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ABSTRACT 

This work deals with the implication of the concept of the energy density ρ at three 
different eras (radiation, matter and dark energy dominated eras) through the evolution of 
the universe. The solution of the Einstein's equations (Friedmann – Robertson – Walker 
equations, FRW), yields two explicit forms of the scale factor R(t): one is the power-law 
solution for both radiation and matter dominated eras and other is the exponential solution 
for the dark energy dominated era. 

In the present work an equation for the three parameters has been derived, Hubble (H), 
redshift (z) and deceleration (q), in  three different eras, with a thorough discussion. 
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 ــــــــــــــــــــــــــــــــــــــــــــــــــــ

   الكونية في أحقاب مختلفة للكون املاتعدراسة بعض الم
  

  الملخص 

 والطاقـة   ،الماديـة  ،الإشـعاعية  زمنية ثلاثة هي الحقبة      لأحقاب ρتضمن البحث مفهوم كثافة الطاقة      

نـتج عنهـا    ي  )FRW ، والكر –تسون  ر روب – معادلات فريدمان ( ين  ا حلول معادلات اينشت   .السوداء للكون 

 والمادية والحل   الإشعاعية القوى للحقبتين    إلىتضمن الرفع    الأول الحل   .R(t)ن   الكو أقطار لأنصاف نشكلا

  .لحقبة الطاقة السوداء) لوغاريتمي (أسيالثاني 

 (q) والتباطؤ   ،(z)ة الحمراء    والزحزح (H) هابل    الثلاث معاملاتمعادلات لل  تم اشتقاق     في هذا البحث  

  . وتم مناقشة النتائج،ية الثلاثة الزمنتابحقلل
  

  . كونيات، الزحزحة الحمراء،اطؤ معامل التب، معامل هابل،FRWمكان : الكلمات الدالة

 ــــــــــــــــــــــــــــــــــــــــــــــــــــ
INTRODUCTION 

The physical constants are numbers used by scientists in their calculation, which 
depends on laboratory measurements. The official values of the fundamental constants vary 
from time to time as new measurements are made. Similarly, the cosmological parameters 
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can be assumed to vary  and this variation leads to an apparent expansion of the universe, 
which gives rise to a  possibility of explaining some of anomalies found in the observations 
of high redshift quasars (Kafatos et al., 2005). Present cosmology is based on the 
Friedmann-Robertson-Walker ( FRW ) model. In this model, the universe is completely 
homogeneous and isotropic and in agreement with the observational data about the large 
scale structure of the universe. However, there is no reason to believe in a regular expansion 
for a description of the early stage of the universe (Verma et al., 2011). But there are 
theoretical works (Misner, 1968; Chimento, 2004) and recent experimental data of the 
cosmic microwave background radiation which supports the existence of an anisotropic 
phase that approaches an isotropic one (Ryan and Shepley, 1975). This stimulates search for 
exact anisotropic solution of Einstein field equations as cosmologically acceptable physical 
models for universe at least in its early stage of evolution. There has been a considerable 
interest in the study of spatially homogeneous and anisotropic cosmological models of 
Bianchi type I-IX. (Ryan and Shepley, 1975). Bianchi type II space-time plays a 
fundamental role in constructing models with richer structure both geometrically and 
physically for describing the early stages of evolution of the universe (Verma  et al., 2011). 
Several works have been done by (Hajj-Boutros, 1985,1986; Shri, R. 1989,1990; 
Mazumder,1994 ; Camci et al., 2001 ; Pradhan and Kumar, 2001) using different generating 
techniques (Singh , 2009). 

Another solution for the Friedmann-Robertson-Walker field equation was achieved by 
Berman in 1983 using a law of  variation for the Hubble parameter, which yields a constant 
value of the deceleration parameter, later it has been developed by Berman and Gomide in 
1986. In literature, cosmological models with a constant deceleration parameter have been 
studied by several authors see for example (Singh, 2009). 

