
The First Scientific Conference the Collage of Sciences 2013

188

Create A New Digital Signature Scheme Using Double Hush

Function Algorithms

 خوارزميات دوال تقطيع مزدوجة باستخدام جديدة توقيع رقمي طريقة إنشاء

Hameed Abdul-Kareem Younis* Israa Mahmood Hayder** Hussain A. Younis **

hameedalkinani2004@yahoo.com dd.swara@yahoo.com hussain394@yahoo.com

* Computer Science Dept., College of Science, University of Basrah, Basrah, IRAQ.

** Computer Science Dept., College of Science, Sam Higginbottom Institute of Agriculture,

Technology & Sciences (Deemed to -be- University), Allahabad, Uttar Pradesh, India.

Abstract
 The rapid development of information and network technologies, networks already become an

important part of peoples’ live. People not only can get more information by net, but also can find

new ways to live and new business work. For example, network bank, online chat, net-shopping, …

etc. Along with the new things' appearance, the problem of information security becomes more

important. Something more than authentication is needed. The most attractive solution to this

problem is the digital signature which is analogous to the handwritten signature.

 Digital signature technology more and more shows its important position in information security.

The signature is formed by taking the hash of the message and encrypting the message. Digital

signatures are used to detect unauthorized modifications to data and to authenticate the identity of

the signatory. In addition, the recipient of signed data can use a digital signature as evidence in

demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. In

this paper, an algorithm for signing text file has been presented. The famous RSA public key

algorithm and the most popular hash function algorithms (SHA-1 & MD5) are used to generate the

digital signature of a text file. The algorithm consist of two parts: signature generation and

signature verification. Many experiments tested to examine the security of the presented work.

Keywords: Digital Signature, Hush Function, Rivest , Shamir and Aldman (RSA), SHA-1 & MD5.

 -الخلاصة:
 . فإٌاط لاح١اج إٌاط جضءا ٘اِا ِٓ أصثحد اٌشثىاخاٌشثىاخ، فٟ ذىٌٕٛٛج١ا اٌّعٍِٛاخ ٚ ٔظشاَ ٌٍرطٛس اٌسش٠ع

 عٍٝ سث١ً اٌّثاي، ٌٍع١ش ٚأعّاي جذ٠ذج. إ٠جاد طشق جذ٠ذج ٌٚىٓ أ٠ضا ٠ّىٓ ،٠حصٍْٛ فمظ عٍٝ ِعٍِٛاخ ِٓ شثىح الأرشٔد

 ، ٌزٌه أصثحد أخشٜ أش١اء جذ٠ذج ظٙٛس جٕثا إٌٝ جٕة ِع اٌخ.اٌّثاششج، ٚاٌرسٛق ِٓ خلاي إٌد ، ... اٌّحادثح ٚ اٌشثىاخ اٌثٕى١ح

 فأصثحد ٕ٘ان حاجح إٌٝ شئ ِٛثٛق أوثش ِٓ اٌّصادلح ٚواْ اٌحً الأوثش ِلائّح ٌٙزٖ أوثش أ١ّ٘ح. أ١ِٕح اٌّعٍِٛاخِشىٍح

 اٌّشىٍح ٘ٛ اٌرٛل١ع الاٌىرشٟٚٔ اٌزٞ ٠ّاثً ذٛل١ع خظ ا١ٌذ.

ِٓ خلاي اخز ٍِخص اٌشساٌح ٌٍشساٌح اٌّشاد اٌرٛل١ع ٠رىْٛ. ذىٌٕٛٛج١ا اٌرٛل١ع اٌشلّٟ ذشىً جضء ُِٙ ِٓ أ١ِٕح اٌّعٍِٛاخ

. ٠ٛ٘ح اٌّٛلع عٍٝٚاٌّصادلح خ غ١ش ِخٛي ٌٍث١أاخ ذعذ٠لا ٌٍىشف عٓ اٌرٛال١ع اٌشل١ّح ٚذسرخذَ إسساٌٙا ِٚٓ ثُ ذشف١ش٘ا.

