Some Convergence Theorems for the Fixed Point in Banach Spaces

Zena Hussein Mabeed

University of Baghdad - College of Education for pure Science.

ARTICLE INFO

Received: 20 / 11 /2012
Accepted: 22 / 11/2012
Available online: 16/2/2014
DOI: 10.37652/juaps.2013.85012

Keywords:

Convergence Theorems,
Fixed Point ,
Banach Spaces.

ABSTRACT

Let X be a uniformly smooth Banach space, $\mathrm{T}: \mathrm{X} \longrightarrow \mathrm{X}$ be Φ-strongly quasi accretive (Φ-hemi contractive) mappings. It is shown under suitable conditions that the Ishikawa iteration sequence converges strongly to the unique solution of the equation $T x=f$. Our main results is to improve and extend some results about Ishikawa iteration for type from contractive, announced by many others.

1. Introduction

Let X be an arbitrary Banach space with norm $\|\cdot\|$
and the dual space X^{*}. The normalized duality mapping J: $\mathrm{X} \longrightarrow \stackrel{\mathrm{X}}{2}_{2}$ is defined by
$\left.J(x)=\left\{f \in X^{*}:<x, f\right\rangle=\|x\| \cdot\|f\|,\|f\|=\|x\|\right\}$
where $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. It is known that if X is uniformly smooth, then J is single valued and is uniformly continuous on any bounded subset of X .

Let $\mathrm{T}: \mathrm{D}(\mathrm{T}) \subseteq \mathrm{X} \longrightarrow \mathrm{X}$ be an operator, where $\mathrm{D}(\mathrm{T})$ and $\mathrm{R}(\mathrm{T})$ denote the domain and range of T , respectively, and I denote the identity mapping on X .

We recall the following two iterative processes to Ishikawa and Mann, [1], [2]:
i- Let K be a nonempty convex subset of X , and $\mathrm{T}: \mathrm{K}$ $\longrightarrow K$ be a mapping, for any given $x 0 \in K$ the sequence <xn> defined by
$\mathrm{xn}+1=(1-\alpha \mathrm{n}) \mathrm{xn}+\alpha \mathrm{nTyn}$
$y n=(1-\beta n) x n+\beta n T x n \quad(n \geq 0)$
is called Ishikawa iteration sequence, where < $\alpha n>$ and $\langle\beta n\rangle$ are two real sequences in $[0,1]$ satisfying some conditions.
ii- In particular, if $\beta n=0$ for all $n \geq 0$ in (i), then <xn> defined by
$x 0 \in K, x n+1=(1-\alpha n) x n+\alpha n T y n, n \geq 0$
is called the Mann iteration sequence.
Recently Liu [3] introduced the following iteration method which he called Ishikawa (Mann) iteration method with errors.

[^0]For a nonempty subset K of X and a mapping $\mathrm{T}: \mathrm{K}$ $\longrightarrow K$, the sequence <xn> defined for arbitrary $x 0$ in K by $y n=(1-\beta n) x n+\beta n T x n+v n$,
$\mathrm{xn}+1=(1-\alpha \mathrm{n}) \mathrm{xn}+\alpha \mathrm{nTyn}+$ un for all $\quad \mathrm{n}=0$, $1,2, \ldots$,
where <un> and <vn> are two summable sequences in X
(i.e., $\sum_{n=0}^{\infty}\left\|u_{n}\right\|<\infty \sum_{n=0}^{\infty}\left\|v_{n}\right\|<\infty$), < $\alpha n>$ and $\langle\beta n>$ are two real sequences in $[0,1]$, satisfying suitable conditions, is called the Ishikawa iterates with errors. If βn $=0$ and $\mathrm{vn}=0$ for all n , then the sequence < $\mathrm{xn}>$ is called the Mann iterates with errors.
The purpose of this paper is to define the Ishikawa iterates with errors to fixed points and solutions of Φ-strongly quasi accretive and Φ-hemi-contractive operators equations. Our main results improve and extend the corresponding results recently obtained by [3] and [4]. Via replaced the assumption summable sequences by the assumption bounded sequences, T need not be Lipschitz and the assumption that T is strongly accretive mapping is replaced by assumption that T is Φ-strongly quasi accretive and Φ -hemi-contractive, and main results improve the corresponding results recently obtained by [5]. Via replaced the assumption quasi-strongly accretive and quasi-strongly pseudo-contractive mappings by the assumption Φ-strongly quasi accretive and Φ-hemi-contractive operators.

