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ABSTRACT 

This paper presents an artificial neural network based control scheme for 

studying the control of continuous stirred tank reactor, distillation column and 

neutralization process and this method is compared with conventional proportional-

/integral-derivative controller. A multi-layer back-propagation neural network is 

employed to model the nonlinear relationships between the inputs variables and 

controlled variables of processes in order to regulate the manipulating variables to 

a variety of operating conditions and acquire a more flexible learning ability. The 

robustness of this control structure is studied in the case of setpoint changes and 

load disturbances. The experimental results suggest that such neural controllers can 

provide excellent setpoint-tracking and disturbance rejection. The neural network 

based control has higher speed of response and the offset has a smaller average 

value than that of the conventional controller. The control action based on the 

neural network controller shows less oscillation and an improvement in the 

controlled variables stabilization time with respect to the conventional controller 

and gives a better control performance. 

 

Keywords: Artificial Neural Network Controller, Reverse Model Controller,     

                 Continuous Stirred Reactor, Neutralization Process, Conventional                      

                 Controller. 

  

 الاصطناعيت العصبيت السيطرة على العملياث الكيمياويت بطريقت الشبكت

 
 الخلاصت

هذا البحث قدم  ريقةدا الكدباا اليةدبلا الذكلدا كالديط الودل يط يقدا ق بلةسدي ةدع الودل يط   د  

المفي ددذ  ي الط ددم الموددرمي يقددير الرة لددي ي م لددا الميي لددا الحيتهددلا يقددا تةي  رسددي  يلموددل ي 

 لإقجددي الرياجددا الط فددع تريددم  ال بةددي   ألدد   قددا الددرطما  الرفيضدد ع الرة لددم   -الرادديت ع-الرنيلددبع

لمدم   قنظدلا ترغلديا  المييلجدااليلاقا اللاخ لا  لن ترغلدي الودل يط يالمرغلديا  الماخ دا تدن اجدذ 

يالددا تددن الظددييغ الركددغل لا يتيي ددا كيةلددا لةي  لددا قددم قا الموددل ي  قددا   الددا تري ددا ال يقةددا 

ي الكددباا النرددي ا اليم لددا اي توددل  أظسددي يالحمددذ  المةريحددا تددن خددلار قغللددي الةلمددا المي   ددا 

اض يا   ياي تول ي الكدباا اليةدبلا  لأ  يإزالااليةبلا قي ع تويقيط تمريزط ل ةلما المي   ا 

ةدع  أكثديقبلن اقذ قذ دذ ي يقحودلن  أ اءه أيقي ع الرجي ا ليقيا يحلم اقذ تن ال يقةا الرة لمقا كمي 

     تةي  ا  يل يقةا الرة لمقا    أةهذ يأ اءالزتن اللاز  للالرةيا  
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NOMENCLATURE 

E: error criterion for network convergence 

f:  activation function of the neuron 

F: flowrate of hot water, (m
3
/sec) 

Fr: flowrate of reagent, (m
3
/sec) 

I: number of input 

L: number of the neuron in the next layer 

t: time instant  

T: temperature, 
o
C 

wij: connection weight between input i and neuron j of the layer 

x: input to neuron 

y: output of neuron 

Greek letters 

α: learning rate 

γ: momentum term 

β: credit of neuron 

Δ: incremental change 

Subscripts 

d :desired value 

j :layer j 

 

INTRODUCTION 

here are three major problems in commercial practice of chemical process 

control: nonlinear process behavior, constraints on operations, and ill-

behaved dynamics. The major commercial advanced control approach 

successfully handles constraints and dynamics, but does not consider the 

nonlinearity of the process [1]. Due to the complexity of nonlinear control 

problems it is in general necessary to apply various computational or approximate 

procedures for their solution. A number of neural network-based methods have 

been suggested for optimal control problems, where the control objective is to 

minimize a control-relevant cost function. One approach is to apply a neural 

network to approximate the solution of the dynamic programming equation 

associated with the optimal control problem [2]. 

