In this work, we introduce Bernst- ein linear positive operators $B_{n,k}(f, x)$ in

the space of all continuous functions C_I where I = [0,1] with some properties of

this operator so to find the strong approxi- mation of continuous functions with the

The Strong Approximation by Linear Positive Operator In terms of the Averaged Modulus of Order One

Zainab Esa Abdul Naby

averaged modulus of order one.

Al – Mustansiriya University-College of Science.

Open Access

ARTICLE INFO

Received: 20 / 11 /2012 Accepted: 22 / 11 /2022 Available online: 16/2/2014 DOI: 10.37652/juaps.2013.85022 **Keywords:** Strong Approximation , Linear Positive Operator, Averaged Modulus , Order One.

1-Introduction

The strong approximation of function connected with Fourier series was examined in many papers published in last 40 years. The problem of strong approxim- mation with power q > 0 is well known for 2π - periodic functions and their Fourier series [1], [2]. For example [3], if $S_n(f, x)$ is the n-th partial sum of trigonometric Fourier series of f, then the n-th (C, 1) -mean of this series is defined by the formula :

$$\sigma_n(f, x) = \frac{1}{n+1} \sum_{k=0}^n S_n(f, x), \ n \in N_0$$

where $N_0 = \{0, 1, ...\}$. The n-th strong (C, 1) - mean of this series is defined as follows:

$$H_n^q(f, x) = \left\{ \frac{1}{n+1} \sum_{k=0}^n |S_n(f, x) - f(x)|^q \right\}^{\frac{1}{q}}, \quad n \in N_0$$

. Where q is a fixed positive number, It is clear that: $|\sigma_n(f,x) - f(x)| \le H_n^1(f,x)$

investigated the strong approxi- imation of functions $f \in C_I$ some linear operators.

Definitions and Lemmas:

In this paper we examine this problem for $f \in C_I(I = [0,1])$ and introduced $B_{n,k}(f, A, x)$ linear positive operators. Let C_I be the space of all functions, continuous and bounded on $f: I \to R$ with the norm: $||f||=\sup\{|f(x)|: x \in I\}$ (1.2) Let $r \in N_0$

be a fixed number and let $C_I^r = \{f \in C_I : f^{(r)} \in C_I\}$ and the norm C_I^r is defined by (1.2), where $C_I^0 \equiv C_I$. Let $A \in \mathcal{M}$ and $n \in N$. Where \mathcal{M} the set of all infinite matrices $A = [a_{n,k}(x)]$. The Bernstein $[5]:B_{n,k}(f, A, x) = \sum_{k=0}^{n} a_{n,k}(x) f\left(\frac{k}{n}\right)$ operators \dots (1.3) Defined for continuous f on the interval I = [0,1] with the matrix $A = [a_{n,k}(x)]$ where: $a_{n,k}(x) = \left\{ \binom{n}{k} x^k (1-x)^{n-k} \right\}_{\dots \dots} (1.4)$ *Lemma (1.1):* [3] Let $A = [a_{n,k}(x)], n \in N, k \in N_0$ then $a_{n,k}(x) \leq 0, \text{ for } x \in R, n \in N, k \in N_0.$ $a_{n,k}(x) = \begin{cases} \binom{n}{k} x^k (1-x)^{n-k} = 1 & \text{if } k=n \\ \binom{n}{k} x^k (1-x)^{n-k} = 0 & \text{if } k>n \end{cases} \dots (1.5)$ *Lemma (1.2):* [3] Let $A = [a_{n,k}(x)], n \in N, k \in N_0, x \in [0, \infty)$ as in (1.4) then: $1 - B_{n,k}(1, A, x) = 1$ $2 - B_{n,k}\left(\frac{k}{n} 1, A, x\right) = x$ $3-B_{n,k}\left(\left(\frac{k}{n}\right)^2, A, x\right) = x^2\left(\frac{n-1}{n}\right) + \frac{x}{n}$ For every matrix $A \in \mathcal{M}, p \in N_0$ and $B_{n,k}(f, A, x)$. Then strong deference $H_n^q(f, x)$ is well – defined for every $f \in C_q$, $x \in I = [0,1]$, $n \in N$ with power q > 0 as follows [6]: $H_n^q(f, x) =$ $\left\{\sum_{k=0}^{n} a_{n,k}(x) \left| f\left(\frac{k}{n}\right) - f(x) \right|^{q} \right\}^{\frac{1}{q}} \dots \dots (1.6)$ Let the function f be defined and bounded in the

