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Abstract: 

 
          In this paper it is formulated the Hartree-Fock equations for multi-electron systems in terms 

of two electron density function   (r1,r2) in order to solve Hartree-Fock equations in the algebraic 

approximation which called Hartree-Fock-Roothaan (H-F-R) method using slater type atomic 

orbitals published by ref. [31] for Be atom and ref. [32] for B
+1

ion . The radial expectation values of 

one particle    
  , two particles       

     
   and inter particles     

   where (n=-1,-2, 1,2) of  

Be atom and B
+1

  ion in its ground state are calculated using Hartree-Fock wave function with 

analysis the one electron radial density function D(r1) and inter electron density function f(r12) for 

each shell. Electron density at the nucleus      also evaluated for each shell and for total systems , 

using partitioning technique ,were in these systems there are six shells : KαKβ(K(1S)),αLα (KL 

(3S)), βLα (KL (1S)), KαLβ (KL (3S)), KβLβ(KL(3S)), LαLβ (L(1S)) 
Keywords: Hartree-Fock-Roothaan method, slater type orbitals, two electron density function, 

radial expectation values, electron density at the nucleus 

 

  : الخلاصة

  فىك للأًظوت هخؼذدة الالكخزوًاث فً صٍغت دالت كثافت الزوج الالكخزوًً  –فً هذا البحث حن صٍاغت هؼادلاث هارحزي 

(r1,r2)    رووثاى باسخخذام اوربخالاث -فىك-فىك فً الخقزٌب الجبزي الخً حسوى طزٌقت هارحزي –لغزض حل هؼادلاث هارحزي

Bلاٌىى البىروى [32] وهصذر Beلذرة البزٌلٍىم  [31]ًىع سلٍخز الوٌشىرة بىاسطت هصذر
+1

.القٍن الوخىقؼت القطزٌت لجسٍن    

   واحذ 
    , ولجسٍوٍي    

     
    , وللوسافت بٍي جسٍوٍي    

واٌىى  Be( لذرة البزٌلٍىم   (n=-1,-2,1,2حٍث   

Bالبىروى 
+1   

هغ ححلٍل دالت الكثافت القطزٌت لالكخزوى  فً الحالت الأرضٍت قذ حن حسابها باسخخذام الذالت الوىجٍت لهارحزي فىك

.الكثافت الالكخزوًٍت ػٌذ الٌىاة اٌضا حن حسابها للأًظوت الوذروست باسخخذام حقٌٍت الخجزئت حٍث    f(r12)واحذ ودالت الوسافت البٌٍٍت 

 ج قشزاث هً :ححخىي هذٍ الأًظوت ػلى س

 

طريقة هارتري فوك روثان, اوربتالات نوع سليتر, دالة كثافة الزوج, القيم المتوقعة القطرية, الكثافة عنذ  الكلمات المفتاحية:

النواة
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1-Introduction 
 

Hartree-Fock theory  is one of the simplest approximate theories for solving the many-body 

problem. [1]. Atomic Hartree–Fock equations are solved usually by two methods, that is, a numerical 

method and an analytic method. A numerical Hartree–Fock (NHF) method has been formulated by 

Froese Fischer , and it can give very accurate results. On the other hand, an analytic Hartree–Fock 

method has been developed by Roothaan using the Rayleigh–Ritz variational procedure, and is often 

called the Hartree–Fock–Roothaan (HFR) method. The HFR method can be applied to polyatomic 

molecules because wave functions are represented as basis set expansions. As the basis set, Slater-type 

functions (STFs) or Gaussian-type functions (GTFs) are usually employed. [2]. This method is based 

on the mean-field approximation. This approximation implies that interelectron coulomb repulsion is 

accounted for by means of an average integration of the repulsion term, i.e. the interaction of one 

electron with the others are accounted for as the interaction of this electron with an average field 

induced by other electrons. The electron correlation (interaction between electrons) for the electrons of 

opposite spin is completely neglected . A certain amount of electron correlation is already considered 

within the HF approximation, found in the electron exchange term describing the correlation between 

electrons with parallel spin[3]       