In multivariable processes, unknown models structures and high correlation 

between process variables are examples of problems that are faced daily. On the 

other hand, artificial neural networks (ANN) have been successfully used for a 

number of chemical engineering applications. Many network topologies and 

learning methodologies have been explored. Among these methodologies, the 

backpropagation algorithm, gradient descent supervised learning has had an 

enormous influence in research on neural networks. Neural networks have been 

used as an alternative to the traditional mathematical models to simulate complex 

and nonlinear patterns. Basically, the design of a neural network only requires a 

relatively large set of data to adjust the parameters in the net. The great 

disadvantage of neural networks is their limited capability to predict situations not 

considered in their design. Bahat and McAvoy[3], Mrris, et al.[4] and Baughman 

and Liu[5] have presented overviews of the issues pertaining to the use of ANN for 

sensor data analysis, fault diagnosis, process modeling, identification and control. 

An ANN is composed of nets of nonlinear basis functions; it has the ability to 

T 
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evolve a good process model from experimental data and requires very little or no 

knowledge of first principles. It has the ability of learning; prediction for nonlinear 

models, networks has the ability to cope with large volumes and various formats of 

sensory information, highly parallel structure, has the ability to generalize beyond 

specific experience and has therefore been used to identify the process dynamics 

nonparametric by several authors. Composition estimators using ANN for a batch 

distillation column via tray temperatures and flow rates have been developed by 

Zamprogna, et al.[6].  

    In practical applications a neural network can be used when the exact model is 

not known. It is a good example of a black-box technique. Bhat and McAvoy[7] 

and Wang et al.[8] used back propagation neural networks to model the dynamic 

response and pH control in continuous stirred tank reactor. Psichogios and 

Ungar[9] introduced a hybrid neural network first principles model, applied to a 

fed batch bioreactor. Molga and Cherbanski
 
[10] also employed this hybrid 

approach to model liquid-liquid reacting system in batch and semibatch stirred tank 

reactors. Pollard et al.[11] proposed the use of back propagation neural networks 

for mapping input-output experimental or simulated data in linear, nonlinear, static 

and dynamic processes and compared these mappings with classical regression 

methods. Galvan et al.[12] used neural networks to fit complex kinetics data in 

fluid-fluid systems. Roj and Wilk[13] used feed forward neural nets for simulating 

an absorption column used in the process of nitric acid production. Ramani and 

Miranda[14] employed neural networks to perform a sensitivity analysis on the 

conversions of pollutants gases as a function of the automobile exhaust catalyst 

composition and operating conditions. 

     Ramchandran and Rhinehart[15] used neural networks control of two methanol-

water distillation columns. The efficient training algorithm based on nonlinear 

least-squares was used to train the networks. The neural network model-based 

controllers show robust performance for both setpoints and disturbances, and 

performed better than PI controller. Dirion et al.[16] developed a neural controller 

to regulate the temperature in a semi-batch pilot plant reactor. They suggested that 

such neural controller can provide excellent set point-tracking and disturbance 

rejection. Farouq[17] applied neural network-based control algorithms to control 

the product compositions of a agitated extractor and he found that neural network 

is capable of solving the servo control problem efficiently with minimum controller 

moves. Zhang [18] proposed neural network based batch-to-batch optimal control 

of simulated batch polymerization reactor and he concluded that the proposed 

method can improve process performance from batch to batch in the presence of 

model plant mismatches and unknown disturbances. Akpan and Hassapis[19] used 

a series–parallel neural network structure which is trained by a recursive least 

squares method. This method have been applied to the temperature control of a 

fluidized bed furnace reactor and the identification and control simulation results 

show that this method outperforms the other methods at the expense of extra 

computation time. Ebrahimzadeh et al.[20] investigated several neural networks, 

such as the multilayer perceptron, probabilistic neural networks, and the radial 

basis function neural networks and apply it  in manufacturing processes. 

Simulation results show that a high recognition accuracy, about 99.65%, is 

achieved. Rani et al.[21] design of Levenberg–Marquardt neural networks and 

adaptive linear network based soft sensors and their application in inferential 
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control of a multicomponent distillation process. The comparison of results shows 

the efficient and robust prediction capability of the soft sensor and hence neural 

method proves to be the best controller. 