Let the function f be defined and bounded in the interval [a, b] then [4]: $\omega(f, \delta) = \{\sup(|f(x) - f(y)|) : x, y \in [a, b], |x - y| \le t\}, t \ge 0....$ (1.7)

ABSTRACT

^{*} Corresponding author at: Al – Mustansiriya University-College of Scienc e.E-mail address: <u>esazainab@yahoo.com</u>

P-ISSN 1991-8941 E-ISSN 2706-6703 2013,(7), (2):209-212

Journal of University of Anbar for Pure Science (JUAPS) Ope 2nd Conference For Pure Science - university of Anbar 20-22/11/2012

In [5] if $f \in R_{0=}[0,\infty)$, then:

- $\omega(f,\lambda t) \le (\lambda + 1)\omega(f,t)$, for $\lambda, t \in R_0 \dots (1.8)$ And if $f \in R_0$ are uniformly continuous functions
- then $\lim_{n\to 0^+} \omega(f, t) = 0$. The k^{th} averaged modulus of smoothness for $f \in R_0$ is defined by [7]: $\tau_k(f, \delta)_p = \|\omega_k(f, \delta)\|_p$

The averaged modulus of order one defined by:

 $\tau_1(f,\delta)_p = \|\omega_1(f,\delta)\|_p$ (1.9) in [7] 1- if

f is measurable bounded function on[a, b], $p \ge 1$ then

 $\omega_k(f,\delta)_p \le \tau_k(f,\delta)_p$

2- If $\delta \ge \delta'$ then $\omega_k(f, x, \delta) \ge \omega_k(f, x, \delta')$, and $\tau_k(f, x, \delta) \ge \tau_k(f, x, \delta')$ (1.10) where $\omega_k(f, x, \delta) = \{\sup |\Delta_h f(t)| : t \in [x - \frac{h}{2}, x + \frac{h}{2}], x \in [0, \infty)\}, k \in N, \delta \in [0, \infty]$.

2- Main results

First we prove some properties of $B_{n,k}(f, A, x)$ and Lemma to using them in the proof of our theorems. Lemma (2.1):

Let
$$A = [a_{n,k}(x)], n \in N, k \in N_0$$
 as in (1.4),
 $x \in I = [0,1]$ then:
 $B_{n,k}\left((\frac{k}{n})^3, A, x\right) = x^3\left(\frac{(n-1)(n-2)}{n^2}\right) + 3x^2 + \frac{x}{n^2}$
Proof:

From (1.3), (1.4) and lemma (1.2), we have:

$$B_{n,k}\left(\left(\frac{k}{n}\right)^{3}, A, x\right) = \sum_{k=0}^{n} a_{n,k}(x) \cdot \left(\frac{k}{n}\right)^{3}$$

$$= x \sum_{k=0}^{n} \left(\frac{k}{n}\right)^{2} {\binom{n}{k}} x^{k} (1-x)^{n-k}$$

$$= x \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^{2} {\binom{n}{k}} x^{k-1} (1-x)^{(n-1)-(k-1)}$$

Let $j = k - 1$

$$= x \sum_{j=0}^{n-1} \left(\frac{j+1}{n}\right)^{2} {\binom{n-1}{j}} x^{j} (1-x)^{(n-1)-j}$$

$$=$$

$$x \sum_{j=0}^{n-1} \left(\frac{j}{n}\right)^{2} {\binom{n-1}{j}} x^{j} (1-x)^{(n-1)-j} +$$

$$2 x \sum_{j=0}^{n-1} \frac{j}{n^2} {\binom{n-1}{j}} x^j (1-x)^{(n-1)-j} + x \sum_{j=0}^{n-1} \frac{1}{n^2} {\binom{n-1}{j}} x^j (1-x)^{(n-1)-j} = x^2 \frac{(n-1)}{n} \sum_{j=1}^{n-2} \frac{j}{n} {\binom{n-2}{j}} x^{j-1} (1-x)^{(n-2)-j+1} + 2x \frac{(n-1)}{n^2} \sum_{j=1}^{n-2} \frac{j-1}{n} {\binom{n-1}{j-1}} x^{j-1} (1-x)^{(n-1)-j+1} + x \frac{1}{n^2}$$