1.1 Definition: [5], [6], [7]

A mapping T with domain $D(T)$ and range $R(T)$ in X is said to be strongly accretive if for any $x, y \in D(T)$, there exists a constant $k \in(0,1)$ and $j(x-y) \in J(x-y)$ such that $\langle T x-T y, j(x-y)\rangle \geq k\|x-y\|^{2}$
The mapping T is called Φ-strongly accretive if there exists a strictly increasing function $\Phi:[0, \infty] \longrightarrow[0, \infty]$ with $\Phi(0)$ $=0$ such that the inequality

$$
<T x-T y, j(x-y) \geq \Phi(\|x-y\|) \cdot\|x-y\|
$$

holds for all $x, y \in D(T)$. It is well known that the class of strongly accretive mappings is a proper subclass of the class of Φ-strongly accretive mapping.

An operator $\mathrm{T}: \mathrm{X} \longrightarrow \mathrm{X}$ is quasi-strongly accretive if there exists a strictly increasing function $\Phi:[0, \infty] \longrightarrow$ $[0, \infty]$ with $\Phi(0)=0$ such that for any $x, y \in$ $\mathrm{D}(\mathrm{T})$

$$
\operatorname{Re}<T x-T y, j(x-y) \geq \Phi(\|x-y\|)
$$

An operator $\mathrm{T}: \mathrm{X} \longrightarrow \mathrm{X}$ is called Φ-strongly quasi-accretive if there exist a strictly increasing function $\Phi:[0, \infty] \longrightarrow[0, \infty]$ with $\Phi(0)=0$ such that for all $x \in D(T), p \in N(T)$ there exist $j(x-p) \in J(x-p)$ such that

$$
<T x-T p, j(x-p) \geq \Phi(\|x-p\|) \cdot\|x-p\|
$$

where $N(T)=\{x \in D(T): T(x)=0\}$.
1.2 Remarks: [5], [6], [7]

1. A mapping $T: X \longrightarrow X$ is called strongly pseudo contractive if and only if (I $-T$) is strongly accretive.
2. A mapping $\mathrm{T}: \mathrm{X} \longrightarrow \mathrm{X}$ is called Φ-strongly pseudocontractive if and only if (I-T). Ф-strongly accretive.
3. A mapping $T: X \longrightarrow X$ is called quasi-strongly pseudocontractive if and only if ($\mathrm{I}-\mathrm{T}$) is quasi-strongly accretive.
4. A mapping $T: X \longrightarrow X$ is called Φ-hemi-contractive if and only if $(\mathrm{I}-\mathrm{T})$ is $\quad \Phi$-strongly quasi-accretive.
The following lemma plays an important role in proving our main results.

1.1 Lemma: [1], [2]

Let X be a Banach space. Then for all $x, y \in X$ and $j(x$ $+y) \in J(x+y)$,
$\|x+y\|^{2} \leq\|x\|^{2}+2<y, j(x+y)>$.

2. Main Results

Now, we state and prove the following theorems:

2.1 Theorem:

Let X be a uniformly smooth Banach space and let $\mathrm{T}: \mathrm{X} \longrightarrow \mathrm{X}$ be a Φ-strongly quasi-accretive operator.
Let $\mathrm{x}_{0} \in \mathrm{~K}$ the Ishikawa iteration sequence $\left\langle\mathrm{x}_{\mathrm{n}}>\right.$ with errors be defined by
$y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S x_{n}+b_{n} v_{n}$
$x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S y_{n}+a_{n} u_{n}$ for all $n=$
$0,1,2, \ldots$.
where $\left\langle\alpha_{n}\right\rangle,\left\langle\beta_{n}\right\rangle,\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ are sequences in $[0,1]$ satisfying
$\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$
$\sum_{n=0}^{\infty} \alpha_{n}=\infty$
$\mathrm{a}_{\mathrm{n}} \leq \alpha_{\mathrm{n}}^{1+\mathrm{c}}, \mathrm{c}>0, \mathrm{~b}_{\mathrm{n}}>\beta_{\mathrm{n}}$
and $\left\langle u_{n}\right\rangle$ and $\left\langle v_{n}\right\rangle$ are two bounded sequence in X. Define $\mathrm{S}: \mathrm{X} \longrightarrow \mathrm{X}$ by
$\mathrm{Sx}=\mathrm{f}+\mathrm{x}-\mathrm{Tx}$ for all $\mathrm{x} \in \mathrm{X}$, and suppose that $R(S)$ is bounded, then $\left\langle x_{n}\right\rangle$ converges strongly to the unique solution of the equation $T x=f$.
proof: Since T is Φ-strongly quasi-accretive, it follows that $N(T)$ is a singleton, say $\{w\}$.
Let $T w=f$, it is easy to see that S has a unique fixed point w , it follows from definition of S that

