A non Monotone Line Search Method with VM Algorithm of $2^{\text {nd }}$ Order Quazi-Newton Condition for Symmetric Non Linear Equation

Ivan S. Latif Qumri H. Hamko
Dept. of Math. Coll. of Edu., Scientific Deptt, University of Salahaddin
email:Ivansubhi2001@yahoo.com
Received date: 3/6/2012
Accepted date: 11/10/2012

Abstract

In this paper, we propose a new class of Quasi- Newton update based on the non monotone line search technique for solving non linear equation under suitable conditions the global convergence of the method is proved. Numerical experiments indicate that this new algorithm is practicable for the test problems.

Keywords: Non monotone line search, Quasi- Newton condition, symmetric equation.

الخلاصة

في البحث التالي تم اقتراح نوع جديد من الخوارزميات المتري المتغير(نيوتن-كوازی) تستند على تقتية خط بحث غيررتيب. لحل المسائل المعادلات غير الخطية في الامثيلية غير المقيدة . باستخدام شروط معينة للحصول على التقارب الامثل . تم حساب النتائج العددية والتي اثبت كون الخوارزمية الجديد كفوعة من خلال اختبار الدوال .

Introduction

Consider the an constrained optimization problem with the following non-linear equation

$$
\left\{\begin{array}{cc}
\min _{\mathrm{x} \in \mathrm{R}^{\mathrm{n}}} \mathrm{f}(\mathrm{x}) & \text { where } f(x): R^{n} \rightarrow R \tag{1}\\
g(x)=0 & \text { where } g(x): \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}
\end{array}\right\}
$$

be continuously differentiable and its Jacobin, $\nabla g(x)$ is symmetric for all $x \in \mathrm{R}^{\mathrm{n}}$. This problem can come from unconstrained optimization problem a saddle point problem, and equality constrained problem [1,2]. Let $\emptyset(\boldsymbol{x})$ be the norm function defined by

$$
\begin{equation*}
\emptyset(x)=\frac{1}{2}\|g(x)\|^{2} \tag{2}
\end{equation*}
$$

Then the non-linear equation problem (1) is equivalent to the following global optimization problem [2]
$\min \emptyset(x), x \in R^{n}$

The following iterative formula is often used to solve (1) and (2)

$$
\begin{equation*}
x_{\mathrm{k}+1}=x_{k}+\alpha_{k} d_{k} \tag{4}
\end{equation*}
$$

Where α_{k} is a step length and d_{k} is one search direction .To begin with , we briefly review some methods for (1) and (2).First we give some line search technique for $\alpha_{k}[2]$. proposed an approximate monotone linear search technique to obtain the step - size α_{k} satisfying
$\emptyset\left(x_{\mathrm{k}}+\alpha_{\mathrm{k}} \mathrm{d}_{\mathrm{k}}\right)-\emptyset(x) \leq-\delta_{1}\left\|\alpha_{\mathrm{k}} \mathrm{d}_{\mathrm{k}}\right\|^{2}-\delta_{2}\left\|\alpha_{\mathrm{k}} g_{k}\right\|^{2}+\varepsilon_{\mathrm{k}}\left\|g_{k}\right\|^{2}$
Where $\delta_{1}>0$ and $\delta_{2}>0$ are positive constants, $\alpha_{\mathrm{k}}=\gamma^{i_{k}}, \gamma \in(0,1) ; \mathrm{i}_{\mathrm{k}}$ is the smallest non negative integers, and ε_{k} satisfies

$$
\begin{equation*}
\sum_{k=0}^{\infty} \varepsilon_{k}<\infty \tag{6}
\end{equation*}
$$

