correlation Analysis of Substituents Effect on 13C NMR...

c:							
C atom	ρι	ρ_R	λ	S.D	R	F	f-Taft
C ₂	3.706±0.46	3.039±0.19 [+]	0.820	0.3081	0.9940	243.34	0.135
C _{9a}	-0.907±0.12	-0.552±0.05 [o]	0.609	0.0791	0.9899	147.91	0.170
C ₁₀	-3.653±0.17	-1.870±0.18 [o]	0.512	0.1175	0.9965	398.53	0.077
C _{1'}	6.720±1.38	20.627±1.50 [o]	3.069	0.9549	0.9899	145.45	0.164

a:

d:							
C atom	$\rho_{\rm I}$	ρ_R	λ	S.D	R	F	f-Taft
C ₂	3.930±0.56	3.319±0.24 [+]	0.843	0.3794	0.9920	188.65	0.153
C _{9a}	-0.856±0.10	-0.541±0.04 [+]	0.632	0.0666	0.9925	194.93	0.148
C ₁₀	-4.231±0.19	-2.621±0.21 [o]	0.620	0.1315	0.9990	474.04	0.076
C _{1'}	6.250±1.52	19.748±1.64 [o]	3.160	1.0490	0.9864	109.27	0.186

On using modified Godfrey model [Table 7], The C_2 gave moderately good correlations for all the series, with normal reaction constants for both field (ρ_I) and resonance $(\rho_{R,ST})$, with blending constants (1- λ) in the range (1.130-1.176). The C_{9a}, gave moderately good correlations for series [b, c and d], while series [a] represent crude trends, with reverse reaction constants for both field and resonance, with blending constants $(1-\lambda)$ in the range (0.896-1.000).

The C_{10} , gave excellent correlations for all the series, with reverse reaction constants for both field and resonance, with blending constants $(1-\lambda)$ in the range (0.512-0.682). C_1 , gave excellent correlation constant for series [b], while series gave moderately good correlations for series [a, c and d], with normal reaction constants for both a field and a resonance, with blending constants $(1-\lambda)$ in the range (1.990-2.051).

Table 7. DSP Correlation analysis of 13 C SCS effect of C₂, C_{9a}, C₁₀ and C_{1'} for the series [a, b, c and d] on using Modified Godfrey model.

C atom	ρ_{I}	$\rho_{R,ST}$	1 - λ	S.D	R	F	f-Taft
C ₂	4.283±0.42	5.036±0.29	1.176	0.3090	0.9950	292.79	0.123
C _{9a}	-0.658±0.15	-0.638±0.11	0.969	0.1127	0.9649	40.28	0.321
C ₁₀	-3.691±0.13	-1.470±0.09	0.398	0.0946	0.9980	790.71	0.058
C ₁ ,	6.025±0.94	12.019±0.65	1.995	0.6932	0.9940	257.81	0.123
b:							
C atom	ρι	$\rho_{R,ST}$	$1 - \lambda$	S.D	R	F	f-Taft
C ₂	3.700±0.55	4.179±0.38	1.130	0.4039	0.9879	121.00	0.190
C _{9a}	-0.541±0.10	-0.541±0.07	1.000	0.0710	0.9798	71.43	0.246
C ₁₀	-3.676±0.10	-1.632±0.07	0.444	0.0700	0.9990	1534.93	0.044
~							

c:							
C atom	ρ _Ι	ρ _{R,ST}	$1 - \lambda$	S.D	R	F	f-Taft
C ₂	3.975±0.58	4.499±0.40	1.132	0.4240	0.9884	127.09	0.186
C _{9a}	-0.932±0.09	-0.835±0.06	0.896	0.0630	0.9935	235.07	0.135
C ₁₀	-3.422±0.18	-1.135±0.12	0.332	0.1303	0.9955	323.61	0.086
C _{1'}	6.280±0.86	12.499±0.59	1.990	0.6290	0.9955	338.97	0.108

a:							
C atom	ρ_{I}	$\rho_{R,ST}$	1 - λ	S.D	R	F	f-Taft
C ₂	4.220±0.58	4.952±0.40	1.174	0.4247	0.9899	149.99	0.171
C _{9a}	-0.886±0.11	-0.805±0.08	0.908	0.0833	0.9879	123.46	0.186
C ₁₀	-3.972±0.13	-1.592±0.09	0.401	0.0966	0.9985	881.37	0.056
C _{1'}	5.843±1.00	11.981±0.65	2.051	0.7334	0.9935	226.73	0.130

R = Multiple regression coefficient; n = 9; $(1-\lambda)$ = blending constant ($\rho_{R,ST}/\rho_I$); **F** = **F**-Snedecor.