$$
\begin{equation*}
<S x-S y, j(x-y)>\leq\|x-y\|^{2}-\Phi(\|x-y\|) \cdot\|x-y\| . \tag{6}
\end{equation*}
$$

Setting $y=w$, we have
$\left\langle S x-S w, j(x-w)>\leq\|x-w\|^{2}-\Phi(\|x-w\|) \cdot\|x-w\| \cdot\right.$
We prove that $\left\langle x_{n}\right\rangle$ and $\left\langle y_{n}\right\rangle$ are bounded. Let
$M_{1}=\sup \left\{\left\|S x_{n}-w\right\|+\left\|S y_{n}-w\right\|: n \geq 0\right\}+\left\|x_{0}-w\right\|_{M}$
$\mathbf{M}_{2}=\sup \left\{\left\|\mathbf{u}_{\mathrm{n}}\right\|+\left\|\mathrm{v}_{\mathrm{n}}\right\|: \mathrm{n} \geq 0\right\}$
$=\mathrm{M}_{1}+\mathrm{M}_{2}$
From (2) and (5), we get

$$
\begin{aligned}
\left\|x_{n+1}-w\right\| \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-w\right\|+\alpha_{n}\left\|S y_{n}-w\right\|+a_{n}\left\|u_{n}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-w\right\|+\alpha_{n} M_{1}+\alpha_{n} M_{2}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|x_{n+1}-w\right\| \leq\left(1-\alpha_{n}\right)\left\|x_{n}-w\right\|+\alpha_{n} M \tag{8}
\end{equation*}
$$

Now, from (1) and (5), we have

$$
\begin{aligned}
&\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right\| \leq\left(1-\beta_{\mathrm{n}}\right)\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{w}\right\|+\beta_{\mathrm{n}}\left\|\mathrm{Sx}_{\mathrm{n}}-\mathrm{w}\right\|+\mathrm{b}_{\mathrm{n}}\left\|\mathrm{v}_{\mathrm{n}}\right\| \\
& \leq\left(1-\beta_{\mathrm{n}}\right)\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{w}\right\|+\beta_{\mathrm{n}} \mathrm{M}_{1}+\beta_{\mathrm{n}} \mathrm{M}_{2}
\end{aligned}
$$

and hence

$$
\begin{align*}
& \left\|y_{n}-w\right\| \leq\left(1-\beta_{n}\right)\left\|x_{n}-w\right\|+\beta_{n} M \tag{9}\\
& \left\|x_{n}-w\right\| \leq M \tag{10}
\end{align*}
$$

Now, we show by induction that
for all $\mathrm{n} \geq 0$. For $\mathrm{n}=0$ we have $\left\|\mathrm{x}_{0}-\mathrm{w}\right\| \leq \mathrm{M}_{1} \leq \mathrm{M}$, by definition of M_{1} and M .
Assume now that $\left\|x_{n}-w\right\| \leq M$ for some $n \geq 0$. Then by (8), we have

$$
\begin{array}{r}
\left\|\mathrm{x}_{\mathrm{n}+1}-\mathrm{w}\right\| \leq\left(1-\alpha_{\mathrm{n}}\right)\left\|\mathrm{x}_{\mathrm{n}}-w\right\|+\alpha_{\mathrm{n}} M \\
\leq\left(1-\alpha_{n}\right) \mathrm{M}+\alpha_{\mathrm{n}} M=M
\end{array}
$$