Let $v = j - 1$

$$= x^{2} \frac{(n-1)}{n} \sum_{\nu=0}^{n-2} \frac{\nu+1}{n} {\binom{n-2}{\nu}} x^{\nu} (1-x)^{(n-2)-\nu} + 2x^{2} \frac{(n-1)}{n^{2}}$$

$$\sum_{\nu=0}^{n-2} \frac{\nu+1}{n} {\binom{n-2}{\nu}} x^{\nu} (1-x)^{(n-2)-\nu} + x \frac{1}{n^{2}}.$$

$$= x^{2} \frac{n-1}{n} \sum_{\nu=0}^{n-2} \frac{\nu+1}{n} {\binom{n-2}{\nu}} x^{\nu} (1-x)^{(n-2)-\nu} + 2x^{2} \frac{(n-1)}{n^{2}} + x \frac{1}{n^{2}} = x^{2} \frac{n-1}{n} \sum_{\nu=0}^{n-2} \frac{\nu}{n} {\binom{n-2}{\nu}} x^{\nu} (1-x)^{(n-2)-\nu} + x^{2} \frac{(n-1)}{n^{2}} \sum_{\nu=0}^{n-2} {\binom{n-2}{\nu}} x^{\nu} (1-x)^{(n-2)-\nu} + x^{2} \frac{(n-1)}{n^{2}} \sum_{\nu=0}^{n-2} {\binom{n-2}{\nu}} x^{\nu} (1-x)^{(n-2)-\nu} + 2x^{2} \frac{(n-1)}{n^{2}} + x \frac{1}{n^{2}}$$

$$= x^{3} \frac{(n-1)}{n} \sum_{\nu=1}^{n-3} \frac{\nu}{n} {\binom{n-2}{\nu}} x^{\nu-1} (1-x)^{(n-2)-\nu+1} + 3x^{2} \frac{(n-1)}{n^{2}} + x \frac{1}{n^{2}}$$

$$= x^{3} \frac{(n-1)}{n^{2}} + x \frac{1}{n^{2}} = x^{3} \frac{(n-2)(n-1)}{n^{2}} + 3x^{2} \frac{2(n-1)}{n^{2}} + x \frac{1}{n^{2}}$$

Lemma (2.2):

Let $A = [a_{n,k}(x)], n \in N, k \in N_0$ as in (1.4), $x \in I = [0,1]$ then:

$$B_{n,k}\left(\left(\frac{k}{n}\right)^4, A, x\right) = x^4 \left(\frac{(n-1)(n-2)(n-3)}{n^3}\right) + 3x^2 \frac{(n-1)(n-2)}{n^3} + 2x^2 \frac{(n-1)(n-2)}{n^3} + 7x^2 \frac{(n-1)}{n^3} + x \frac{1}{n^3}$$
Proof:

By (1.3), (1.4) and lemma (1.2) we get $B_{n,k}\left(\left(\frac{k}{n}\right)^4, A, x\right) = \sum_{k=0}^n a_{n,k}(x) \cdot \left(\frac{k}{n}\right)^4$ $= x \sum_{k=0}^n \left(\frac{k}{n}\right)^3 {\binom{n}{k}} x^k (1-x)^{n-k}$ $= x \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^3 {\binom{n-1}{k-1}} x^{k-1} (1-x)^{(n-1)-(k-1)}$

As in the proof of the lemma (1.2) and (2.1) we have the following

$$x^{4} \left(\frac{(n-1)(n-2)(n-3)}{n^{3}} \right) + 3x^{2} \frac{(n-1)(n-2)}{n^{3}} + 2x^{2} \frac{(n-1)(n-2)}{n^{3}} + 7x^{2} \frac{(n-1)}{n^{3}} + x \frac{1}{n^{3}}$$

Lemma (2.3):

Let
$$k, n, x \in [0, b]$$
, and $\in \lambda \ge 0$ then $\left| f\left(\frac{k}{n}\right) - f(x) \right| \le (1 + \left(\frac{k}{n} - x\right)^2 \lambda^{-1}) \omega(f, \lambda)$
Proof:
If $\left|\frac{k}{n} - x\right| \le \lambda$, by (1.10) we have $\omega(f, \left|\frac{k}{n} - x\right|) \le \omega(f, \lambda)$
If $\left|\frac{k}{n} - x\right| \ge \lambda$ then $\omega(f, \left|\frac{k}{n} - x\right|) \le \omega(f, \left|\frac{k}{n} - x\right|^2)$
Let $\frac{k}{n}, x \in [0, b]$, from (1.10), (1.8) we have