Combining the line search (5) with one special BFGS update a formula, they got some better results [2].Inspired by their idea there are some results on non linear equations can be found at $[8,12,13]$ we made a further study using nonmonotone line search technique for unconstrained optimization problem. They prove the global convergence for non convex function and R- Linear convergence for strong to convex function. Motivated by their technique, we propose a new non monotone line search which can ensure the descent search direction on the norm function for solving symmetric nonlinear problem (1) and prove the global convergence .Second ,on the possibility to efficiently solve a linear system which arises when computing the search d_{k} at each iteration
$y_{k} d_{k}=-g_{k}$
Moreover, the exact solution of the formula(7) could be combining the new line search with the most effective method for minimizing problem (1). At present ,a lot of algorithms have be proposed. The famous BFGS for solving these two problem (1) and (2)[6,7,9,10,11,12,14]. The famous Quasi - Newton method, where the d_{k} is the solution of the equation linear equations.
$B_{k} \mathrm{~d}_{\mathrm{k}}+g_{k}=0$

Where B_{k} is generated by the following BFGS update formula
$\mathrm{B}_{\mathrm{k}+1}=B_{k}-\frac{B_{k}}{v_{k}^{T}} \frac{V_{k} V_{k}^{T}}{B_{k}} \frac{B_{k}}{V_{k}}+\frac{Y_{K} Y_{k}^{T}}{V_{k}^{T} Y_{k}}$

Where $\quad V_{k}=x_{k+1}-x_{k}$
And $Y_{k}=g_{k+1}-g_{k}$
This paper is organized as follows, in the next section determined the point x_{k+1} and generated B_{k} by

$$
\begin{equation*}
B_{k+1}=B_{k}+\frac{V_{k} V_{k}^{T}}{V_{k}^{T} Y_{k}}-\frac{B_{K} Y_{k} Y_{k}^{T} B_{k}}{Y_{k}^{T} B_{k} Y_{k}}+\delta R_{k} R_{k}^{T} \tag{11}
\end{equation*}
$$

Where $R_{k}=\frac{V_{k}}{V_{k}^{T} Y_{k}}-\frac{B_{k}^{T} Y_{k}}{Y_{k}^{T} B_{k} Y_{k}} \quad B_{k}=I$
δ is parameter in $(0,1)$

Difference values of the scalar δ in equation (11) correspond to different $f(x)$ Broydens Quasi-Newton family [4]. The global convergence and numerical result are established.

1.Outlines of The New Algorithm

Step(1):Choose an initial point $x_{0} \in R^{n}$, an initial symmetric positive defined matrix $B_{0} \in R^{n \times n}$ and constants $\rho \in(0,1), 0<\rho<1,\left\|g_{0}\right\|^{2}=1$ and $\mathrm{k}=1$.

Step(2): If $g_{k}=0$ then stop; otherwise set $B_{k} d_{k}+g_{k}=0$,to obtain d_{k} and go to step (3)

Step(3):Let i_{k} be the smallest non negative integer i such that $\left\|\quad g_{k+1}\right\|^{2}-\left\|g_{k}\right\|^{2} \leq \delta \alpha_{k}^{2} g_{k}^{T} d_{k}$ holds for $\alpha=\rho^{i}$, let $\alpha_{k}=\delta-\rho^{i_{k}}$

Step(4): Let $x_{k+1}=x_{k}+\alpha_{k} d_{k}, V_{k}=x_{k+1}-x_{k}$ and $y_{k}=g_{k+1^{-}} g_{k}$
if $y_{k}^{T} V_{k}>0$. Update B_{k} to generate B_{k+1} by the formula (11) otherwise, let $B_{k+1}=B_{k} \quad($ go to step (2)).

Step (5): If restart criterion is satisfied, $g_{k+1}^{T} d_{k+1}>0$ and $\emptyset\left(x_{k}\right)^{\mathrm{T}} d_{k}<0$
go to step (2), else $k=k+1$ and go to step (3).

By the technique of the step(4), we deduce that B_{k+1} can inherits the positive and symmetric property of B_{k} then, it is not difficult to get $d_{k}^{\mathrm{T}} g_{k}<0$.

2.Some Theoretical Back ward of The New Algorithm

The new line search rule was implemented by considering the following assumption.