    Sharma and  Singh[22] implemented neural network predictive control to a tert-

amyl methyl ether reactive distillation column and they found this method give 

smoother and better control performance than the PID controller for both set point 

change and ±10% load change in feed flow rate of methanol. Neural network based 

chemical process control was considered and the application of neural networks-

based control algorithms such as model predictive algorithm is justified by the 

success of these techniques to control complex nonlinear dynamics chemical 

processes. There have also been many studies on the application of neural 

controllers on various types of processes in the literatures such as in 

evaporator[23,24], fluid catalytic cracking unit[25,26], combustion unit[27], heat 

exchanger[28,29], Mechanical milling process[30], wastewater 

treatment[31,32,33,34], fermentation[35,36,37], catalytic reactor[38], fluidized 

bed[39]. The application of neural networks control for crystallizer was studied by 

(Damour et al.[40], Paengjuntuek et al.[41], Suarez et al.[42]). Neural network 

control of distillation process have been successfully applied by (Lee and Park[43], 

Fernandez et al.[44,45] ). Alvarez et al.[46] , Ramirez and Jackson[47], Martins and 

Coelho[48] , Shi et al.[49],  Hussain and Kirshenbaum[50], Mujtaba et al.[51], Tian 

et al.[52], Jing et al.[53] Yu and Gomm[54], Mohammad  et al.[55], Ararom et 

al.[56]
 
, Vasickaninova and Bakosova[57], Singh and.Narain[58], Chen and 

Tan[59], Chidrawar and Sadhana[60], Tufan et al.[61], Yan and Wang[62], Mjalli 

and Ibrehem[63], who used neural networks control of reactor.  

     The objective of this study is application of an artificial neural network based 

control of continuous stirred tank reactor, distillation column and neutralization 

process. A multi-layer back-propagation neural network is employed to model 

relationships between the inputs variables and controlled variables of processes in 

order to regulate the manipulating variables to a variety of operating conditions and 

acquire a more flexible learning ability. 

 

INVERSE ARTIFICIAL NEURAL NETWORK BASED CONTROL  

   Artificial neural network (ANN) is a type of  artificial intelligence, and an 

information processing technique, that attempts to imitate the way human brain 

works. It is composed of a large number of highly inter- connected processing 

elements, called neurons, working in unison to solve specific problems. The 

organization and weights of the connections determine the output. The neural 

network is configured for a specific application, such as data classification or 

pattern recognition, through a learning process called training. The neural network 

model and the inverse neural network model are the two important components of 

the control methodology. The neural network model uses the future process 

variable as output and the previous process variables and the actuator outputs as 

input. The future actuator output is the output of the inverse neural network model, 

while the previous process variables and actuator outputs are the input to the 

inverse neural network model. Both the neural network model and the inverse 

neural model control use many inputs and one output for single actuation control.  

The inputs for the inverse neural network model are the present variables and 

previous time steps, while the present manipulating variable is the output of the 

http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Singh,%20A.%22&language=en
http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Singh,%20A.%22&language=en
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inverse neural network model. Such assumptions are described and justified 

henceforth in a systematic order: network topology, training algorithm and network 

size. Multi-layer perceptron (MLP) networks with biases and a single hidden 

sigmoid layer are by far the most frequently used network topology, probably 

because they are capable of approximating any function with a finite number of 

discontinuities, as long as sufficient training is performed. The dimensionality 

reduction process was applied to determine high-level variables resulting in 

enhancement of the information content in the original data set and improved 

performance of the models. As an alternative way to use neural networks for 

process control, the use of an inverse neural network model was also considered. In 

the case of inverse neural network models, the outputs of the network correspond 

to the future values of the process inputs while the input layer of the net contains, 

besides the past values of the process inputs and outputs, and the current process 

output measurement, also the future values of controlled variables (process 

outputs). The inverse neural network due to its structure eliminates the 

optimization algorithm from the control movement computation. Using the past 

values of the controlled and manipulated variables as well as the current 

measurement, the control movement can be directly obtained from the net when the 

setpoint values are presented to the network as the future values of the controlled 

variables
 
[36].  