Edwin Hubble (Hubble, 1929) showed that the more distant the galaxy, the larger the 
"redshift" in the spectrum. Astronomers traditionally have interpreted the redshift as a 
Doppler shift induced as the galaxies recede from us within an expanding universe.  One  of 
the first indications that there might be a problem with this picture came in the early 1970's. 
William G., University of Arizona, (Tifft, 1976-1980) noticed a curious and unexpected 
relationship between galaxy morphological classification (Hubble type), brightness, and 
redshift. The galaxies in the Coma cluster, for example, seemed to arrange themselves along 
sloping bands in a redshift against brightness diagram. Moreover, Spirals tended to have 
higher redshifts than elliptical galaxies. Clusters other than Coma exhibited the same 
strange relationships. By far the most intriguing result of these initial studies was the 
suggestion that galaxy redshifts take on preferred or "quantized" value. First revealed in 
Coma Cluster redshift against brightness diagram,  it appeared as if redshifts were in some 
analogous to the energy levels within the atoms. These discoveries led to the suspicion that 
a galaxy's redshift may not be related to the Hubble velocity alone. If the redshift is entirely 
or partially non-Doppler, then it could be an intrinsic property of a galaxy, as basic a 
characteristic as its mass or luminosity, (Tifft, 1982a, Tifft 1982b; Cocke and Tiff, 1983; 
Tifft  and Cocke, 1987 ; Gribbin,1985; Stewart, 1998). 

Finally, one of the most striking and strong evidence discoveries in cosmology is the 
accelerating universe, this comes through the study of the type Ia supernovae (SN Ia) (Riess, 
et al., 1998), that the most distant type Ia supernovae are moving away much faster than 
closer ones suggesting that the universe expansion is actually accelerating and this observed 
acceleration is due to some new hypothetical energy (dark energy) component with a large 
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negative pressure  (Riess et al., 2004; Jain and Jhingan, 2010; Kumar, 2010). As a result the 
deceleration parameter is a good  test of the expansion of the universe, such that the 
universe decelerates when the value of the deceleration parameter is positive whereas it 
accelerates when the value of the deceleration parameter is negative. 

In this paper, an implication of the theoretical basis of the energy density of the 
universe at three different eras (radiation, matter, and dark energy dominated eras) is found 
bellow, followed by the solutions of Einstein's field equations which are described by the 
scale factor. Later, a study of Hubble,  redshift and deceleration parameters at the three eras 
are presented. A brief discussion and conclusion are presented at  the last section 

 
ENERGY DENSITY OF THE UNIVERSE  

Starting with homogenous and isotropic universe of energy density ρ (energy (E) per 
unit volume (V)), and according to the first law of thermodynamic, the energy of the 
universe (system), (Misner et al., 1973; Vishwakarma and Beesham, 1999;  Susskind, 
2009), is given by: 

VE ρ=           … (1) 
The differential form of equation (1) is: 

ρ+ρ= VddVdE  
dVP−=            … (2) 

where p is the pressure of the universe, which is given by the equation of state: 
ρω=P            … (3) 

The constant ω gives the characteristic of the universe at different eras. Substituting 
equation (3) in equation (2) and integrating yields: 

1V
ttancons

+ω=ρ           … (4) 

Equation (4) describes different values of the energy density at different universal eras 
depending on the values of ω as follows: 
 
Energy Density at Radiation (Photon) Dominated Era: 

In this era, the universe is radiation dominated which means there were more photons 
than matter, and for simplicity take a cubic volume ( ))(3 tRV =  of space that contains a 
constant number (n) of photons, where R(t) is the scale factor of the universe. As the 
universe expands the photon's wavelength expands too (photon inflation), this means that 
the photon's wavelength is proportional to the scale factor of the universe, then: 

( ) ( )tR
C

tR
hchchE r=∝

λ
=ν=

γ
γγ         … (5) 

where h is Plank's constant, c is the speed of light, ( )hcCC rr =  is a constant, finally γν  and λγ 
are the frequency and the wavelength of the photon. Then the energy density ρr of the 
radiation dominated reads: 

)()( 43 tR
C

tR
E

V
E r

r ===ρ          … (6) 

Equation (6) can be obtained directly from equation (4). Since in this era the photons 
can be represented as a system of n particle behaved as a perfect fluid (particles having the 
same velocity at each point in space, such that an observer in this reference of space X ̃α see 
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the fluid around him isotropic, and this reference frame is called commoving coordinate 
denoted by X̃α to distinguish it from the ordinary Xα, (Weinberg, 1972), such that: 
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where δij is the kronical delta (δij = 0 for i ≠ j, δij = 1 for i = j and ∑
=

=
3

1
3

i
iiδ , i = 1, 2, 3) 

then: 

ρ≅
3
1P            … (8) 

comparing equations (3) and (8), 
3
1

=ω , then equation (4) becomes: 

)(
tan

4 tR
tcons

r =ρ           … (9) 

Equations (6) and (9) contain the same constants (constant = Cr), and both of them 
describe the energy density of radiation dominated era in which the energy density ρr is 
inversely proportional to the fourth power of the scale factor R(t). 
 