Assumption (1) The Global Convergence Analysis of New Algorithm. The level set Ω is defined by

$$
\begin{equation*}
\Omega=\left\{x \in R^{n} \mid\|\mathrm{g}(\mathrm{x})\| \leq\left\|\mathrm{g}_{0}(\mathrm{x})\right\|\right\} \tag{12}
\end{equation*}
$$

Assumption (2) The Jacobean of $\mathrm{g}(\mathrm{x})$ is Symmetric and there exists a constant
$\mathrm{M}>0$ holds

$$
\begin{equation*}
\left\|\mathrm{g}(\mathrm{x})-\mathrm{g}\left(x_{k}\right)\right\| \leq M\left\|x-x_{k}\right\| \tag{13}
\end{equation*}
$$

For $x \in \Omega$ since B_{k} approximates Y_{k} along direction V_{k}
Assumption (3) B_{k} is agood approximation to y_{k} i.e

$$
\begin{equation*}
\left\|\left(y_{k}-B_{k}\right) d_{k}\right\| \leq \delta\left\|g_{k}\right\| \tag{14}
\end{equation*}
$$

Where $\delta \in(0,1)$ is a small quantity .

Assumption (4) there exist positive constants a_{1} and a_{2} satisfy

$$
\begin{equation*}
g_{k}^{T} d_{k} \leq-a_{1}\left\|g_{k}\right\|^{2} \tag{15}
\end{equation*}
$$

And

$$
\begin{equation*}
\left\|d_{k}\right\| \leq a_{2} \| g_{k} \tag{16}
\end{equation*}
$$

for all sufficient large iteration \boldsymbol{k}, by step(2) and assumption (4) we have

$$
\begin{equation*}
a_{1}\left\|g_{k}\right\| \leq\left\|d_{k}\right\| \leq a_{2}\left\|g_{k}\right\| \tag{17}
\end{equation*}
$$

Lemma 2.1 Let assumption (3) hold and the step length and direction search be generated by New algorithm then d_{k} is descent direction for $\emptyset\left(x_{k}\right)$
i.e $\nabla \emptyset\left(x_{k}\right)^{T} d_{k}<0$

Proof:- By equation (8) We have

$$
\begin{align*}
\nabla \emptyset\left(y_{k}\right)^{T} \quad d_{k} & =g_{k}^{T} y_{k} d_{k} \tag{18}\\
& =g_{k}^{T}\left[\left(y_{k} d_{k}-B_{k}\right) d_{k}-g_{k}\right] \\
& =g_{k}^{T}\left(y_{k} d_{k}-B_{k}\right) d_{k}-g_{k}^{T} g_{k} \tag{19}
\end{align*}
$$

Using formula (14) and taking norm of the formula(19) we get

$$
\begin{align*}
\left\|\nabla \emptyset\left(x_{k}\right)^{T} d_{k}\right\| & \leq\left\|g_{k}^{T}\left(y_{k} d_{k}-B_{k}\right) d_{k}\right\|-\left\|g_{k}\right\|^{2} \\
& \leq-(1-\delta)\left\|g_{k}\right\|^{2} \tag{20}
\end{align*}
$$

Since $\delta \in(0,1)$ then we get the lemma.

Remark: By the above lemma, we know that the norm function $\emptyset(x)$ is dosent alonyd ${ }_{k}$, then $\left\|\mathrm{g}_{\mathrm{k}+1}\right\| \leq\left\|\mathrm{g}_{\mathrm{k}}\right\|$ holds.

Lemma 2.2: Let assumption (3) holds and the step length and direction search a generated by New Algorithm , then $\left\{x_{k}\right\} \in \Omega$ moreover $\left\|g_{k}\right\|$ convergent.

Proof: Using Lemma 2.1 we get
$\left\|g_{k+1}\right\| \leq\left\|g_{k}\right\|$ then, we conclude that $\left\|g_{k}\right\|$ convergent for all iteration k,we have
$\left\|g_{k+1}\right\| \leq\left\|g_{k}\right\| \leq\left\|g_{k-1}\right\| \leq \cdots \leq\left\|g_{0}\right\|$
Which means that $\left\{x_{k}\right\} \in \Omega$
Lemma 2.3 : Let assumption 2,3 and 4 hold ,then New Algorithm will produce an iterate, $x_{k+1}=x_{k}+\alpha_{k} d_{k} \quad$ In a finite number of backtracking step.