 ANN modeling has gained in popularity after the creation of the Back 

Propagation (BP) training algorithm. BP allows supervised mapping of input 

vectors and corresponding target vectors. Even if many BP variants have since 

been proposed to accelerate updating MLP weights and biases. Other topology and 

training algorithms could always be tested later against this benchmark ANN. 

Generalization is an ANN quality that is sought following supervised learning. It is 

the ability to provide accurate output values for input values that have never been 

seen by the network. Lack of generalization is due to over-fitting. The network has 

memorized the training examples but has not learned to generalize in new 

situations. Since over-fitting is in great part associated with the non-linear 

components of ANNs, it is often proposed to minimize the number of nodes in the 

hidden sigmoid layer. An artificial neural network is a computational model 

consisting of simple processors called neurons or nodes with numerous connections 

between them inspired by the neuronal architecture of the brain. Connections have 

numerical values called weights associated with them. Each neuron has an 

activation value that is a function of the sum of inputs received from other neurons 

through the weighted connections. The first and last layers are for input and output, 

while the others are the hidden layers. The network is said to be fully connected 

when any node in a given layer is connected to all the nodes in the adjacent layers. 

A multi-layer perceptron can learn when presented with input and output pairs. 

Learning or training involves modifying the connection weights and bias until the 

network is capable of reproducing the target output for the respective input pattern. 

Training takes place in an iterative fashion
 
[64].  

 The back propagation algorithm tries to minimize the sum of squares of error 

of the network output by adjusting the connection weights of the network. Back 

propagation is nothing but the steepest descent method of optimization, where the 

network weights, wi,j's, are adapted in proportion to their contribution to the error 
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measure. Mathematically, the dynamics of a neuron j in a multilayered network can 

be represented by the following equations. The input to the neuron, xj(t) is[64]:  

 

)1(...)()()(
1

txtwbtx i
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i

ijjj 


  

 

where I is the number of inputs, wij(t) is the weight associated with input i and 

neuron j, x and bj is the bias to account for any offset present in the data. The 

output of the neuron, yj(t) is calculated using some activation function of the total 

weighted input typically is used the sigmoid function :  
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The sum of squares of output error of neuron j in the output layer is defined as:  
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Where ydj (t) is the desired output and yj(t) is the actual output of neuron j. 

The various weights in the network are adjusted in proportion to the negative 

gradient of their contribution to the network error. The equation, on which the 

various weight updates are based, is given below: 
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where α is called the learning rate. For simplicity, it is set to be the same for each 

weight but can be different if required. The gradient of the output error due to 

weight wij(t), 
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)5(...
)(w

)(

)(

)(

)(w

)(

ijij t

tx

tx

tE

t

tE j

j 












 
 

Let the credit for the jth neuron be βj(t) is equal to( - 
)(

)(

tx

tE

j


). Since, from 

Equation.(1), 

)6(...
)(w

)(
)(

ij t

tx
tx

j

i



  

 

Then Equation (4) becomes: 
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Based on the above error gradients, the weights are updated as: 
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Again, by chain rule, we have the following equation: 
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If neuron j is in the output layer, then from Equation.3, we have: 
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Therefore, the credit for the jth neuron in the output layer is: 
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If the neuron is in the hidden layer then, 
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Where L is the number of neuron in the next layer that connect to neuron j in 

the hidden layer. Hence, the credit for a neuron in the hidden layer is, 
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 Due to the nature of the steepest descent algorithm, the back propagation training 

method exhibits non-smooth changes during learning. To smooth the weight 

changes over time and to hasten the convergence rate, a momentum term is 

normally added to the weight change equation. The weight updates Equation (8), 

modified to include the momentum term γ, and is as given below: 

 
)14(...)1()()()(  twtxttw ijijij   

 

 EXPERIMENTAL WORK 

     The performance of the inverse artificial neural network based  control strategy 

is experimentally demonstrated on three lab-scale systems. The systems are 

distillation column, continuous stirred reactor and neutralization. 