 

2-Theory and wave function 

 

In the Hatree-Fock approximation, the many body wave function               is approximated by a 

single slater determinant .We can write wave function as [4,5,6], 

                 

 

     
 

√  
|

                   

                   
 

      
 

       
 

      

|           ….(1) 

 

The factor 
 

√   
 ensures the normalization condition on the wave function . Here the variables xi include 

the coordinates of spin and space ,         terms are called spin orbitals and these spin orbitals are 

orthonormal functions, which are spatial orbitals times a spin functions. The wave function      in 

equation (1) is clearly antisymmetric because interchanging any pair of particles is equivalent to 

interchanging two columns and hence changes the sign of the determinant. Moreover, if any pair of 

particles are in the same single-particle state, then two rows of the Slater determinant are identical and 

the determinant vanishes, in agreement with the Pauli exclusion principle.  

The one-electron orbitals used to construct the    each consist of a radial function       , a spherical 

harmonic          and a spin function    
     as [7,8,9], 

            
        

               ….(2) 
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The spatial part of one-electron spin orbital may be expressed as linear combination of Slater type 

orbital called basis functions,  

 

            ∑                        …(3) 

 

Where      the expansion coefficient determined by minimizing the energy using one of several 

procedures and this process is continued until  ̂   and      converge, at which point a self-consistent 

field (SCF) has been achieved. This usually yields the lowest-energy single determinant within the 

basis .    is a Slater type orbital.  

 The most frequently used basis functions for atomic calculations are Slater type orbitals (STO) defined 

as [10,11,12], 

 

     
                  

          …(4)             

 

The radial part is:  

 

               
 

  [     ] 
 

                                        …(5) 

 

Here,    > 0 is the orbital exponent. The quantity n occurring in eq. (5) is a positive principal quantum 

number of (STO). The determination of nonlinear parameters n and   is very important for describing 

the atomic orbitals.  
 

3-Expectation values  

3-1 Expectation value for one-electron  

Expectation value for one-electron 〈  
 〉 is determined by the following expression [13,14,15], 

 

〈  
 〉  ∫        

  

 
     …(6) 

Where n integer number  (         ,      is The one-electron radial density function which 

represents the probability density function of finding an electron at a distance between r1 and r1 + dr1 

from the coordinate origin ( i.e  nucleus) . Though D(r1) is a one-dimensional condensation of the wave 

function             ) , radial physical properties which depend solely on the radial variable r are 

completely determined by the knowledge of D(r1). The single-electron radial density D(r1) is obtained 

from integration over two–electron radial density function D(r1, r2)  and defined as[16,17], 

 

      ∫            
 

 
     …(7) 

 

Where the two-electron radial density function         is given by [18], 
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 ∫|             |                                    …(8) 

                        …..(9) 

 

Where    is the solid angle .The two-electrons radial density represents the probability density that one 

electron is located at a radius r1 and the other electron at a radius r2 simultaneously. The function 

         is meaningful only when r1   0 and r2   0, and for such values of r1 and          0.  

The two-electron radial density          can be written as [19].  

         = ∫∫   (r1,r2)   
   

                 ..(10) 

 

Where   (r1,r2) is the two electron density function and contains all of the information necessary to 

calculate the energy and many properties of the atom. It is obtained by integrating the spin and spatial 

coordinates of all electrons except two electrons (   ) from the N-particle density matrix [20], so the 

two-electron reduced density matrix           is then given by [21],  

 

         
      

 
∫ ∫|              |

                 ….(11) 

 

Where   =        combined space and spin variable with                            [22]. Two 

electron density function gives the probability that one electron will be found at  1 and another at  2 of 

N electrons [23]. 
      

 
  represents the number of electron pairs which can be obtained by integrating 

the second-order reduced density matrix, so           is normalized to the number of independent 

electron pairs  within the system as [24,25].   