Proof: From Lemma 3-8 in [5]. We have that in a finite number of backtracking steps, α_{k} must satisfy
$\left\|g_{k+1}\right\|^{2}-\left\|g_{k}\right\|^{2} \leq \delta \alpha_{k} g_{k}^{T} y_{k} d_{k}$
Where $\delta \in(0,1)$ by formula (20) and (15) we get

$$
\begin{aligned}
\alpha_{k} g_{k}^{T} y_{k} d_{k} & \leq-\alpha_{k}(1-\epsilon)\left\|g_{k}\right\|^{2} \\
& =-\alpha_{k}(1-\epsilon) \frac{g_{k}^{T} d_{k}}{g_{k}^{T} d_{k}}\left\|g_{k}\right\|^{2} \\
& \leq \alpha_{k}(1-\delta) \frac{1}{a_{1}} g_{k}^{T} d_{k} \\
& \leq \alpha_{k}^{2} \quad(1-\delta) \frac{1}{a_{1}} g_{k}^{T} d_{k}
\end{aligned}
$$

Using $\alpha_{k} \in(0,1)$,Let $a_{1} \in\left\{0, \min \left(1, \delta(1-\delta) \frac{1}{a_{1}}\right\}\right.$ by restart criterion of new algorithm we get the line search at step (3) of new algorithm, the proof is complete.

Numerical Experiments

In this section, we present the computational performance 0f a newly - programmed Fortran implementation of the new Algorithm, we report some preliminary experiments numerical. The 12 test problems (Appendix 1) are the unconstrained problems in the Cute[26] test problems library. Considered in [3] We stop the iteration, If the inequality \|I $g\left(x_{k}\right) \| \leq 10^{-6}$ is satisfied. Table 1 gives the total number of iteration (NOI), The total number of evaluation function (NOF). Taking over all, the tools as 100% for the BFGS method, the New- method has an improvement in about ($43,53 \%$) No. 1 and ($44,35 \%$) NOF. We have show numerically that this method proves to be successful and reliable for function to four variables, numerical result also suggested that is method converge globally .Further interest is to investigate its behavior for function with more variable $(\mathrm{n}>5)$. We compare the performance of the BFGS algorithm and the New method with that of the BFGS method it is clear from table (2)that the new method with non monotone line search, we can see that the numerical results are quite well for the test problems with the proposed method. The initial points and dimensions don't influence the performance of the Algorithm.

Table (1): Comparison between the BFGS algorithm and NEW algorithms using different value of $2^{\text {nd }}$ class of test function .

N.of Test	$\begin{gathered} \text { TEST } \\ \text { FUNCTIO } \\ \mathrm{N} \\ \hline \end{gathered}$	N	BFGS		NEW	
			NOI	NOF	NOI	NOF
1	GEN-shallo	5	114	119	15	20
		10	100	103	15	20
		100	113	109	15	20
2	Gen-Edger	5	12	21	8	10
		10	12	21	8	10
		100	12	21	8	10
3	Gen-Powell	5	112	128	53	67
		10	116	132	53	67
		100	141	157	53	67
4	GenHelical	5	59	85	44	56
		10	59	85	44	56
		100	60	87	45	58
5	Gen-Cubic	5	125	207	40	40
		10	125	207	30	30
		100	126	209	32	32
6	Liarwhd	5	15	24	15	24
		10	41	51	16	30
		100	49	98	18	35
7	Dqudratic	5	18	28	15	20
		10	18	28	15	20
		100	16	24	15	20
8	Gen-Non diagonal	5	92	155	36	54
		10	69	122	56	72
		100	103	173	36	54
9	Shanno	5	20	32	18	32
		10	20	28	18	34
		100	16	24	21	36
10	Gen-Beal	5	34	61	10	14
		10	34	61	10	14
		100	35	62	12	15
11	Almost	5	9	15	9	11
	Perturbed	10	13	17	11	20
	Quadratic	100	74	74	25	74
12	Tridiagonal	5	13	19	12	16
	Perturbed	10	15	21	14	20
	Quadratic	100	72	81	70	70
Total			2063	2899	915	1262