Therefore, by induction we conclude that (10) holds substrituting (10) into (9), we get

$$
\left\|y_{n}-w\right\| \leq M
$$

From (9), we have

$$
\begin{aligned}
\left\|y_{n}-w\right\|^{2} \leq & \left(1-\beta_{n}\right)^{2}\left\|x_{n}-w\right\|^{2}+ \\
& 2 \beta_{\mathrm{n}}\left(1-\beta_{\mathrm{n}}\right) \mathrm{M}\left\|\mathrm{x}_{\mathrm{n}}-w\right\|+\beta_{\mathrm{n}}^{2} \mathrm{M}^{2}
\end{aligned}
$$

Since $1-\beta_{n} \leq 1$ and $\left\|x_{n}-w\right\| \leq M$, we get

$$
\begin{equation*}
\left\|y_{n}-w\right\|^{2} \leq\left\|x_{n}-w\right\|^{2}+2 \beta_{n} M^{2} \tag{12}
\end{equation*}
$$

Using lemma (1.1), we get

$$
\begin{aligned}
\left\|x_{n+1}-w\right\|^{2} \leq & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-w\right)+a_{n} u_{n}+\alpha_{n}\left(S y_{n}-w\right)\right\|^{2} \\
\leq & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-w\right)+a_{n} u_{n}\right\|^{2}+ \\
& 2 \alpha_{n}<S y_{n}-w, j\left(x_{n+1}-w\right)> \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-w\right\|^{2}+ \\
& 2\left(1-\alpha_{n}\right) a_{n}\left\|x_{n}-w\right\| u_{n}\left\|+a_{n}^{2}\right\| u_{n} \|^{2}+ \\
& 2 \alpha_{n}<S y_{n}-w, j\left(y_{n}-w\right)>+ \\
& 2 \alpha_{n}<S y_{n}-w, j\left(x_{n+1}-w\right)-j\left(y_{n}-w\right)>
\end{aligned}
$$

Hence, using (6) and definition of M, we get

$$
\left\|x_{n+1}-w\right\|^{2} \leq\left\|x_{n}-w\right\|^{2}-2 \alpha_{n}\left\|x_{n}-w\right\|^{2}+\alpha_{n}^{2}\left\|x_{n}-w\right\|^{2}+
$$

$$
\begin{aligned}
& 2\left(1-\alpha_{n}\right) a_{n} M^{2}+a_{n}^{2} M^{2}+2 \alpha_{n}\left\|y_{n}-w\right\|^{2}- \\
& 2 \alpha_{n} \Phi\left(\left\|y_{n}-w\right\|\right) \cdot\left\|y_{n}-w\right\|+2 \alpha_{n} c_{n}
\end{aligned}
$$

here
$c_{n}=<S y_{n}-w, j\left(x_{n+1}-w\right)-j\left(y_{n}-w\right)>$
By (10) and (12) and using that $a_{n} \leq \alpha_{n} \alpha_{n}^{c}$, we obtain

$$
\begin{gathered}
\left\|x_{n+1}-w\right\|^{2} \leq\left\|x_{n}-w\right\|^{2}-2 \alpha_{n}\left\|x_{n}-w\right\|^{2}+\alpha_{n}^{2} M^{2}+ \\
2 \alpha_{n} \alpha_{n}^{c} M^{2}+2 \alpha_{n}\left\|x_{n}-w\right\|^{2}+ \\
4 \alpha_{n} \beta_{n} M^{2}-2 \alpha_{n} k_{x}\left\|y_{n}-w\right\|^{2}+2 \alpha_{n} c_{n}
\end{gathered}
$$

hence

$$
\begin{align*}
\left\|\mathrm{x}_{\mathrm{n}+1}-\mathrm{w}\right\|^{2} \leq & \left\|\mathrm{x}_{\mathrm{n}}-\mathrm{w}\right\|^{2}-2 \alpha_{\mathrm{n}} \Phi\left(\left\|y_{\mathrm{n}}-\mathrm{w}\right\|\right) \cdot\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right\|+ \\
& \alpha_{\mathrm{n}} \lambda_{\mathrm{n}} \tag{14}
\end{align*}
$$

where $\lambda_{n}=\left(\alpha_{n}+2 \alpha_{n}^{c}+4 \beta_{n}\right) M^{2}+2 c_{n}$.
First we show that $\mathrm{c}_{\mathrm{n}} \longrightarrow 0$ as $\mathrm{n} \longrightarrow \infty$, observe that from (1) and (2), we have