P-ISSN 1991-8941 E-ISSN 2706-6703 2013,(7), (2):209-212

Journal of University of Anbar for Pure Science (JUAPS) 2nd Conference For Pure Science - university of Anbar 20-22/11/2012

$$\left| f\left(\frac{k}{n}\right) - f(x) \right| \le \omega(f, \left|\frac{k}{n} - x\right|) \le \omega(f, \left|\frac{k}{n} - x\right|) \le \omega(f, \left|\frac{k}{n} - x\right|^2) \le 1 + \left(\frac{k}{n} - x\right)^2 \lambda^{-1} \omega(f, \lambda)$$

Theorem (2.1):

For every matrix $A \in \mathcal{M}$, and $s \in N$ there exists a positive constant $M_1(A, x, 2s)$ independent on $x \in [0,1]$ and $n \in N$ such that : $B_{n,k}(A, x, 2s) =$ $\sum_{k=0}^{n} a_{n,k}(x) \cdot \left(\frac{k}{n} - x\right)^{2s}$(2.1) Then $||B_{n,k}(A, x, 2s)|| \le \frac{M_1(A, x, 2s)}{n^s}$, $n \in N$. (2.2) Proof: By (2.2) and (2.1), we get $||B_{n,k}(A, x, 2s)|| = \left|\sum_{k=0}^{n} a_{n,k}(x) \cdot \left(\frac{k}{n} - x\right)^{2s}\right|$ $= \sum_{k=0}^{n} \left|\frac{k}{n} - x\right|^{2s} {n \choose k} x^k (1 - x)^{n-k}$ If s = 1 from lemma (2.1), (2.3) and (1.2), we get $B_{n,k}(A, x, 2s) = \sum_{k=0}^{n} {k \choose n} - x^2 {n \choose k} x^k (1 - x)^{n-k}$ $= \sum_{k=0}^{n} {(\frac{k}{n})^2} - 2x \frac{k}{n} + x^2) {n \choose k} x^k (1 - x)^{n-k} =$ $\sum_{k=0}^{n} {k \choose n} x^k (1 - x)^{n-k} = \sum_{k=0}^{n} {k \choose n} x^k (1 - x)^{n-k} =$

$$\sum_{k=0}^{n} {\binom{n}{n}} {\binom{k}{k}} x^{n} (1-x)^{n-k} - 2x \sum_{k=0}^{n} {\binom{n}{k}} x^{n}$$
$$x)^{n-k} + x^{2} \sum_{k=0}^{n} {\binom{n}{k}} x^{k} (1-x)^{n-k}$$
$$\frac{x^{2}(n-1)}{n} + \frac{x}{n} - 2x^{2} + x$$
$$= \frac{M_{1}(A,x,2s)}{n^{s}} \quad 0 \le x \le 1$$

Now we prove the strong approximation of the functions by using the linear positive operators $B_{n,k}(f, A, x)$.

Theorem (2.2):

Suppose that $A \in \mathcal{M}$, then for $n \in N, x \in [0,1], p > 0$ we have:

By using (1.3) and (1.6) we get

$$\begin{aligned} \left|B_{n,k}(f,A,x) - f(x)\right| &\leq \left|\sum_{k=0}^{n} a_{n,k}(x)(f\left(\frac{k}{n}\right) - f(x))\right| &\leq \sum_{k=0}^{n} a_{n,k}(x) \left|f\left(\frac{k}{n}\right) - f(x)\right| \\ \text{For } 0 &\leq x \leq 1 \text{ and lemma } (1.2) \left(B_{n,k}(1,A,x) - 1 = 0\right), \text{ which by } (1.6) \text{ yield } (2.3) \text{ let } \mathcal{G}_{x}\left(\frac{k}{n}\right) = f\left(\frac{k}{n}\right) - f(x). \end{aligned}$$

(1.1), we get

$$\left(B_{n,k}\left(\left|\mathscr{G}_{x}\left(\frac{k}{n}\right)\right|^{p},A,x\right)\right)^{\frac{1}{p}} \leq \left(B_{n,k}\left(\left|\mathscr{G}_{x}\left(\frac{k}{n}\right)\right|^{q},A,x\right)\right)^{\frac{1}{q}},x\in[0,1],n\in\mathbb{N}$$
.....(2.5)

For every $g \in C_I$, 0 and from (1.6), (2.5) immediately follows (2.4).