When the obtained DSP regression coefficients for the C₂ values were compared in the series [a, b and c] [Tables 4-7], both field and resonance values are the highest in the open-chain chalcones series [d] and the smallest in the tetralone series [b]. The corresponding field and resonance values obtained for the five-membered series [a] and the series [d], are very close to those obtained for the substituent effects in the more planar compounds [a] and [d], and the lower one in the least planar compounds [b and c]. Since, using all the four sets of constants (modified Swain-Lupton, Reynolds, Taft and modified Godfrey models) the respective field and resonance regression coefficients follow the same decreasing order of series [a = d > c > b]corresponding to the relative degree of planarity of the four series, the field and resonance values apparently seem to be appropriate indicators of planarity of the investigated cinnamoyl enones. On the other hand, it is worth mentioning that, although in statistical terms the correlation of substituent effects with the C_{9a} is rather good in all the four series. the regression coefficient ρ values are very low and do not indicate the difference in stereochemistry of the four series.

In accord with the earlier results [7]. sensitivity of the C_{10} to the substituent resonance effect is smaller than that of C_2 in all the four series. On the other hand, the respective the field values are very similar (Tables 4-7). This latter observation can exist in the s-cis system which stabilizes the dipolar from even if the degree of planarity of the enone moiety is significant [6]. This also might be the reason for the observation that the DSP analysis of C_2 of the four series (modified Swain-Lupton, Reynolds, Taft and modified Godfrey models) resulted in higher a field than a resonance values in all the four series. Similar results were obtained for DSP analysis of the carbonyl stretching wave numbers of series [a, b and c] [7] and that of E-2-(4'-X-benzylidene)-1the C_2 of cyclohexanones [6].

4. Models performance assessment of MSP and DSP models:

The statistical parameter **f-Taft** (**SD/RMS**) was used to judge the quality for these models. The results were tabulated in [**Table 8**]. The modified Swain-Lupton model is the best one for C_2 SCS effect for all series. For C_{9a} , both models σ^{13} and Hammett, are the best for series [**a**], while modified Swain-Lupton model is the best one for both series [**c and d**], but for series [**d**] both models Hammett and modified Swain-

Lupton model have the same quality. For C_{10} , both modified Swain-Lupton and Reynolds models have the same quality for series [a], while both Reynolds and modified Godfrey models have the same quality for series [b], Reynolds model is the best for series [c], while Godfrey model is the best one for series [d]. For $C_{1'}$, Reynolds model is the best one for the all series.

Table 8. A comparison of the statistical parameter f-Taft (SD/RMS) of MSP and DSP models:

Series	C atom	σ^{13}	Hammett	M. Swain	Reynolds	Taft	M. Godfrey
Α	C ₂	0.134	0.140	0.084	0.096	0.184 [o]	0.123
	C _{9a}	0.118	0.120 *	0.157	0.303	0.085 [+]	0.321
	C ₁₀	0.359	0.247	0.068	0.069	0.093 [o]	0.058
	C _{1'}	0.213	0.247 *	0.147	0.064	0.178 [o]	0.123
В	C ₂	0.074	0.130	0.051	0.166	0.129 [+]	0.190
	C _{9a}	0.106	0.121	0.082	0.234	0.125 [+]	0.246
	C ₁₀	0.355	0.230	0.062	0.045	0.074 [o]	0.044
	C _{1'}	0.229	0.265 *	0.166	0.040	0.153 [o]	0.099
С	C ₂	0.087	0.129	0.049	0.159	0.135 [+]	0.186
	C _{9a}	0.163	0.084	0.088	0.135	0.170 [o]	0.135
	C ₁₀	0.402	0.298	0.102	0.049	0.077 [o]	0.086
	C _{1'}	0.222	0.257 *	0.155	0.048	0.164 [o]	0.108
D	C ₂	0.088	0.147	0.076	0.147	0.153 [+]	0.171
	C _{9a}	0.150	0.103	0.103	0.181	0.148 [+]	0.186
	C ₁₀	0.377	0.260	0.083	0.062	0.076 [o]	0.056
	C _{1'}	0.212	0.241 *	0.137	0.066	0.186 [o]	0.130