تالإضافح ٌزٌه, ِسرٍُ اٌث١أاخ اٌّٛلعح ٠ّىٓ أْ ٠سرخذَ اٌرٛل١ع اٌشلّٟ وذ١ًٌ فٟ الاحرجاج إٌٝ اٌطشف اٌثاٌث اٌزٞ عٕح اٌرٛل١ع

 اٌش١ٙشج RSAاٌرشف١ش سص١ِحخٛا ٠رُ اسرخذاَ ٍِف ٔصٟ. ٌرٛل١ع خٛاسص١ِح ذُ ذمذ٠ُ، فٟ ٘زا اٌثحثتأٔٗ ٌٚذ تاٌٌّٛذ اٌّذعٝ.

 ٘زٖ اٌخٛاسص١ِح ذرىْٛ ِٓ جضئ١ٓ: ٍِف ٔصٟ. ِٓ ذٛل١ع سلّٟ(لإٔشاء SHA-1 ٚ MD5) راخ اٌّفراح اٌعاَ ٚخٛاسص١ِاخ

 .أجش٠د عذج ذجاسب لاخرثاس أ١ِٕح اٌخٛاسص١ِحٌٍرحمك ِٓ صحح اٌرٛل١ع. اٌرٛل١ع ٚاٌثأٟ الأٚي ٌر١ٌٛذ

mailto:hameedalkinani2004@yahoo.com
mailto:dd.swara@yahoo.com
mailto:hussain394@yahoo.com

The First Scientific Conference the Collage of Sciences 2013

189

1. Introduction
 A digital signature algorithm authenticates the integrity of the signed data and the identity of the

signatory. It may also be used in proving to a third party that data was actually signed by the

generator of the signature. Is intended for use in electronic mail, electronic data interchange,

software distribution, and other applications that require data integrity assurance and data origin

authentication.

The digital signature is analogous to the handwritten signature. It must have the following

properties:

 It must verify the author and the date and time of signature.

 It must authenticate the contents at the time of signature.

 It must be verifiable by third parties, to resolve disputes.

 Thus, the digital function includes the authentication function.

On the basis of these properties, we can formulate the following requirements for a digital

signature:

 The signature must be a bit pattern that depends on the message of being signed.

 The signature must use some information unique to sender, to prevent both forgery and

denial.

 It must be relatively easy to produce the digital signature.

 It must be relatively easy to recognize and verify the digital signature.

 It must be computationally infeasible to forge a digital signature, either by constructing a

new massage for an existing digital signature or by constructing a fraudulent digital signature for a

given message.

 It must be practical to return a copy of the digital signature in storage.

A secure hash function, embedded in a scheme such as that of figure satisfies these requirements. In

this work, an implementation of the digital signature algorithm is proposed where a hash function,

and a RSA algorithm is used.

2. Hash Function [1], [2]
 A hash function is a (mathematical) function which receives an input of arbitrary length and

returns a function value (hash value) of a fixed length (usually 128 or 160 bits). Its which are used

in cryptography should be called one-way hash functions. The hash function itself must be public,

i.e., everyone should be able to (efficiently) calculate the hash value for a given input. Conversely,

however, it must be (computationally) infeasible to find an input for a given value which possesses

exactly the predetermined value as hash value (this is referred to as a one-way characteristic). In

cryptographic practice, generally hash functions must satisfy a second, more stringent requirement:

it must be impossible to find two values which are mapped by the hash function onto the same hash

value (collisions), since otherwise it would be possible to replace an already signed message after

the event. Hash functions are especially used in connection with digital signatures. Here, for reasons

of efficiency, the hash value of a message is signed instead of the message itself. The hash value H

= H(M) of an original message M, is used to check, if the received message M' has been changed.

In our proposal algorithm, we will used the most practical hash function algorithm (SHA-1& MD5).