Distillation Column 

The experiments are carried out in a seven single bubble cap trays, lab-scale, 

atmospheric continuous distillation column separating a ethanol-water mixture.  

The distillation unit consists of a 2 m height, 0.05 m inside diameter, thermally 

insulated seven single bubble cap trays  borosilicate glass column with a total 

condenser and 1.6 kW electrically heated reboiler as shown in Figure(1).                          
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Seven type T  temperature sensors allow measurement of the temperature of 

reboiler, tray column and the top product temperature A computer (PC 1716) 

equipped with analog to digital converter A/D and digital to analog  converter D/A 

converters provides real-time data acquisition and control.   

Continuous Stirred Tank Reactor 

    The reactor used in this research is a pilot system established in the laboratory as 

a test bed exhibiting typical characteristics of real chemical processes in industry. It 

consists of 1 liter glass reactor with constant volume byproduct overflow out of the 

vessel for the hydrolysis of ethyl acetate forming ethanol & acetic acid with NaOH 

as a catalyst.. Surrounded by a glass jacket as shown in Figure (2), it also equipped 

with  

 
Figure (1) Schematic Diagram of the Distillation Column. 

 

 
Figure (2) Schematic Diagram of the Continuous Stirred Tank Reactor. 

 

the stirrer of stainless steel which has two-blades. The stirrer operates with range of 

(0-250) rpm. The liquid level in the tank is maintained at a pre-specified constant 

level by an outflow pump system. The range of flow of each rotameter is (0 – 40 

L/hr.) of water at 200
o
C and the concentration and flow rate of solutions ethyl 

acetate are kept constant except for some manual changes to mimic process 
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disturbances. The reactor was heated by hot water, which flows through the jacket 

around the reactor by using a small pump. The pump was capable of handling 

about (40 L/hr.) water and was heated by an external electrical heater. The 

electrical heater was provided with a digital screen to view the temperature. The 

objective is to control the effluent temperature by manipulating the heating flow 

rate. Several type- K temperature sensors allow measurement of the temperature 

inside and outlet the reactor, the inlet and outlet jacket temperatures, and the inlet 

and outlet temperatures of the cooling loop. A computer (PC LG 2500) equipped 

with A/D and D/A converters provides real-time data acquisition and control.   

Neutralization Process 

    A simplified schematic diagram of the pH neutralization system is shown in 

Figure (3). The process consists of an (base or acid) solution that prepared in a 100 

liter feed tank in the base of the equipment, from which it is pumped via a variable 

area flow meter, and a hand-operated valve, into a stirred mixing vessel of 

approximately 3.318 liters capacity. The reagent (acid or base) is held in a 50 liter 

feed tank in the base of the equipment, the whole being constructed in PVC. The 

reagent is pumped into the mixing vessel via a variable area flow meter, a hand 

valve, and a pneumatically operated control valve. A dip electrode and a pH 

transmitter/ indicator monitor the pH of the solution in the mixing vessel. A 

computer (PC 486) equipped with A/D and D/A converters provides real-time data 

acquisition and control.   

 

 
Figure (3) Schematic Diagram of Neutralization Process. 

 

RESULTS AND DISCUSSION 

    The main objective of this study is to develop and demonstrate the neural 

network-based model control for controlling the reactor, distillation and 

neutralization processes.  To establish that ANN-based process control is a viable 

alternative to existing control strategies, a test using a PID controller was 

conducted. In the case of inverse neural network models, the outputs of the 

network correspond to the future values of the process inputs while the input layer 

of the net contains, besides the past values of the process inputs and outputs, and 

the current process output measurement, also the future values of controlled 

variables. The inverse neural network due to its structure eliminates the 

optimization algorithm from the control movement computation. Using the past 

values of the controlled and manipulated variables as well as the present 

measurement, the control movement can be directly obtained from the net when the 
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setpoint values are presented to the network as the future values of the controlled 