 

∫∫                 
      

 
         ...(12) 

 

3-2 Two particle expectation value 

Two particle expectation value 〈  
   

 〉 is defined as [26].  

 

 〈  
   

 〉  ∫ ∫           
   

   
 

 

 

 
      …(13) 

 

3-3 Inter particle expectation value 

Inter particle expectation value 〈    
 〉  is given by the relation [27]. 

 

                                  〈    
 〉  ∫          

      
 

 
            …(14)                                

 

where  r12  represents the distance between two-electrons.        is radial electron-electron distribution 

function       , which describes the probability of  locating  two electrons separated by distance     

from each other, was first introduced by Coulson and Neilson in their study of electron correlation  for 



The First Scientific Conference the Collage of Sciences 201 3 

 

48 

He(1S ) in the ground state.  The electron-electron distribution function        plays a central role in 

the discussion of correlation holes in many electron systems .[27,28].Pair distribution function can be 

written as [29]. 

 

             [∫    
   

 
  ∫               ∫      ∫              

      

      

 

   

      

      
]…(15) 

 

4-Electron density at the nucleus      

 

The electron density at the nucleus can be evaluated using the following form[30]. 

 

      [
      

    
]
   

      

..

5.Result and discussion 

Using Mathcad 2001i program , we have calculated the expectation values of one electron 〈  
 〉 , 

expectation values for two-electron 〈  
   

 〉  and expectation values for inter-electron 〈   
 〉 , also 

analysis one electron radial density function D(r1 ) and radial electron-electron distribution function. 

       for Be atom (Z=4) and B
+1

 ion (Z=5) in their ground states. On the  other hand it should be 

mentioned that all numerical calculations have been performed in the Hartree-Fock frame work using 

Ref. [31] for atomic data of Be atom and Ref. [32] for atomic data of B
+1

 ion where in these systems 

there are six shells: KαKβ(K(1S)),αLα (KL (3S)), βLα (KL (1S)), KαLβ (KL (3S)), KβLβ(KL(3S)), 
LαLβ (L(1S)) .Table (1) shows the calculated one electron expectation values and standard deviation 

for studied systems. Table (2) represents expectation values for two electrons  and table (3) represents 

expectation values for inter electrons and standard deviation of four electron systems. we noticed for 

each electronic individual shell and for total system, the expectation values for one electron and two 

electrons and inter electrons when n takes negative values increases as atomic number Z increases and 

vice-versa when n takes positive values, also it is noticed the expectation values for K (1S)-shell is 

larger than those for L(
1
S)-shell when n is negative and vice-versa when n is positive ,     

   and  

    
     

   for KL(
1
S) when n negative values is larger than those for KL(

3
S)-shell and vice-versa 

when n positive values. Standard deviation      and     decrease as Z increases . 
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Table(1) one particle expectation value    
   and standard deviation    for Be atom and B+ve 

for each individual electronic shell and for total system .

 

*the total system for 〈  
 〉 is given by  1/6 [K(

1
S)  + L(

1
S)+ KL(

1
S)+3 KL(

3
S)] 

Table(2) two particles expectation values     
     

   for Be atom and B+ve for each individual 

electronic shell and for total system . 

    

 

 

 

 

 

 

 

 

 

Z shell 〈  
  〉 〈  

  〉 〈  
 〉 〈  

 〉     

4 K(1S) 27.68783 3.67641 0.41622 0.23507 0.24865 

 L(1S) 1.12016 0.52805 2.64728 8.42233 1.18610 

 
KL(1S)   

KL(3S) 
14.40400 2.10223 1.53175 4.32870 1.40799 

 total 14.40400 2.10223 1.53175 4.32870 1.17778 

5 K(1S) 44.60768 4.67920 0.32527 0.14268 0.19204 

 L(1S) 2.41502 0.78015 1.79819 3.82590 0.76968 

 KL(1S)   

KL(3S) 
23.51136 2.72967 1.06173 1.98429 0.92575 

 
total 23.51131 2.72967 1.06173 1.98429 0.77746 

Z shell     
      

        
      

        
     

       
     

   

4 K(1S) 766.61605 13.51602 0.17324 0.05526 

 L(1S) 1.25476 0.27884 7.00808 70.93572 

 KL(1S)  54.01511 2.14174 1.11438 2.02234 

 KL(3S) 8.01447 1.74094 1.08933 1.93729 

 total 140.98822 3.52657 1.92728 13.13753 

5 K(1S) 1989.83611 21.89478 0.10580 0.02036 

 L(1S) 5.83229 0.60863 3.23349 14.63752 

 KL(1S) 188.61705 4.07736 0.59311 0.55883 

 KL(3S) 26.838847 3.223551 0.576686 0.532924 

 total 377.46700 6.04190 0.94374 0.94374 
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Table(3) inter particle expectation values     
   and standard deviation     for Be atom and B+ve 

for each individual electronic shell and for total system . 

                 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                           

 

Figure (1) exemplify the one-electron radial density function        as a function of r1 for  Be 

atom and B
+1

ion for each individual electronic shell ,we find in this figure the        increase as 

Z increases and decrease their positions towards the nucleus when Z increases where in curve (a) 

presented in this figure it is found one peak in the K(1S)-shell  which represents the probability of 

finding the electron in the K-shell , while in curve (b) we can see two peaks  for KL(1S)-shell and 

KL(3S)-shell(where      KL(1S)         KL(3S)), the first peak represents the probability of 

finding the electron in the    K-shell , the second peak represents the probability of finding the 

electron in the L-shell and it is clearly from this curve the probability of finding the electron in 

the     K-shell is larger than that for L-shell because K-shell closer to the nucleus than   L-shell. 

In curve (c) it is found two peaks the first peak represents the probability of finding the electron 

in the K-shell as a results of penetration effect and the second peak represents the most 

probability of finding the electron in the L-shell.  

   

Figure(1) one- particle radial  density function for three shells of  Be atom and B
+1

ion . Atomic 

unit are used. 

                                

                         ( a) K–shell                                                                (b) KL(3S)-shell and KL(1S)-shell               

    

                  

                                                                   

Z shell     
        

        
       

        

4 K(1S) 8.88564 2.26837 0.60917 0.47013 0.31472 

 L(1S) 0.19125 0.34354 3.75336 16.84467 1.66042 

 KL(1S)  0.66604 0.51074 2.68025 8.65740 1.21394 

 KL(3S) 0.26476 0.45572 2.69093 8.65740 1.19007 

 total 1.61101 0.66040 2.59929 8.90193 1.12655 

5 K(1S) 14.43951 2.89621 0.47555 0.28536 0.24171 

 L(1S) 0.41150 0.50381 2.54054 7.65181 1.09429 

 KL(1S) 1.41656 0.74873 1.82707 3.96859 0.79397 

 KL(3S) 0.54058 0.65646 1.83717 3.96859 0.77032 

 total 2.98155 1.01969 1.72578 3.96859 0.74016 
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0

0.5

1

1.5
1.289

0

D13be r1( )

D13b r1( )

50 r1

 

 

D(r1) 

 

 

 

D(r1) 

 

B
+1

 

Be 

B
+1 

r1 

 

D(r1) 

 

B
+1 

 
Be 

 

 

 

D(r1) 

 

r1 r1 

c)   L(1S)-shell 

Be 

 



The First Scientific Conference the Collage of Sciences 201 3 

 

51 

0 2 4 6 8 10
0

0.2

0.4

0.6
0.576

0

f13 be r12( )

f13 b r12( )

100 r12

0 1 2 3
0

0.5

1

1.5

2
1.822

0

f12 be r12( )

f12 b r12( )

30 r12

0 5 10
0

0.5

1
0.582

0

f23 be r12( )

f23 b r12( )

100 r12

0 5 10
0

0.2

0.4
0.374

0

f34 be r12( )

f34 b r12( )

100 r12

 

                                                                                             

 

 

 

 

 

 

 

 

 

 

 

  

 (c) KL(1S)-shell                                                                          (d) L(1S)-shell 

Figure (2) radial electron-electron distribution function        for Be atom and B
+1

ion. Atomic 

unit are used. 
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Figure (2) illustrates the inter particle distribution function          which represents the probability 

of finding two electrons separated by distance r12 between them. It is clear from all curves (a, b, c 

and d) the values of pair distribution function        increase as Z increases and the inter distance 

between two electrons r12 decreases for all shells because of the influence of increasing the 

attraction nuclear force, we can also see the maximum values of         for  K–shell is larger than 

that for L-shell because k-shell closer to the nucleus than L-shell . In curves (b and c) it is found one 

peak four KL(3S)-shell and two peaks in KL(1S)-shell the first peak represents the probability of 

finding two electrons separated by small distance between them and it is the small probability as a 

results of  neglecting the correlation between the electrons by Hartree-Fock approximation , the 

second peak represents the probability of finding two electrons separated by larger distance ( r12 ) 

between them and it is the most probability. Table (4) shows the maximum values of D(r1) and the 

position r1. It is noticeable when Z increases the maximum values of D(r1) increase too and the 

position of maximum values r1 decrease this results agreement with coulomb law because 

increasing in Z leads to increasing in attraction force between the nucleus and the electrons which 

leads to increasing in the probability of finding the electron D(r1)and decreasing in the position 

towards the nucleus .Table (5) represents the maximum values of         and the inter distance 

between two electrons r12 , it is found the maximum probability of pair distribution function 

f(r12)increases as Z increases because the influence of increasing in attraction nuclear force and r12 

decrease.  

Table (4) maximum values of D( r1)  and their position r1 for Be atom and B
+1

 ion for all shells. 

 

 

 

 

Z 

K(1S)-shell 
 KL(3S)-shell  KL(1S)-shell L(1S)-shell 

r1 D(r1) 
Peak1 Peak 2 Peak1 Peak 2 

r1 D(r1) r1 D(r1) r1 D(r1) r1 D(r1) 

4 0.27 1.941 0.26 0.997 2.05 0.198 2.06 0.396 0.21 0.0567 

5 0.21 2.485 0.21 1.289 1.44 0.302 1.45 0.62 0.17 0.0996 
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Table (5) maximum values of f(r12)  and their position r12 for Be atom and B
+1

 ion for each shells. 

 

Table (6) the electron density at the nucleus for all shell and total systems for Be atom and B
+1

 ion 

 

 

 

 

 

 

 

  

In table (6) the electron density at the nucleus       calculated from equation  (16 ). we could see the  

     for K(1S)-shell is larger than that for other shells because     K-shell closer to the nucleus than 

other shells and we could see also  the values of       increases when Z increase.  

 

Conclusion: 

It has been shown how the radial expectation values act when atomic Z increases ,numerical results 

have been discussed for Be like systems (Z= 3 , 4) in the Hartree-Fock framework . The Hartree-Fock 

method also allows one to study how the electron density at the nucleus        increases when Z 

increases for all shells and for total systems . In the present study ,the one electron radial density 

function D(r1) and pair distribution function         introduced as a function of r1 and r12 

respectively . 

 

 

 

Z 

K(1S)-shell 
 

KL(3S)-shell 
 

KL(1S)-shell L(1S)-shell 

r12        r12        
Peak1 Peak 2 

r12        
r12        r12        

4 0.45 1.421 2.12 0.384 0.37 0.0623 2.14 0.388 3.25 0.252 

5 0.36 1.822 1.50 0.576 0.29 0.1047 1.52 0.582 2.25 0.3741 

Z shell      

4 K(1S) 17.0789 

 L(1S) 0.6201 

 KL(1S)  8.8495 

 KL(3S) 8.8495 

 total 8.8495 

5 K(1S) 34.6276 

 L(1S) 1.7129 

 KL(1S)  18.1702 

 KL(3S) 18.1702 

 total 18.1702 
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