Now we will describe these algorithm in brief:

2.1 Secure Hash Algorithm (SHA-1) [3], [2]
 The Secure Hash Algorithm (SHA) was developed by National Institute of Standards and

Technology (NIST) and published as a federal information processing standard (FIPS 180) in 1993;

a revised version was issued as FIPS 180-1 in 1995 and is generally referred to as (SHA-l). This

algorithm has been well taken and appreciated by experts.

mk:@MSITStore:C:/Users/dell/Desktop/CrypTool/CrypTool-en.chm::/signatur.html

The First Scientific Conference the Collage of Sciences 2013

190

SHA-1 Logic

The algorithm takes as input a message with length of less than 2
64

 bit. And produces as output is

160-bit message digest. The input is processed in 512-bit blocks.

The algorithm steps are:

Step 1: Append padding bits. The message is padded so that its length is congruent to 448 modulo

512.

Step 2: Append length. A block of 64-bit is appended to the message. This block contain length of

the original message.

Step 3: Initialized buffer. The buffer can be represented as five 32-bit registers (A, B,C, D, and E).

These registers initialized with the following values:

Step 4: Process message in 512-bit blocks. This step consist of four rounds of processing of 20

steps each. Figure (1) illustrate the logic of this step.

Figure (1): The SHA-1 compression function.

Where Yq: the current 512-bit being processed.

CVq: 160-bit, the output of the previous block. CV0=(ABCDE).

CVq+1: 160-bit, the output of the current block.

A=67 45 23 01 D=10 32 54 76

B=ef cd ab 89 E=c3 d2 el f0

C=98 ba dc fe

The First Scientific Conference the Collage of Sciences 2013

191

Wt: a 32-bit word derived from the current 512-bit input block. The first 16

values of Wt are taken directly from the current block. The remaining values are

defined as follows:

 Wt = S
1
 (Wt-16 XOR Wt-14 XOR Wt-8 XOR Wt-3) 16≤t≤79 …(1)

S
k
: rotation of the 32-bit argument by k-bits to the left. +: addition module 2

32
.

K: constant. Table (1) explain K values.

Table (1): K values.

Each steps from the 80 steps (4-round * 20-step) has the following form:

 A,B,C,D,E  (E+f(t,B,C,D)+S
5
(A)+Wt+Kt),A, S

30
(B),C,D) . . . (2)

 The four rounds have a similar structure, but different logical functions, which referred as f1, f2,

f3, and f4. Table (2) explain the logic of the four functions.

Tab1e (2): Logic of SHA-1 functions.

Step 5: Output. After all L 512-bit blocks have been processed, the output from the last stage is the

160-bit message digest (CVL).

2.2 MD5 Message Digest Algorithm [2]
 The MD5 message-digest algorithm is simple to implement, and provides a "fingerprint" or

message digest of a message of arbitrary length. It is conjectured that the difficulty of coming up

with two messages having the same message digest is on the order of 2
64

 operations, and that the

difficulty of coming up with any message having a given message digest is on the order of 2
128

operations. The MD5 algorithm has been carefully scrutinized for weaknesses. It is, however, a

relatively new algorithm and further security analysis is of course justified, as is the case with any

new proposal of this sort.

The First Scientific Conference the Collage of Sciences 2013

192

MD5 Logic

Step 1: Append Padding Bits. The message is "padded" (extended) so that its length (in bits) is

congruent to 448 modulo 512. That is, the message is extended so that it is just 64 bits shy of being

a multiple of 512 bits long. Padding is always performed, even if the length of the message is

already congruent to 448 modulo 512. Padding is performed as follows: a single "1" bit is appended

to the message, and then "0" bits are appended so that the length in bits of the padded message

becomes congruent to 448, modulo 512. In all, at least one bit and at most 512 bits are appended [4]

.

Step 2: Append Length. A 64-bit representation of b (the length of the message before the padding

bits were added) is appended to the result of the previous step. In the unlikely event that b is greater

than 2
64

, then only the low-order 64 bits of b are used. (These bits are appended as two 32-bit words

and appended low-order word first in accordance with the previous conventions). At this point, the

resulting message (after padding with bits and with b) has a length that is an exact multiple of 512

bits. Equivalently, this message has a length that is an exact multiple of 16 (32-bit) words. Let

M[0... N-1] denote the words of the resulting message, where N is a multiple of 16.