M. Swain: Modified Swain-Lupton model; (+]: σ_I and σ_R^+ parameters; [0]: σ_I and σ_R^o parameters.

5. References

- Hansch C., Leo A. and Taft R. W., Chem. Rev. 1991, 91, 165-195.
- 2- Silver N. L. and Boykin Jr. D. W, J. Org. Chem. 35 (1970) 759-764.
- 3- Perjessy A., Boykin Jr. D.W., Fisera L., Krutosikova A. and Kovac J., J. Org. Chem. 38 (1973) 1807-1810.
- 4- Sol' aniova E., Toma S. and Gronowitz S., Org. Magn. Res. 8 (1979) 439-443.
- 5- Reynolds W. F., Gomes A., Maron A., MacIntyre D. W., Tanin A., Hamer G., and Peat I. R., Can. J. Chem. 61 (1983) 2376-2384.
- 6- Geribaldi S., Girault Y., Perjesi P. and Tortajada J., Spectrochim. Acta Mol. Spectrosc. 48A (1992) 879-892.
- 7- Perjesi P., Perjesi A., Kolehmainen E., Osz E., Samalikova M., Linnanto J. and Virtanen E., J. Mol. Struct, 697 (2004) 41-47.
- 8- Ehrenson S., Brownlee R.T.C. and Taft R.W., Prog. Phys. Chem., 1973, 10, 1.
- 9- Perjesi P., Linnanto J., Kolehmainen E., Osz E. and Virtanen E., J. Mol. Struct, 697 (2005) 81-89.
- 10- Fadhil G. F. and Godfrey M., J. Chem. Soc., Perkin Trans. 2, 1988, 133.
- 11- Slater C. D., J. Org. Chem. 1985, 50, 4125-4130.

- 12-Bromilow J., Brownlee R. T. C., Lopez V. O. and Taft R. W., J. Org. Chem. 44 (1979) 4766-4770.
- 13-Al-Shawi S. A. O, Ph.D Thesis, University of Basrah, Basrah, Iraq, 1998.
- 14- Craik D. J. and Browmlee R. T. C., Physical Organic Chemistry, Vol .14, 1982.
- 15-Dimmock J.R., Kandepu N.M., Nazarali A.J., Kowalchuk T.P., Motaganahalli N., Quail J.W., Mykytiuk P., Audette G. F., Prasad L., Perjesi P., Allen T.M., Santos C.L., Szydlowski J., de Clercq E. and Balzarini j., J. Med. Chem. 42 (1999) 1358-1366.
- 16-Dimmock J.R., Zello G.A., Oloo E.O., Quail J.W., Kraatz H.-B., Perjesi P., Aradi F., Takacs-Novak K., Allen T.M., Santos C.L., Balzarini J., de Clercq E. and Stablers J.P., J. Med. Chem. 45 (2002) 3103-3111.
- 17-Patai S. and Rappoport Z., The Chemistry of Enones, Wiley, Chichester, 1989. pp. 55-105 (Chapter 3).
- 18-Perjesi P., Nusser T., Tarczay Gy.And Sohar P., J. Mol. Struct. 479 (1999) 13-19.

التحليل الترابطي لتأثير المعوضات على الإزاحات الكيمياوية لطيف الرنين النووي المغناطيسي 13-C لمركبات (4)-2-E-(4)-Xبنزلدين)-1-اندونات, -تترالونات و -بنزوسبيرونات و الجالكونات.

الملخص

درست الإزاحات الكيميائية لطيف الكربون –13 لذرات الكربون C₁, C_β)C₁₀,C_{9a}, (C_α) C₂ لمركبات C₁. لمركبات C₁. (C_β) C₁₀,C_{9a}, (C_α) C₂ لمركبات -2-E لذرات الكربون)-1-اندونات, -تترالونات , -بنزوسبيرونات و الجالكونات حيث:

X = H, NMe_2 , OMe, Me, F, CI, Br, CN, NO_2

في مذيب 2 CDCl درس التأثير باستخدام نوعين مختلفين من معامل المعوض: معامل المعوض أحادي الحد (MSP) (أنموذجات ${}^{10}\sigma_{0}$ و هامت و براون–اوكوموتو) ومعامل المعوض ثنائي الحد (DSP) (أنموذجات سواين لبتون المعدل و رينولدز و تافت و كود فري المعدل) وأن كلا المعاملين (MSP) و (MSP) عكسا كثيرا مشاركة الرنين في التأثيرعلى الازاحة الكيمياوية للذرة 2 Co (2 Co (3 Co (3 Co (2 Co (3 Co (3 Co (2 Co (3 Co (3 Co (2 Co (2 Co (3 Co (2 Co (2 Co (3 Co (2 Co (3 Co (2 Co (2 Co (3 Co (2 Co (2 Co (3 Co (2 Co (2 Co (3 Co (2 Co (2 Co (3 Co (3 Co (2 Co (3 Co (3 Co (2 Co (3 Co (3