$$
\begin{aligned}
&\left\|x_{n+1}-y_{n}\right\| \leq \|\left(\beta_{n}-\alpha_{n}\right)\left(x_{n}-w\right)+\alpha_{n}\left(S y_{n}-w\right)- \\
& \beta_{n}\left(S x_{n}-w\right)+a_{n} u_{n}-b_{n} v_{n} \| \quad \text { and hence, by } \\
& \leq\left(\beta_{n}-\alpha_{n}\right)\left\|x_{n}-w\right\|+\alpha_{n}\left\|S y_{n}-w\right\|+ \\
& \beta_{n}\left\|S x_{n}-w\right\|+\alpha_{n}\left\|u_{n}\right\|+\beta_{n}\left\|v_{n}\right\|
\end{aligned}
$$

(10) and definition of M.

$$
\begin{equation*}
\left\|x_{n+1}-y_{n}\right\| \leq\left(3 \beta_{n}+\alpha_{n}\right) M \tag{15}
\end{equation*}
$$

Therefore $\left\|\mathrm{x}_{\mathrm{n}+1}-\mathrm{w}-\left(\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right)\right\| \longrightarrow 0$ as $\mathrm{n} \longrightarrow$ ∞.
Since $\left\langle\mathrm{x}_{\mathrm{n}+1}-\mathrm{w}\right\rangle,\left\langle\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right\rangle$ and $\left\langle\mathrm{Sy}_{\mathrm{n}}-\mathrm{w}\right\rangle$ are bounded and j is uniformly continuous on any bounded subset of X, we have
$\mathrm{j}\left(\mathrm{x}_{\mathrm{n}+1}-\mathrm{w}\right)-\mathrm{j}\left(\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right) \longrightarrow 0 \quad$ as $\mathrm{n} \quad \longrightarrow \quad \infty$, $c_{n}=<S x_{n}-w, j\left(x_{n+1}-w\right)-j\left(y_{n}-w\right)>\longrightarrow 0$ as n $\longrightarrow \infty$. Thus $\lim _{n \rightarrow \infty} \lambda_{n}=0$,
$\inf \left\{\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right\|: \mathrm{n} \geq 0\right\}=\mathrm{S} \geq 0$.
We prove that $S=0$. Assume the contrary, i.e., $S>0$. Then $\left\|y_{n}-w\right\| \geq S>0$ for all $n \geq 0$.
Hence
$\Phi\left(\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right\|\right) \geq \Phi(\mathrm{S})>0$.
Thus from (14)

$$
\begin{gather*}
\left\|\mathrm{x}_{\mathrm{n}+1}-\mathrm{w}\right\|^{2} \leq\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{w}\right\|^{2}-\alpha_{\mathrm{n}} \Phi(\mathrm{~S}) \cdot \mathrm{S}- \tag{16}\\
\alpha_{\mathrm{n}}\left[\Phi(\mathrm{~S}) \cdot \mathrm{S}-\lambda_{\mathrm{n}}\right]
\end{gather*}
$$

for all $n \geq 0$. Since $\lim _{n \rightarrow \infty} \lambda_{n}=0$, there exists a positive integer n_{0} such that $\lambda_{\mathrm{n}} \leq \Phi(\mathrm{S}) \cdot \mathrm{S}$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.
Therefore, from (16), we have
$\left\|x_{n+1}-w\right\|^{2} \leq\left\|x_{n}-w\right\|^{2}-\alpha_{n} \Phi(S) \cdot S$,
or
$\alpha_{n} \Phi(S) \cdot S \leq\left\|x_{n}-w\right\|^{2}-\left\|x_{n+1}-w\right\|^{2}$ for all $n \geq n_{0}$.
Hence
$\Phi(\mathrm{S}) \cdot \mathrm{S} \cdot \sum_{\mathrm{j}=\mathrm{n}_{0}}^{\mathrm{n}} \alpha_{\mathrm{j}}=\left\|\mathrm{x}_{\mathrm{n}_{0}}-\mathrm{w}\right\|^{2}-\left\|\mathrm{x}_{\mathrm{n}+1}-\mathrm{w}\right\|^{2}$