Step 3: Initialize MD Buffer. A four-word buffer (A,B,C,D) is used to compute the message

digest. Here each of A, B, C, D is a 32-bit register. These registers are initialized to the following

values in hexadecimal, low-order bytes first:

word A: 01 23 45 67

word B: 89 ab cd ef

word C: fe dc ba 98

word D: 76 54 32 10

Step 4: Process Message in 16-word Blocks. We first define four auxiliary functions that each

take as input three 32-bit words and produce as output one 32-bit word. Figure (2) illustrate the

logic of this step.

F(X,Y,Z) = (XY) v (not(X) Z)

G(X,Y,Z) = (XZ) v (Y not(Z))

H(X,Y,Z) = X xor Y xor Z

I(X,Y,Z) = Y xor (X v not(Z))

The First Scientific Conference the Collage of Sciences 2013

193

 In each bit position F acts as a conditional: if X then Y else Z. The function F could have been

defined using + instead of v since XY and not(X)Z will never have 1's in the same bit position). It is

interesting to note that if the bits of X, Y, and Z are independent and unbiased, then each bit of

F(X,Y,Z) will be independent and unbiased. The functions G, H, and I are similar to the function F,

in that they act in "bitwise parallel" to produce their output from the bits of X, Y, and Z, in such a

manner that if the corresponding bits of X, Y, and Z are independent and unbiased, then each bit of

G(X,Y,Z), H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased. Note that the function H is

the bit-wise "xor" or "parity" function of its inputs [5].

This step uses a 64-element table T[1... 64] constructed from the sine function. Let T[i] denote the i-

th element of the table, which is equal to the integer part of 4294967296 times abs(sin(i)), where i is

in radians.

Do the following:

/* Process each 16-word block. */

For i = 0 to N/16-1 do /* Copy block i into X. */

For j = 0 to 15 do

Set X[j] to M[i*16+j].

end /* of loop on j */

/* Save A as AA, B as BB, C as CC, and D as DD. */

AA = A

BB = B

CC = C

DD = D

Figure (2): The MD5 compression function.

The First Scientific Conference the Collage of Sciences 2013

194

/* Round 1. */

/* Let [abcd k s i] denote the operation a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]

[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]

[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]

[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

/* Round 2. */

/* Let [abcd k s i] denote the operation a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]

[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]

[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]

[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

/* Round 3. */

/* Let [abcd k s t] denote the operation a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]

[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]

[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]

[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

/* Round 4. */

/* Let [abcd k s t] denote the operation a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]

[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]

[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]

[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

/* Then perform the following additions. (That is increment each of the four registers by the value it

had before this block was started.) */

A = A + AA

B = B + BB

C = C + CC

D = D + DD

end /* of loop on i */

Step 5: Output. The message digest produced as output is A, B, C, and D. That is, we begin with

the low-order byte of A, and end with the high-order byte of D. This completes the description of

MD5.

2.3 The RSA Procedure [4]
 As early as 1978, R. Rivest, A. Shamir, L. Adleman introduced the most important asymmetric

cryptography procedure to date. It encrypt and decrypt numbers M less than n. The following

algorithm explain the RSA work:

The First Scientific Conference the Collage of Sciences 2013

195

 The size of an RSA key pair is commonly considered to be the length of the modulus n in bits.

The corresponding RSA private key consists of the same modulus N and a private key exponent d

that depends on N and the public key exponent e(d is the multiplicative inverse of e). Thus, the RSA

private key is the pair of values (N, d) and is used to generate digital signatures. In order to provide

security for the digital signature process, the two integers p and q, and the private key exponent d

must be kept secret. The modulus N and the public key exponent e may be made known to anyone.