Table (2): Percentage performance of the new algorithm against BFGS algorithm for 100% in NOF and NOI we have

Total	BFGS al gorithm	NEW algorithm
NOI	100%	43.53
NOF	100%	44.35

Conclusion

In this paper, we propose a new class of Quasi - Newton method based on the non monotone line search technique for symmetric nonlinear equations. The global convergence is proved and the numerical results show that this technique is interesting for used fewer function and gradient evaluations, the comparison of the numerical results shows that the new search direction of the new Algorithm is a good search direction at every iteration.

References

[1] A.Y.Al Bayati and M.Abdullah,Runak, New Variable Metric Algorithm by the Mean of $2^{\text {nd }}$ order Quasi-Newton condition ,Ref.J. Of comp \& Maths, vol.8, No.2. 2011.
[2] D.Li.Anan and M.Fukushima, A Global and super linear convergent Gauss-Newtonbased BFGS Method for symmetric Nonlinear Equations " SIAM Journal on Numerical Analysis, vol.37,No.1, ,pp.152-172. , 1999.
[3] N. Andrei, An unconstrained optimization test functions collection, Advanced Modeling and optimization, Vol.1, pp.149-161. 2008.
[4] C.G.Broyden, The convergence of a class of Double Rank Minimization Algorithims11.The New Algorithm, Journal of the Institute of Mathematics and it's Applications Vol.6,pp.221-231. ,1970.
[5] N .Brown and Y. Saad, Convergence Theory of Nonlinear Newton-krylov Algorithms ,SIAM Journal on optimization,vol.4, ,pp297-330., 1994.
[6] R .Fletcher and M. J.D.Powel, A Rapidly convergent Descent Method for Minimization ,computer journal 6,pp. 163 - 168. ,1965.
[7] R.Fletcher, Practical Methods of optimization, : non constrained optimization (New York, Wiley and Sons)., 1987.
[8] S.Latif,Ivan, Global convergence of the Quasi- Newton BFGS Algorithm with new non monotone line search technique, Int .J. Open problems comp. Math. vol. 3 No.1, pp.94-105., 2010.
[9] D.W.Marquardt, An algorithm for least-squares estimation of non linear in equalities, SIAM Journal on Applied Mathematics, vol.11, pp. 431-441., 1963.
[10] J.Nocedal and S.J.Wright, Numerical optimization , Springer , Berlin ,Heidelberg, New York.,1999.
[11] N.Yamashita and M.Fukushima, On the Rate of convergence of the LevenbergMarquardt Method ,computing, vol.15, No. suppl ,pp. 239-249., 2001.
[12] G.Yuan and Z.wei, The super linear convergence analysis of anon monotone BFGS Algorithm on convex objective functions, Acta Mathematical Science, English series ,vol . 24 ,No.1., 2008.
[13] G.Yuan, S. Lu and Z.wei, A line search Algorithm for unconstrained optimization, J. Soft .Eng. No. 3 pp .503-509. , 2010.
[14] H.Zang and W.Hager, A Non monotone line Search Technique and its application to unconstrained optimization, SIAM Journal on optimization, vol.14, No.4, pp.1043-1056. ,2004.

APPENDIX

All the test functions used in this paper are from general literature:
See Anderi, 2008, for the details of all these test function

1. Generalized Shallow Function:

$$
f(x)=\sum_{i=1}^{n / 2}\left(x_{2 i-1}^{2}-x_{2 i}\right)^{2}+\left(1-x_{2 i-1}\right)^{2}, \quad x_{0}=[-2 .,-2 ., \ldots,-2 .,-2 .]
$$

2. Generalized Edger Function:

$$
f(x)=\sum_{i=1}^{n / 2}\left(x_{2 i-1}-2\right)^{4}+\left(x_{2 i-1}-2\right)^{2} x_{2 i}^{2}+\left(x_{2 i}+1\right)^{2}, \quad x_{0}=[1 ., 0 ., \ldots, 1 ., 0 .]
$$

3. Generalized Powell function:

$$
f(x)=\sum_{i=1}^{n / 3}\left\{3-\left[\frac{1}{1+\left(x_{i}-x_{2 i}\right)^{2}}\right]-\sin \left(\frac{\pi x_{2} x_{3 i}}{2}\right)-\exp \left[-\left(\frac{x_{\mathrm{i}}+x_{3 i}}{x_{2 i}}-2\right)^{2}\right]\right\} \quad, \quad x_{0}=[0 ., 1 ., 2 ., \ldots, 0 ., 1 ., 2 .] .
$$

4. General Helical Function:

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{n / 3}\left(100 x_{3 i}-10 * H_{i}\right)^{2}+100\left(R_{i}-1\right)^{2}+x_{3 i}^{2}, \quad \text { where } \\
& R_{i}=\operatorname{sqrt}\left(x_{3 i-2}^{2}+x_{3 i-1}^{2}\right), H_{i}=\frac{\tan ^{-1} \frac{x_{3 i-1}}{x_{3 i-2}}}{2 . P I} \quad x_{0}=[-1 ., 0 ., 0 \ldots .,-1 ., 0 .], 0 .
\end{aligned}
$$

5. Generalized Cubic function:

$$
f(x)=\sum_{i=1}^{n / 2}\left[1 \mathrm{OO}\left(x_{2 i}-x_{2 i-1}^{3}\right)^{2}+\left(1-x_{2 i-1}\right)^{2}\right], \quad x_{0}=[-1.2,1 ., \ldots,-1.2,1 .]
$$

6. Liarwhd Function (cute):

$$
f(x)=\sum_{i=1}^{n} 4\left(-x_{1}+x_{i}^{2}\right)^{2}+\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}, \quad x_{0}=[4 ., 4 ., \ldots, 4 .]
$$

7. Dqudrtic Function (CUTE):

$$
f(x)=\sum_{i=1}^{n-2}\left(x_{i}^{2}+c x_{i+1}^{2}+d x_{i+2}^{2}\right), \quad x_{0}=[3.3 ., \ldots, 3 ., 3 .], \mathrm{c}=100, \mathrm{~d}=100
$$

8. Generalized Non diagonal function:

$$
f(x)=\sum_{i=2}^{n}\left[100\left(x_{1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}, \quad x_{0}=[-1 ., \ldots,-1 .] .\right.
$$

9. Nondia (Shanno-78) Function (Cute):

$$
f(x)=\left(x_{i}-1\right)^{2}+\sum_{i=2}^{n} 100\left(x_{1}-x_{i-1}^{2}\right)^{2}, \quad x_{0}=[-1 .,-1 ., \ldots,-1 .,-1 .] .
$$

10. Generalized Beale Function:

$f(x)=\sum_{i=1}^{n / 2}\left[1.5-x_{2 i}+\left(1-x_{2 i}\right)\right]^{2}+\left[2.25-x_{2 i-1}\left(1-x_{2 i}^{2}\right)\right]^{2}+\left[2.625-x_{2 i-1}\left(1-x_{2 i}^{2}\right]^{2}\right.$,
$x_{0}=[-1 .,-1 ., \ldots,-1 .,-1$.

11. Almost Perturbed Quadratic Function:

$$
f(x)=\sum_{i=1}^{n} i x_{i}^{2}+\frac{1}{100}\left(x_{1}+x_{n}\right)^{2}, \quad x_{0}=[0.5,0.5, \ldots, 0.5,0.5]
$$

12. Tridiagonal Perturbed Quadratic Function:
$f(x)=x_{i}^{2}+\sum_{i=2}^{n-1} i x_{i}^{2}+\left(x_{i-1}+x_{i}+x_{i+1}\right)^{2}, \quad x_{0}=[0.5,0.5 ., \ldots, 0.5,0.5]$.