$$
\leq\left\|\mathrm{x}_{\mathrm{n}_{0}}-\mathrm{w}\right\|^{2}
$$

which implies $\sum_{n=0}^{\infty} \alpha_{n}<\infty$, contradicting (4). Therefore, S $=0$.
From definition of S, there exists a subsequence of $<\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{w}\right\|>$, which we will denote by $<\left\|\mathrm{y}_{\mathrm{i}}-\mathrm{w}\right\|>$, such that
$\lim _{\mathrm{j} \rightarrow \infty}\left\|\mathrm{y}_{\mathrm{j}}-\mathrm{w}\right\|=0$
Observe that from (1) for all $n \geq 0$, we have
$\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{w}\right\| \leq \| \mathrm{y}_{\mathrm{n}}-\mathrm{w}+\beta_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}-\mathrm{w}\right)-$

$$
\begin{gathered}
\beta_{n}\left(S x_{n}-w\right)+b_{n} v_{n} \| \\
\leq\left\|y_{n}-w\right\|+\beta_{n}\left\|x_{n}-w\right\|+ \\
\beta_{n}\left\|S x_{n}-w\right\|+b_{n}\left\|v_{n}\right\| .
\end{gathered}
$$

Since $b_{n} \leq \beta_{n}$, by definition of A, B and M we get
$\left\|x_{n}-w\right\| \leq\left\|y_{n}-w\right\|+3 \beta_{n} M$, for all $n \geq 0$
Thus by (3), (17) and (18), we have
$\lim _{j \rightarrow \infty}\left\|x_{j}-w\right\|=0$
Let $\varepsilon>0$ be arbitrary. Since $\lim _{n \rightarrow \infty} \alpha_{n}=0, \lim _{n \rightarrow \infty} \beta_{n}=0$ and
$\lim _{\mathrm{n} \rightarrow \infty} \lambda_{\mathrm{n}}=0$, there exists a positive integer N_{0} such that
$\alpha_{\mathrm{n}} \leq \frac{\varepsilon}{3 M}, \beta_{\mathrm{n}} \leq \frac{\varepsilon}{3 \mathrm{M}}, \lambda_{\mathrm{n}} \leq \Phi\left(\frac{\varepsilon}{3}\right) \cdot \frac{\varepsilon}{3}$ for all
N_{0}.
From (19), there exists $\mathrm{k} \geq \mathrm{N}_{0}$ such that
$\left\|\mathrm{x}_{\mathrm{k}}-\mathrm{w}\right\|<\varepsilon$
We prove by induction that
$\left\|\mathrm{X}_{\mathrm{k}+\mathrm{n}}-\mathrm{w}\right\|<\varepsilon$ for all $\mathrm{n} \geq 0$
For $n=0$ we see that (21) holds by (20).
Suppose that (21) holds for some $\mathrm{n} \geq 0$ and that $\left\|x_{k+n+1}-w\right\| \geq \varepsilon$. Then by (15), we get

$$
\begin{aligned}
\varepsilon \leq\left\|x_{k+n+1}-w\right\|= & \left\|y_{k+n}-w+x_{k+n+1}-y_{k+n}\right\| \\
& \leq\left\|y_{k+n}-w\right\|+\left\|x_{k+n+1}-y_{k+n}\right\| \quad \text { Hence } \\
& \leq\left\|y_{k+n}-w\right\|+\left(\alpha_{k+n}+3 \beta_{k+n}\right) M \\
& \leq\left\|y_{k+n}-w\right\|+\frac{2 \varepsilon}{3} \\
\left\|y_{k+n}-w\right\| \geq \frac{\varepsilon}{3} &
\end{aligned}
$$

From (14), we get

$$
\begin{aligned}
\varepsilon^{2} \leq\left\|x_{k+n+1}-w\right\|^{2} \leq & \left\|x_{k+n}-w\right\|^{2}-2 \alpha_{k+n} \Phi\left(\frac{\varepsilon}{3}\right) \cdot \frac{\varepsilon}{3}+ \\
& \alpha_{k+n} \Phi\left(\frac{\varepsilon}{3}\right) \cdot \frac{\varepsilon}{3} \\
\leq & \left\|x_{k+n}-w\right\|^{2}<\varepsilon^{2},
\end{aligned}
$$

which is a contradiction. Thus we proved (21). Since ε is arbitrary, from (21), we have $\lim _{\mathrm{n} \rightarrow \infty}\left\|\mathrm{X}_{\mathrm{n}}-\mathrm{W}\right\|=0$.

2.1 Remark:

If in theorem (2.1), $\beta_{\mathrm{n}}=0, b_{\mathrm{n}}=0$, then we obtain a result that deals with the Mann iterative process with errors.