2.4 Signing with Hash Functions and RSA Encryption Algorithm

 Rather than signing the actual document, the sender now first calculates the hash value of the

message and signs this. The recipient also calculates the hash value of the message (the algorithm

used must be known), then verifies whether the signature sent with the message is a correct

signature of the hash value. If this is the case, the signature is verified to be correct. This means that

the message is authentic, because we have assumed that knowledge of the public key does not

enable you to derive the secret key. However, you would need this secret key to sign messages in

another name. Some digital signature schemes are based on asymmetric encryption procedures, the

most prominent example being the RSA system, which can be used for signing by performing the

private key operation on the hash value of the document to be signed this scheme called RSA digital

signature. The following figure explain the basic steps of RSA digital signature.

The First Scientific Conference the Collage of Sciences 2013

196

Figure (3): The basic steps of RSA digital Signature.

 Our work consist of the following two algorithms:

2.4.1 Signature Generation
 In this algorithm, the sender sign his message by using his private key and send it to the recipient

as the following steps:

1-Message Choosing: Determine the message to sign it. Here, a text file has been as a message.

2-Hash Function: We use SHA-1 & MD5 algorithms to compress the message and compute the

hash code H from each , hash code consist of 160-bit obtain from SHA-1 and 128-bit from MD5 .

After that we take these hash codes and use XOR operator between this codes to produce hash code

(H) of 160-bit

3- Key Generation: Choose two prime numbers p, q. Compute the RSA modulus N, such that

N=p*q. Then, compute Euler phi function, where: phi=(p-1)*(q-1). Select the public key e, where

gcd (e, phi)=1, and 1<e<phi. Finally, compute the secret key d which is the multiplicative inverse

(e
-1

) of e. The d value computed by using extended Euclid algorithm as the following [1]:

where d = B3.

4- Pre-encryption: In this step, we initialize the hash code by take the hash code (H) result from

step one to produce vector VEC of 40 byte (in hexadecimal).Then we will split this vector to tow

vectors each of them contain 20 byte and use the XOR operator between them to produce

Signvector1 of 20 byte (in hexadecimal) then convert the values to decimal to produce Signvector

of 10 byte.

The First Scientific Conference the Collage of Sciences 2013

197

5- Sign Computation: In this step, we use the private key (d) of the sender (signatory) to encrypt

each number M in signvector as the following:

 C= mod N . . . (3)

to obtain the 10 numbers sign vector (sign).

6-Sign Appending: The obtained sign is appended in the bottom of the signed text and send to the

recipient of that text.

All these steps are shown in Figure (3).

2.4.2 Signature Verification
 In this algorithm, the recipient do the steps to verify the sign in the received message by using the

public key of the sender:

1-Signature Authentication: The received signature numbers are decrypted first by the public key

(e) of the sender(signatory). As the following equation:

M= mod N …(4)

Then each obtained block is converted back to its original two bytes. .

2- Hash Code Comparison (Integrity): Compute the hash code of the received message (text) again

and compare its hash code with the received hash code (result of step l). If the two codes are

equivalent, then we obtain the following results:

a. The message has not been modified during the transmission, since its hash code equal the hash

code of the signed message.

b. Message authentication, since its delivered by the public key of the sender.

c. No source-repudiation, since the public key of the sender used to produce the correct hash code

for the received message. This figure bellow explain these steps of digital signature algorithm:

The First Scientific Conference the Collage of Sciences 2013

198

Figure (4): The digital signature algorithm.

Massage digest

Encryption algorithm

Start

Enter message

Hash function

SHA-1 XOR MD5

 Pre-encryption

RSA encryption

algorithm

Encrypted message

Digital signature

End

The First Scientific Conference the Collage of Sciences 2013

199

3. Experimental Results
 In the present work, different experiments has been tested to explain how can we sign a text file

by RSA digital signature. We use the following text as a message to be signed:

Experiment 1

 In this experiment, signature generation has been tested. First we compute the hash code H(1) for

our text by using SHA-l hash algorithm. We obtain the following 160- bit:

H(1) = (90 2A 9A 99 D5 79 46 AC 63 26 1C D4 DE 12 BC 98 E2 57 FD 9F)Hex. And then we

compute the hash code H(2) for the same text by using MD5 hash algorithm. We obtain the

following 128- bit:

H(2) = (71 2D 78 E7 A1 D4 6E C4 62 79 82 1C DA 1A C9 1C) Hex . Then, we compute the hash

code H by taking the two hash codes H(1) and H(2) and make the XOR operator between them we

obtain the following 160- bit:

H=(6F D5 65 66 5B AB C1 D4 3D 0D 8D EF 43 94 C1 7D C4 32 CB 7C) Hex .