Theorem (2.3):

Let $A \in \mathcal{M}$, $f \in C_l^1$ and p > 0, then there exists $M_2(A, x, 2s)$ such that:

$$||H_n^p(f, A, x)|| \le \frac{M_2(A, x, 2s)||f'(x)||}{n^{2s}}$$
 for all $x \in [0, 1]$
and $n \in N$.

Proof:

For $f \in C_I^1$ and $t, x \in [0,1]$ we have $|f(t) - f(x)| \le ||f'(x)|| |t - x|$ From this we get

$$\begin{split} \left\| H_n^p(f,A,x) \right\| &\leq \\ \left\{ \sum_{k=0}^n a_{n,k}(x) \left| f\left(\frac{k}{n}\right) - f(x) \right|^p \right\}^{\frac{1}{p}}, x \in [0,1], n \in \mathbb{N}, \\ &\leq \| f'(x) \| \left(B_{n,k} \left(\left| f\left(\frac{k}{n}\right) - f(x) \right|^p \right)^{\frac{1}{p}} \\ &\text{For all } x \in [0,1] \text{ and } n \in \mathbb{N}. \\ &\text{Which by (2.2), (2.1) and from inequality:} \end{split}$$

$$\left\{L_n(\left|\frac{k}{n}-x\right|^p, A, x\right\}^{\frac{1}{p}} \le \left\{L_n(\left|\frac{k}{n}-x\right|^s, A, x\right\}^{\frac{1}{s}}$$

 $x \in [0,1], n \in N, 0 Then obtain $p \le 2s$ we have$

$$\begin{split} \left\| H_n^p(f,A,x) \right\| &\leq \\ \left\{ \sum_{k=0}^n a_{n,k}(x) \left| f\left(\frac{k}{n}\right) - f(x) \right|^p \right\}^{\frac{1}{p}}, x \in [0,1], n \in \mathbb{N} \\ &\leq \| f'(x) \| \left(B_{n,k} \left(\left| f\left(\frac{k}{n}\right) - f(x) \right|^{2s}, A, x \right) \right)^{\frac{1}{2s}} \\ &\leq \| f'(x) \| \left(B_{n,k} \left(\left| \mathscr{G}_x\left(\frac{k}{n}\right) \right|^{2s}, A, x \right) \right)^{\frac{1}{2s}} \\ &\text{By (2.3), (2.5) and (2.2) we get} \\ & \left\| H_n^p(f,A,x) \right\| \leq \frac{M_2(A,x,2s) \| f'(x) \|}{n^{2s}} \\ &\text{Theorem (2.4):} \\ &\text{Let } A \in \mathcal{M}, f \in C_I \text{ and } p > 0, \text{ then there exists} \end{split}$$

Let $A \in \mathcal{M}$, $f \in C_I$ and p > 0, then there exists $M_3(A, p, 2) > 0$ for all $x \in [0,1]$ and $n \in N$ such that :

$$\left\|H_n^p(f,A,x)\right\| \leq \frac{M_3(A,p,2)}{\sqrt{n}}\tau(f,\frac{1}{\sqrt{n}})$$

Proof:

For all $f \in C_I$ and $n \in N, p > 0$ we get from (1.5)

$$\begin{split} \|H_{n}^{p}(f,A,x)\| &\leq \left\{\sum_{k=0}^{n} a_{n,k}(x) \left| f\left(\frac{k}{n}\right) - f(x) \right|^{p} \right\}^{\frac{1}{p}} \\ \text{by (1.6), (1.7), lemma (2.3) we get} \\ \left| f\left(\frac{k}{n}\right) - f(x) \right| &\leq \omega(f, \left|\frac{k}{n} - x\right|) \leq \left(\sqrt{n} \left|\frac{k}{n} - x\right|^{2} + 1\right) \\ \leq \omega(f, \frac{1}{\sqrt{n}}) \\ \text{for all } x \in [0,1], n \in N. \text{ Consequently} \\ \|H_{n}^{p}(f,A,x)\| &\leq \omega(f, \frac{1}{\sqrt{n}}) \left\{\sum_{k=0}^{n} a_{n,k}(x) \left|\sqrt{n} \left|\frac{k}{n} - x\right|^{2} + 1\right|^{p} \right\}^{\frac{1}{p}} \\ \text{Applying the Minkowski inequality for sum we get} \\ \|H_{n}^{p}(f,A,x)\| &\leq \omega(f, \frac{1}{\sqrt{n}}) \left\{\sum_{k=0}^{n} a_{n,k}(x) \left|\sqrt{n} \left|\frac{k}{n} - x\right|^{2}\right|^{p} \right\}^{\frac{1}{p}} \\ &\leq \omega \left(f, \frac{1}{\sqrt{n}}\right) \left\{\sum_{k=0}^{n} a_{n,k}(x) \left|\sqrt{n} \left|\frac{k}{n} - x\right|^{2}\right|^{p} \right\}^{\frac{1}{p}} + 1 \\ \text{From (1.10) and theorems (2.3), (2.1) we have:} \\ \|H_{n}^{p}(f,A,x)\| &\leq \omega \left(f, \frac{1}{\sqrt{n}}\right) \sqrt{n} \frac{M_{2}(A,p,2)}{n} \end{split}$$

$$\leq \frac{M_3(A,p,2)}{\sqrt{n}}\omega(f,\frac{1}{\sqrt{n}})$$
$$\leq \frac{M_3(A,p,2)}{\sqrt{n}}\tau(f,\frac{1}{\sqrt{n}})$$

Corollary (1):

For all $f \in C_I$ and $n \in N, p > 0$ we have $\lim_{x\to\infty} ||H_n^p(f, A, .)|| = 0$ Implies that $\lim_{x\to\infty} H_n^p(f, A, x) = 0$ at every $x \in [0,1]$.

Corollary (2):

Let $A \in \mathcal{M}$, $n \in N$ and p > 0, then there exists $M_4(A, x, 2)$ such that for every $f \in C_I$

$$\left\| B_{n,k}(f,A,.) - f(.) \right\| \le \left\| H_n^1(f,A,.) \right\| \le \frac{M_4(A,.)}{\sqrt{n}} \tau\left(f,\frac{1}{\sqrt{n}}\right).$$

Conclusions:

- 1-We prove lemma (2.1), (2.2) about the linear positive operate.
- 2- We fined the strong approximations by using the linear positive operators in terms of the averaged modulus of order one.

References:

- B. S. (2009).On The Degree of Strong Approximation of Continuous Functions by Special Matrix . J. Inequal. Pure and Appl. Math. V .10: N. 4,132-139.
- 2- S.M. (2003).Strong Approximation by Fourier Series. International J. of pure and Appl. Math. V.7: N.1, 59-66.
- 3- L. R. & M. S. (2004). On The Strong Approximation of Functions by Certain Operators. Math. J. Okayama Univ. V.46 :N.1, 153-161.
- 4- L. R. & M. S. (2006).On Strong Approximation by Modified Meyer- Konig and Zeller Operators. Tamkang J. of Math. V.37 : N.2,123-130.
- 5- S. B. & P. V. A. (1983). The Averaged Moduli of Smoothness.1-20, series 519.4, A Wiley-Interscience Publication, USA.
- 6- L.R.&M.S.(2006).The strong approximation of functions of two variables by certain operators .Soochow J. of. Math. V.32 :N.1 ,37-49.
- 7- L. A. & D. D. (1989). One sided Multidimensional Approximation by Entire Functions and Trigonometric Polynomials in L_p Metric, 0 . Math. Balkanica V.3, 215-224.

التقريب الاقوى بواسطة المؤثر الخطي الموجب في ضوء معدل القياس من الرتبة الاولى

زينب عيسى عبد النبي

E-mail: <u>esazainab@yahoo.com</u>

الخلاصة:

في بحثنا هذا قدمنا المؤثر الخطي الموجب (برنشتاين) في فضاء كل الدوال المستمرة [0,1] = C مع بعض الخواص لهذا المؤثر وذلك لإيجاد أقوى الفروق للدوال معتمدين في ذلك على معدلات القياس من الرتبة الاولى.