Energy Density at Matter Dominated Era: 

Universal theories indicate that the universe became a matter dominated somewhere 
with a few billions of years after the big-bang. Now considering the same procedure of a 
cubic volume of )(3 tR  with space containing a constant number of galaxies exerting no 
outward pressure (p=0), and according to equation (3), ρ ≠ 0, therefore ω = 0, then equation 
(4) reads: 

)()(
tan

33 tR
M

tR
tcons

m ==ρ          … (10) 

where M is the mass of the (galaxies) universe, and ρm is the energy density for matter 
dominated era. This equation shows that the energy density ρm is inversely proportional to 
the third power of the scale factor R(t). 
 
Energy Density at Dark Energy Dominated Era: 

In this era, the astronomical observations show that the universe is an accelerated one,  
this means that the pressure P in equation (3) is negative, which leads to ω = -1, in which 
the scale factor is an exponential dependence with time and the energy density becomes 
very small(~ 2×10-29 gm/cm3) and is referred to as ρo (Misner et al.,1973), then equation (4) 
reads: 

ood ttancons
V

ttancons
ρ===ρ         … (11) 

Here ρd is the energy density of the dark energy which is also called vacuum energy or the 
cosmological constant  Λ. 
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THE SCALE FACTOR  OF THE UNIVERSE 
  

Starting from the Friedmann-Robertson-Walker equation (Weinberg, 1972): 

)(3
8

)(
)(

22

2

tR
KG

tR
tR

=−

•

ρπ          … (12) 

where R(t) is the scale factor of the universe, ρ is the total energy density of the three eras 
( )dmr ρ+ρ+ρ=ρ , G is Newtonian gravitational constant, and K (k = 0, k = 1, k = -1) is the 
curvature constant for flat, closed and opened universe respectively. The solution of 
equation (12) gives the scale factor at the three different eras as follows. 
 
The Scale Factor at the Radiation Dominated Era: 

In this era equation (12) can be solved using a guess power law (Mansouri et al., 1999; 
 Susskind, 2009; Zeki et al., 2010):       

α
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where α
ot
tRC )( 0= , and α are constants. Using equations (9), (12) and (13), and  setting k = 0 

(simple case for flat space), we get : 

α

π
=

α
44

r
2

2

tC3
CG8

t
 

Setting 
2
1

=α  for matching both sides of the above equation then C can be calculated, and 

equation (13) yields: 
2/14

3
32)( tCGtR rπ

=    (t is small)                              … (14) 

Equation (14) shows that the scale factor R(t) at the radiation dominated era is proportional 
to the time of power (1/2). 
 
The Scale Factor at the Matter Dominated Era : 

In this era, the same procedure can be used to find a relation between the scale factor 
and time. Using equation (10), (12) and (13), we have : 

α

π
=

α
322

2

tC3
MG8

t
 

Setting 
3
2

=α  to find the value of C, and then equation (13) reads: 
3/23 6)( tMGtR π=           … (15) 

Equation (15) shows that the scale factor of the universe at the matter dominated era is 
proportional to the time of power (2/3). 
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The Scale Factor at the Dark Energy Dominated Era : 
 In this case the pressure is negative (accelerated universe) and according to equation (11),  
ρd = ρo = constant, is a very small quantity (~ 2×10-29 gm/cm3), so equation (12) becomes: 

3
8

)(
)(

2

2

oG
tR
tR ρπ
=

•

         … (16) 

Using the definition of the Hubble parameter (Weinberg, 1972): 

)(
)()(

tR
tRtHH

•

==           … (17) 

or    
3
G8H oρπ

=    (H is constant)         … (18) 

Now combining equations (13), (16) and (17): 
 

 
 
where lnC1 is the constant of integration which can be calculated using the initial boundary 
condition at t = to , R(t)= R(t0) and H = Ho, then: 

ttHeCtR )(
1)( =            … (19) 

where C1 = Ro e- Ho to, which can be found by astronomical observations. Equation (19) 
indicates that the scale factor R(t) of the universe will rapidly exponentially extended 
describing an accelerated universe  (dark energy dominated era). 

 
THE HUBBLE PARAMETER OF THE UNIVERSE 

In this work, we want to study the Hubble parameter at the three different eras, using 
the definition of Hubble parameter equation (17) as follows: 
 
Hubble Parameter at Radiation Dominated Era: 

In order to find the Hubble parameter in this era, we combine equations (14) and (17) 
then: 

1

2
1)( −= ttHr            … (20) 

This equation shows that the age of the universe at the radiation dominated era is half 
the inverse of the Hubble parameter. 
 