Next, we will generate the key that will be used in RSA algorithm following parameters for the key

generation of RSA algorithm:

- p= 5419,q= 8681,

- Compute N=p*q= 5419* 8681=47042339.

- Phi =5418*8680= 47028240.

- Select the public key e=37.

- Compute the private key d by using extended Euclid algorithm. We obtain

d=44486173.

In the pre-encryption step, we obtain:

Vec=[A2 3C EC F0 27 48 D2 71 34 B5 78 39 19 15 A3 77 27 11 73 46].

And Signvector1 = [442 060 516 520 039 072 490 113 052 461 120 057 025 021 443 19],

In the Sign computation step, we obtain the following:

Signvector2 = [058 031 474 121 006 000 444 490 430 445 057 025 021 443 119].

The generated signature is appended to the text file to obtain the signed message.

The First Scientific Conference the Collage of Sciences 2013

200

Experiment 2

 In this experiment, we verify the message by the public key of the sender (e). We find that the

hash code of the received message and the hash code of the signature both are equal: [A2 3C EC F0

27 48 D2 71 34 B5 78 39 19 15 A3 77 27 11 73 46]. So, the signature is correct and the message is

authenticated and not altered during the transmission. If we use another public key such as e=36.

Then, we obtain the following hash code: [B2 3D AC F0 22 33 A2 71 34 B5 12 39 69 55 33 77 27

11 73 11]. Which is very different from the original hash code. So, the received message is not

authorized and the signature is incorrect.

Experiment 3

 In this experiment, we test the sensitivity of the hash function algorithms SHA- 1 and MD5 by

altering only 1-byte of the message during the transmission. We compare the hash code of our text

and the hash code of the following text (only remove’6’ from the first line):

 We obtain the following hash codes results:

Hash code result from SHA-1 algorithm =(65 53 5B 7A 1C F9 CF 94 82 28 74 19 02 5C D0 ED

3B E4 EC E4) Hex.

Hash code result from MD5 algorithm =(6E 77 96 49 2A E6 94 1F 73 9F 9E 37 8B 87 A5 0E) Hex.

In addition any altered or change in message leads to change in sending time that is mean the

message was forged.

The First Scientific Conference the Collage of Sciences 2013

201

4. Conclusions

 Our proposed algorithm for digital signature provided a high level of reliability and security of

data transmitted within the network computers.

The presented digital signature algorithm has the following properties:

1. Only the sender can sign his document (with his private key). Everyone can verify the signature

(with the sender public key).

2. The recipient is sure that the sender signed the message.

3. Message cannot be altered since that would be detected through verification.

4. The recipient of the message can prove that the sender had actually send the message.

5. References

[1] William Stalling, "Cryptography and Network Security, Principles and Practice", Third Edition,

 Prentice Hall, 2003.

[2] R. Rivest, Shamir A. and Adleman L., ”A Method for Obtaining Digital Signatures and Public

Key Cryptosystems”, Commun. ACM, Vol 21 , pp. 120-126, April 1978.
[3] Aiad Ibraheem Abdul-Sada, "Text File Digital Signature", Journal of AL-Qadisiya for

Computer Science and Mathematics, Vol. 2, No. 2, pp. 128-139, Qadisiya, Iraq, 2010.

[4] R. Rivest , "The MD5 Message-Digest Algorithm", MIT Laboratory for Computer Science and

 RSA Data Security, Inc., April 1992

[5] Chen Tianhuang, Xu Xiaoguang, " Digital Signature in The Application of E-Commerce

Security", 2010 International Conference on E-Health Networking, Digital Ecosystems and

Technologies, China, 2010.