variables. The network was trained using a historical experimental data obtained 

from open-loop operation of the processes. The learning set is then composed of 

100 runs of each process. The learning process for the networks is studied after 

about much iteration on the learning set, the relative mean error stabilizes to a level 

of approximately 0.1%. The training algorithm described above was implemented 

in Matlab language. After the completion of the training, the prediction of the 

network was tested with data which was not included in the training set. The 

networks are then implemented on the processes, and are tested as on-line 

controllers. The block diagram of the inverse neural network model based 

predictive control of the reactor temperature is presented in Figure (4). For 

continuous stirred tank reactor, the network used in this study had two hidden 

layers (with 7 and 5 neurons, respectively), 10 neurons in the input layer and 4 

neurons in the output layer. The variables of input layer are one present value T(k) 

and 3 past values T(k-1), T(k-2), T(k-3)  of reactor temperature, 3 future values of 

setpoint of reactor temperature and 3 past values of flowrate of hot water F(k-1), 

F(k-2), F(k-3). The variables of output layer are the one present value F(k) and 3 

future values F(k+1), F(k+2), F(k+3) of hot water. For distillation column, the 

network used in this study had one hidden layers with 36 neurons, 40 neurons in 

the input layer and 8 neurons in the output layer. The variables of input layer are 7 

present values and 21 past values of column tray temperature, 6 future values of 

setpoint of top and bottom temperature and 3 past values of cooling water of 

condenser and 3 past values of heater power of reboiler. The variables of output 

layer are the present value and three future values cooling water of condenser and 

the present value and three future values of heater power of reboiler. For 

neutralization process, the network used in this study had two hidden layers (with 7 

and 5 neurons, respectively), 10 neurons in the input layer and 4 neurons in the 

output layer. The variables of input layer are one present value pH(k) and 3 past 

values pH(k-1), pH(k-2), pH(k-3) of output , 3 future values of setpoint of pH 

output and 3 past values of reagent flow Fr(k-1), Fr(k-2), Fr(k-3). The variables of 

output layer are the one present value Fr(k) and 3 future values Fr(k+1), Fr(k+2), 

Fr(k+3) of reagent flow.  

 

 

 
Figure (4) Block diagram of inverse-ANN based control of the Process. 
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  Testing of a controller should be performed to ensure some desired 

performance criteria, such as it is robust, closed-loop system must be stable, rapid, 

smooth response is obtained, offset and overshoot are eliminated, excessive control 

action is avoided. However, it is important to evaluate the robustness of these 

controllers with respect to changes in operating and process parameters. For the 

reactor, four tests were carried out, two tests for the feed flowrate was increased by 

30% of its steady state value at different setpoint. The others tests, the setpoint of 

reactor temperature was increased from 20
o
C to 30

o
C and decreased from 35

o
C to 

25
o
C. Figures (5) to 8 present respectively temperature control of the reactor using 

the neural controller and PID controller. It is seen that the control action is quite 

smooth with no oscillations, a fast response time, the controller is able to eliminate 

the offset and the response of the controller a good tracking performance is 

obtained. This property of the neural controller of the ability to reduce error in the 

data and it has been demonstrated elsewhere. Figures (7and 8) represents the 

closed-loop system responding to setpoint changes with the neural controller. It is 

seen that the controller is able to eliminate the offset in the reactor temperature 

without any overshoot. However, the neural network model-based controllers can 

take care of a nonlinear model of the process and also compute the manipulated 

variables rapidly. 

   For the neutralization process, four tests were carried out, two tests the acid 

stream input flow rate was increased by 20% of its steady state value at different 

setpoint. The other tests, the setpoint of  influent pH was increased from value 6 to 

value of 8 and 7 to 5. A small change in the acid stream input flow will cause the 

output pH to change significantly in this steep region. Hence, while it would be 

easier to control the pH value of the process in either the lower or the higher end of 

the pH scale, it poses quite a challenging problem to control the pH value of the 

process around the electro neutrality point, where the gain surface is very steep, 

where a very small change in the process input has a marked effect on the process 

output. As can be seen from the Figures (9 to 12), the process output follows the 

desired pH value quite closely with little or no overshoot and the neural controller 

output is quite smooth with no oscillations and a fast response time. To pose a 

more challenging control problem, the pH setpoint was varied from an initial value 

of 6 to a value of 8. From the figures depicts the performance of the closed-loop 

system with the proposed neural controller. As can be seen from the figures, the 

controller is able to drive the closed-loop system to the desired value in a short 

period of time and a good tracking performance is obtained. While there is no 

oscillatory response for the first change in setpoint, there is some oscillation 

present in the process response for the second case. 

In the distillation column, four tests were carried out, two tests the feed flow 

rate was increased 40% of its steady state value. The others, the setpoint of top 

temperature is decreased from 78
o
C to 76

o
C and the setpoint of bottom temperature 

was increased from 80
o
C to 84

o
C. Figs. 13 to 16 show the column performance for 

a feed flowrate changed and setpoint change in the top temperature. The neural 

controller are able to eliminate the offset in the top temperature practically without 

any overshoot. However, the neural network model-based controllers can take care 

of a nonlinear model of the process and also compute the manipulated variables 

rapidly. Due to this disturbance, the top temperature start deviating from the 
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setpoint shortly after the introduction of the disturbance. But, the controller is able 

to bring the temperature back to their setpoint. 

 

 
Figure (5) Comparison between PID controller and artificial  

Neural network controller of reactor  temperature for  

Step change in feed flowrate at setpoint of 30
o
C. 

 
Figure (6) Comparison between PID controller and artificial  

neural network controller of reactor  temperature for  

step change in feed flowrate at setpoint of 35
o
C. 

 

 
Figure (7) Comparison between PID controller and artificial 

neural network controller of reactor  temperature for step 

change in setpoint from 20 to 30
o
C. 
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Figure (8) Comparison between PID controller and artificial 

neural network controller of reactor  temperature for step 

change in setpoint from 35 to 25
o
C. 

 

     The quantitative performance values, IAE, for the neural and PID controllers are 

given in Table (1). The control of reactor temperature, distillation temperature and 

pH using PIDs are not significantly worse than that of using neural network. The 

control of the processes using PID showed a large degraded performance, as 

displayed in figures. From the performance of the PID controller, it can be seen 

that the pH has severe non-linear dynamics that depends on operating point. 

Figures (9-12) illustrate the difficulty in controlling this process with fixed PID. 

We compare the behavior of PID and neural controller in this Figure. The neural 

controller responds as quickly as PID. They indicate that the neural give smoother 

and better control performance than the PID controllers with smaller IAE error 

values, when disturbances are introduced into the system. The figures illustrate that 

the neural strategy brought the reactor temperature to the set points by gradual 

increase of the flow rate which give smooth control response. The PID control in 

turn brought the reactor temperature to the set point by rigorous adjustment of the 

flow rate causing overshoot in the process response with a long response time. 

They indicate that neural controller gives less error and gives better control 

performances than the PID controllers, similar to the disturbance case study. These 

results also show the robustness of the neural network models in dealing with 

disturbances it during training. 

The output responses to all set-point changes are similar with small overshoot 

and, importantly, the control does not exhibit notable oscillations at any of the set-

points. The satisfactory performance is due to the full representation of the non-

linear dynamics of the reactor, distillation and neutralization by the neural network 

model. Comparing these areas of the results illustrates the significant improvement 

of controller using a neural network model over PID controller. Figures (7 and 8) 

show the system response to step change of setpoint of the reactor temperature. The 

result indicates improved control with the neural control, the result of it combining 

information regarding the plant dynamics. Figures (11, 12, 15 and 16) show the 

same results, but using a disturbance of setpoint of the top temperature of 

distillation column and the pH of effluent of neutralization process. These Figures  

20

22

24

26

28

30

32

34

36

38

40

0 100 200 300 400 500

T
e

m
p
e
ra

tu
re

( 
O
 C

) 

Time (sec.) 

Neural

PID

Set point



Eng. & Tech. Journal , Vol.32,Part (A), No.1, 2014                              Artificial Neural Network Control    

                                                                                                        of Chemical Processes 

                               

 

611 
 

 
Figure (9) Comparison between PID controller and artificial  

Neural network controller of pH effluent for step change  

in acid flowrate at setpoint of 7. 

                     
Figure (10) Comparison between PID controller and artificial 

Neural network controller of pH effluent for step change 

in acid flowrate at setpoint of 9. 

 

 
Figure (11) Comparison between PID controller and artificial 

neural network controller of pH effluent for step change 

in setpoint from 6 to 8. 
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Figure (12) Comparison between PID controller and artificial 

neural network controller of pH effluent for step change 

in setpoint from 7 to 5. 

 

Show that the neural controller presents better control performance than that of 

the PID controller. To show the effectiveness of neural networks further and it is 

found that the magnitude of offset is much smaller than that of PID controller. 

Therefore, the neural networks plays a major role in improving the control 

performance. 

 

 
Figure (13) Comparison between PID controller and artificial 

neural network controller of top temperature for step change 

in feed flowrate. 

 

 
Figure (14) Comparison between PID controller and artificial 

neural network controller of bottom temperature for step 

change in feed flowrate. 
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Figure (15) Comparison between PID controller and artificial 

neural network controller of bottom temperature for step 

change in setpoint. 

 

 
Figure (16) Comparison between PID controller and artificial 

Neural network controller of top temperature for step 

change in setpoint. 

 

 

Table (1) The integral of the absolute value (IAE) for the control methods. 

Process Disturbance Controlled 

Variable 

ANN 

Controller 

PID 

Controller 

 

Continuous 

Stirred Tank 

Reactor 

 

Feed 

Flowrate 

Reactor Temp. 

at 30
o
C 

3.333 28.75 

Feed 

Flowrate 

Reactor Temp. 

at 35
o
C 

5.077 36.667 

Setpoint Reactor Temp. 

from 20  to 

30
o
C 

8.598 19.25 

Setpoint Reactor Temp. 

from 35  to 

25
o
C 

9.022 18.167 

 Feed Top 0.715 5.137 
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Distillation 

Column 

Flowrate Temperature at 

78
o
C 

Feed 

Flowrate 

Bottom 

Temperature at 

84
o
C 

0.892 5.525 

Setpoint Top 

Temperature at 

78 to 76
o
C 

1.663 4.957 

Setpoint Bottom 

Temperature  

from 80 to 

84
o
C 

4.262 10.46 

 

Neutralization 

Process 

Feed 

Flowrate 

pH of Effluent 

at 7 

2.008 10.961 

Feed 

Flowrate 

pH of Effluent 

at 9 

4.404 15.593 

Setpoint pH of Effluent 

from 6 to 8 

2.003 5.293 

Setpoint pH of Effluent 

from 7 to 5 

3.3 28.75 

 

 

CONCLUSIONS                                                                                                     

    The application of a neural network model based predictive controller to a 

nonlinear multivariable chemical process is investigated. Since the real chemical 

processes are nonlinear and multivariable interacting systems, which make them 

difficult to control by using conventional controllers, model based advance control 

techniques are then required to obtain tighter control. This paper has demonstrated 

the usefulness and effectiveness of applying neural networks in a model based 

control strategy to control a reactor, distillation column and neutralization process. 

The experiment provides a detailed case study in which neural networks were 

applied to the nonlinear control processes, the process was successfully brought 

back to the set point after a step disturbance in the feed stream. Both the artificial 

neural network and PID controllers have been implemented and the controller 

performance under multiple changes in setpoint and the effect of load disturbance 

has been investigated.  Comparison of performance with the conventional PID 

controller indicated that neural controller was more robust than the PID controller 

and gave better results in cases involving disturbances. Better disturbance rejection 

results were shown by the neural based controller and produced smoother 

controller moves than its PID equivalent. The ANN based control shows 

consistently faster speed of response than the PID based control with less offset 

value and advantages of neural controller is not require any tuning of the control 

parameters while the PID does require that. 
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