Hubble Parameter at Matter Dominated Era: 

Similarly combining equation (15) and (17) then: 
1

3
2)( −= ttHm            … (21) 

which shows that the age of the universe at matter dominated era is 
3
2 the inverse of the 

Hubble parameter. 
 
 
 
 
 

1ln)()(ln CttHtR +=
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Hubble Parameter at Dark Energy Dominated Era: 
In this case, it is clear from equation (18) that the Hubble parameter is constant in this 

era, because the energy density ρo is itself constant. 
 

THE COSMOLOGICAL REDSHIFT OF THE UNIVERSE 
Starting from the simple formula for the redshift of a source emitted its radiation at 

time t (Weinberg, 1972 ; Sciama, 1973). 

)(
)(

0tR
tR

t
t

o

o ==
ν
ν           … (22) 

and 

1Z
o

−
ν
ν

=            … (23) 

where oν  and ν  are the observed and the source frequencies respectively and, 

ν
ν o

tR
tR
=

)(
)(

0

           … (24) 

then: 
( ) 1

0 1)()( −+= ZtRtR           … (25) 
and it follows (Sandage,1962 ; Samushia and Ratra, 2006 ; Uzan et al., 2008 ; Jain and 
Jhingan, 2010 ; Yoo et al., 2010; Zeki, 2010). 

( ) 11)( −
•

+−= ZZtH            … (26) 
The integration of equation (26) gives : 

( ) 2ln)(1ln CttHZ +−=+  
where lnC2 is the constant of integration which can be calculated using the initial boundary 
condition at t = to, R(t) = R(t0) and H = Ho, then the solution of equation (26) is: 

1)(
2 −= − ttHeCz           … (27) 

where 
oo tH
o

2 e
Z1C −

+
= , which can be found by astronomical observations. Then the redshift at 

the three different eras are. 
 

Redshift at Radiation Dominated Era : 
Combining equations (20) and (27), then the redshift at the radiation dominated era: 

12
1

2 −=
−

eCZr            … (28) 
 

Redshift at Matter Dominated Era : 
Similarly combining equation (21) and (27), then the redshift at the matter dominated 

era: 

13
2

2 −=
−

eCZm            … (29) 
 

Redshift at Dark Energy Dominated Era : 
The same procedure can be used by combining equation (18) and (27), we get the 

redshift at the dark energy dominated era:  

1eCZ
t

3
G8

2d

o

−=
ρπ

−
          … (30) 
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Equation (30) shows that the redshift is time dependent.    

 
 

THE DECELERATION PARAMETER OF THE UNIVERSE 
In this case, we want to find the values of the deceleration parameter in the three 

different eras using the well-known definition of the deceleration parameter (Weinberg, 
1972). 

( )
)(

)(

)(

)(

tR

tR

tR

tRqq t ••

••

−==          … (31) 

 
Deceleration at Radiation Dominated Era : 
Differentiate equation (14) twice with respect to time: 

2
1

4
3

32
2
1)(

−•

= tCGtR rπ          … (32) 

and 
2/34

3
32

4
1)( −

••

−= tCGtR rπ          … (33) 

Then substitute equations (14), (32) and (33) in equation (31), then the deceleration 
parameter at the radiation dominated era is: 

1q +=             … (34) 
 
Deceleration Parameter at Matter Dominated Era : 

In order to find the deceleration parameter at the matter dominated era, we 
differentiate equation (15) twice with respect to time: 

3/13 6
3
2)( −

•

= tGMtR π          … (35) 

3/43 6
9
2)( −

•• −
= tGMtR π          … (36) 

 Substitute equations (15), (35) and (36) in equation (31), then: 

2
1q=             … (37) 

 Equation (34) and (37) show that the value of q is greater than zero, then in these two 
eras the universe decelerates  

 
Deceleration Parameter at Dark Energy Dominated: 

Again the same procedure can be used by differentiating equation (19) twice with 
respect to time, we have: 

ttHeHCtR )(
1)( =

•

          … (38) 
ttHeHCtR )(2

1)( =
••

          … (39) 
Substituting equations (19), (38) and (39) in equation (31), then the deceleration 

parameter at the dark energy reads: 
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1q −=             … (40) 
Equation (40) shows that the universe has a deceleration parameter less than zero, 

which means that the universe accelerates  
 
 

DISCUSSION AND CONCLUSION 
Starting with homogenous and isotropic universe, we have presented the energy 

density ρ of the universe equation (4) for different universal eras depending on the value of 
ω, which represents the characteristic of the universe (ω = ⅓ for radiation dominated era, ω 
= 0 for matter dominated and ω = -1 for the dark energy dominated era).  

A class of solutions to Einstein's equations (FRW equations) is presented. The power 
law solution equation (13), was used for the three different eras. For the radiation era, it is 
clear from equation (14) (R(t) α t½) that the scale factor R(t) represents a small, hot and 
opaque universe (early universe), which is dominated by radiation, i.e. the majority of the 
energy is in the form of photons and some massless particles, with energy density given by 
equation (9), (ρr α R-4(t) ). Later, the universe cools down due to the expansion and entered a 
mass dominated era. The scale factor is given by equation (15), (R(t) α t⅔), with energy 
density equation (10), ( ρm α R-3(t) ). 

At larger values of t, the dark energy becomes dominated (equation 19) causing an 
accelerating expansion, such that the universe is rapidly extended (inflation) in a time rate 
of change exponentially with constant energy density ρ0 equation (11) and with negative 
pressure equations (3), giving an accelerated universe. It can be concluded that the universe 
always decelerated unless its pressure is negative.  

Observations also suggested that there had been a transition of the universe from the 
earlier deceleration phase to the recent acceleration phase, the cause of this sudden 
transition and the source of the accelerated expansion is still unknown (Kumar, 2010). 

In the next step, it is clear from equation (20) that time dependence of the Hubble 
parameter in the radiation era is 

4
3  relative to that in the matter dominated era (equation 21), 

while the Hubble parameter (equation 18) at dark energy dominated era seems to be 
constant. Our conclusion is that these equations measure the dynamics of the universe 
directly through the Hubble expansion factor. Furthermore, it assumes that the universe is 
homogenous and isotropic. 

The Hubble parameter (equation 26), in terms of the time drift 
dt
dzz=

•

 of the 

cosmological redshift z (Smaushia and Ratra, 2006 ; Uzan et al., 2008 ; Yoo et al., 2010 ; 
Jain and Jhingan, 2010 ; Zeki et al., 2010), leads to the general form of the cosmological 
redshift z (equation 27), such that the cosmological redshift z vary as a time rate of change 
exponentially with the Hubble parameter H(t). This equation describes the redshift at the 
three different eras (equations 28, 29 and 30) depending on the Hubble parameter H(t)  for 
each era and on the constant C2, which can be obtained from the astronomical observations. 
The conclusion is that the variation of the cosmological redshift parameter z ,  makes it  as a 

good test which maps the expansion of the universe. Moreover, it is clear that 
•

z  in equation 
(26) is also a good indicator which directly measures the expansion rate of the universe, 
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such that, when 
•

z  is less than zero, yields a decelerated universe, while when 
•

z  is greater 
than zero yields an accelerated universe (Jain and Jhingan, 2010 ). 

Now  equations (34, 37 and 40) show that the deceleration parameters vary at  the 
three different eras. It is clear from equation (34) and (37), that the universe undergoes a 
decelerate expansion in both radiation and matter dominated eras, the reason is that qr and 
qm are greater than zero, while equation (40) shows an accelerating expansion, because the 
value of qd is less than zero. It is generally believed that this acceleration is due to some sort 
of dark energy is pervading the whole universe  (Singh, 2009; Tripathi et al., 2011; Verma 
et al., 2011 ; Akarsu and Dereli, 2012). SN Ia survey, weak lensing (Heavens, 2003), and 
baryon acoustic oscillation (BAO) in the galaxy power spectrum (Seo and Eisenstein, 2003; 
Rudd et al., 2008) are all generally considered to be excellent probes of the acceleration of 
the universe (Liske et al., 2008a ; Liske et al., 2008b). Our conclusion is that the 
deceleration parameter q'S is a good tool for probing the expansion of the universe, because 
it is reasonable for a description of different phases of the universe. There had been a 
transition of the universe from earlier deceleration phase to recent acceleration phase, 
depending on the value of the deceleration parameter, such that the universe decelerates 
when the value of q is positive, whereas it accelerates when the value of q is negative with 
negative pressure. Moreover, the universe has an expansion with constant rate if the 
deceleration parameter q equals zero (Jain and Jhingan, 2010; Cai and Tue, 2012). 

Finally, this work shows that the Hubble, redshift  and deceleration parameters which 
are derived at radiation, matter and dark energy dominated eras are no longer constants, but 
each of them has its own characteristic value at each era. 
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