Now, we state the Ishikawa and Mann iterative process with errors for the Φ-hemi contractive operators.

2.2 Theorem:

Let X be a uniformly smooth Banach space, let K be a non empty bounded closed convex subset of X and $\mathrm{T}: \mathrm{K} \longrightarrow$ K be a Φ-hemi-contractive operator. Let w be a fixed point of T and let for $\mathrm{x}_{0} \in \mathrm{~K}$ the Ishikawa iteration sequence $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ be defined by
$\mathrm{y}_{\mathrm{n}}=\overline{\beta_{\mathrm{n}}} \mathrm{x}_{\mathrm{n}}+\beta_{\mathrm{n}} T \mathrm{x}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$
$\mathrm{x}_{\mathrm{n}+1}=\overline{\alpha_{\mathrm{n}}} \mathrm{x}_{\mathrm{n}}+\alpha_{\mathrm{n}} \mathrm{T} \mathrm{y}_{\mathrm{n}}+\mathrm{a}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}, \mathrm{n} \geq 0$
where $\left\langle\mathrm{u}_{\mathrm{n}}\right\rangle,\left\langle\mathrm{v}_{\mathrm{n}}\right\rangle \subset \mathrm{K},\left\langle\alpha_{\mathrm{n}}\right\rangle,\left\langle\beta_{\mathrm{n}}\right\rangle,\left\langle\mathrm{a}_{\mathrm{n}}\right\rangle,\left\langle\mathrm{b}_{\mathrm{n}}\right\rangle$ are sequences as in theorem (2.1) and
$\overline{\alpha_{n}}=1-\alpha_{n}-a_{n}$,
$\overline{\beta_{n}}=1-\beta_{n}-b_{n}$.
Then $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ convereges strongly to the unique fixed point of T.
proof: Obviously $\left\langle x_{n}\right\rangle$ and $\left\langle y_{n}\right\rangle$ are both contained in K and therefore, bounded. Since T is Φ-hemi-contractive, then ($\mathrm{I}-\mathrm{T}$) is Φ-strongly quasi accretive.
The rest of the proof is identical the proof of theorem 2.1 with $\mathrm{y}=\mathrm{w}$ and $\mathrm{T}=\mathrm{S}$, and is therefore omitted.

2.2 Remark:

If in theorem (2.2), $\beta_{\mathrm{n}}=0$ and $\mathrm{b}_{\mathrm{n}}=0$, then we obtaine the corresponding result for the Mann iteration process with errors.

References

1. XU.Y., (2005). Iterative Procresses with Random Errors for Fixed Point of ϕ-Pseudo Contractive Operators, J. Math. Kolloq 59:87-97.
2. L.Z., U.J.S., and Kang, J.M., (2005). Strongly Convergence and Pseudo Stability for Operators of the ϕ-Accretive Type in Uniformly Smooth Banach Space, J.Math. Kolloq 59: 29-40.
3. L.L.S., (1995), Ishikawa and Mann Iterative Process with Errors for Non Linear Strongly Accretive Mapping in Banach Spaces, J. Math. Anal. Appl. 194: 114-125.
4. XU.Y., (1998). Ishikawa and Mann Iterative Process with Errors for Non Linear Strongly Accretive Operator Equations, J. Math. Anal. Appl. 224: 91-101.
5. C.L.B. and U.J.S., (2004). Ishikawa Iterative Processes with Errors for Approximations of Zeros of Strongly Accretive Operator Equations, Polonia LVIII :27-36.
6. Z.XU and Z.W., (2006). Ishikawa Iterative Sequence for the Generalized Lipschitzian and Ф-Strongly Accretive Mapping in Banach Spaces, J. Math. 29: 203-213.
7. R.A., Acu, A.M., and A.M., (2008). Steepest Descent Approximations in Banach Space, General Math. 16: 133-143

زينة حسين معيبد
 النكرار اشيكاوا تقتزب بقوة الى الحل الوحيد للمعادلة Tx = f . إحدى نتائجنا هي لتحسين وتوسيع بعض النتائج حول نكرار اشيكاوا لانواع من الانكماشية المعلنة لاى آخرين كثيرين.

[^0]: _* Corresponding author at: University of Baghdad College of Education for pure Science. E-mail address:

