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 In this work, we introduce Bernst- ein linear positive operators      (   )  in 

the space of all continuous functions     where   ,   -  with some properties of 

this operator so to find the strong approxi- mation of continuous functions with the 

averaged modulus of order one.  
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 1-Introduction 

    The strong approximation of function connected 

with Fourier series was examined in many papers 

published in last 40 years. The problem of strong 

approxim- mation with power      is well known 

for    - periodic functions and their Fourier series [1], 

[2]. For example [3], if   (   ) is the n-th partial sum 

of trigonometric Fourier series of f , then the n-th  

(   ) -mean of this series is defined by the formula : 

   (   )  
 

   
∑   (   )         

 
    

where     *     +. The n-th strong   (   ) - mean 

of this series is defined as follows: 
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.   Where    is a fixed positive number, It is clear that:        

|  (   )   ) )|    
 (   )   

And       
 (   )    

 (   ) ,       

  ….…………………….……. (1.1) In [4] is 

investigated the strong approxi- imation of functions 

     some linear operators. 

 

Definitions and Lemmas: 

   In this paper we examine this problem for   

  (  ,   -)  and introduced     (     )  linear 

positive operators.  Let    be the space of all functions, 

continuous and bounded on       with the norm:   

‖ ‖=sup*| ( )|     + ……….…. (1.2)   Let        
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be a fixed number and let   
  {      

( )    }  

and the norm    
  is defined by (1.2), where    

     . 

Let     and    . Where     the set of all 

infinite matrices   ,    ( )-.  The Bernstein 

operators [5]:    (     )  ∑     ( ) .
 

 
/ 

    

…..… (1.3)     Defined for continuous  on the interval 

  ,   -  with the matrix   [    ( )] where:  

     ( )  {( 
 
)  (   )    }…… (1.4)  

 Lemma (1.1): [3] 

Let    [    ( )]           then 

    ( )   , for             . 

     ( )  {
(  ) 

 (   )                  

(  ) 
 (   )                      

} .… (1.5) 

Lemma (1.2): [3] 

  Let   [    ( )]         ,   ,   ) as in 

(1.4) then: 

1-    (     )    

2-    .
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3-    .(
 

 
)     /    .
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  For every matrix     ,         

and      (     ).  Then strong deference    
 (   ) is 

well – defined for every     ,    ,   -,      

with power      as follows [6]:   
 (   )  

2∑      ( ) | .
 

 
/   ( )|

 
 
   3

 

 
…… (1.6) 

     Let the function   be defined and bounded in the 

interval ,   - then [4]:  (   )  *   (| ( )  

 ( )|)      ,   - |   |   +    ................... 

(1.7) 
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In [5] if       ,   ) , then: 

  (    )  (   ) (   )  for          …. (1.8) 

  And if       are uniformly continuous functions 

then         (   )   .The      averaged modulus 

of smoothness for       is defined by [7]:                        

              (   )  ‖  (   )‖    

The averaged modulus of order one defined by:            

   
 
(   )  ‖  

(   )‖
 
 ..….…….. (1.9) in [7] 1- if 

  is measurable bounded function on,   -,      

then  

              (   )    (   )  

2- If     then 

   (     )    (     
 )  , and   (     )  

  (     
 )  …….…. (1.10) 

where    (     )  *   |   ( )|   0  
 

 
   

 

 
 1    ,   )+       ,   -   

 

2- Main results 

 First we prove some properties of     (     ) and 

Lemma to using them in the proof of our theorems. 

Lemma (2.1): 

Let    [    ( )]           as in (1.4),  

    ,   - then:    
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  /      
 

     

 Proof: 

 From (1.3), (1.4) and lemma (1.2), we have: 
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Lemma (2.2): 

  Let    [    ( )]           as in (1.4),  

    ,   - then: 
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 Proof: 

 By (1.3), (1.4) and lemma (1.2) we get  
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As in the proof of the lemma (1.2) and (2.1) we have 

the following 
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Lemma (2.3): 

 Let       ,   -          then | .
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Proof: 

If |
 

 
  |    , by (1.10) we have  (  |
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Let   
 

 
   ,   -, from (1.10), (1.8) we have  
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Theorem (2.1): 

 For every matrix     , and     there exists a 

positive constant   (      ) independent on 

  ,   - and     such that :     (      )   

∑     ( ) .
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  Now we prove the strong approximation of the 

functions by using the linear positive 

operators    (     ). 

 Theorem (2.2): 

  Suppose that    , then for        ,   -   

  we have:   

  |    (     )   ( )|    
 (   )...  (2.3) 

And  

   
 (   )    

 (   )  If         

…………………………………..….. (2.4) 

Proof: 

By using (1.3) and (1.6) we get 
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 ( ). Applying by the holder inequality and lemma 

(1.1), we get 
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  For every ℊ             and from (1.6), 

(2.5) immediately follows (2.4). 

Theorem (2.3): 

  Let      ,     
  and   , then there exists  

  (      )  such that:                        
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Proof: 

 For     
  and     ,   - we have 
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By (2.3), (2.5) and (2.2) we get  
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Proof: 

For all       and     ,    we get from (1.5) 
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by (1.6), (1.7), lemma (2.3) we get  
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Applying the Minkowski inequality for sum we get  
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From (1.10) and theorems (2.3), (2.1) we have: 
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Corollary (1): 

 For all       and     ,    we have 
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 Implies that         
 (     )    at every  

,   -. 

Corollary (2): 

  Let      ,     and    , then there exists  

  (     )  such that for every      

  

‖    (     )   ( )‖  ‖  
 (     )‖  

  (   )

√ 
 .  

 

√ 
/   

Conclusions: 

1-We prove lemma (2.1), (2.2) about the linear 

positive operate. 

2- We fined the strong approximations by using the 

linear positive operators in terms of the averaged 

modulus of order one. 
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