On Generalized $\,^{\mathcal{R}}$ - Regular Rings

Assistant Lecturer Najlaa T.Jassim

College of Basic Education - University of Mosul

Received: 13/3/2011 ; Accepted: 2/5/2011

Abstract:

The purpose of this paper is to study right generalized π -regular rings and give some of it is properties. Also, we proved:

- 1- Let R be a right generalized π -regular ring without zero divisors element. Then R is a division ring.
- 2- 2- Let R be a ring with $l(a^n) \subseteq r(a^n)$, for every $a \in R$ and $n \in z^+$. Then R

is regular. If and only if R is a right generalized π -regular ring.

 π حول الحلقات المنتظمة المعممة من النمط

م<u>م</u>. نجلاء طارق جاسم كلية التربية الأساسية -جامعة الموصل

ملخص البحث :

- π الغرض من هذا البحث هو دراسة الحلقات المنتظمة المعممة من النمط π وإعطاء بعض من هذه الخواص. كذلك برهنا:
 - ا. لتكن R حلقة منتظمة معممة من النمط π يمنى ولا تحتوي على عنصر قاسم للصفر عند ذلك تكون R حلقة القسمة.
 - د لتكن R حلقة و $r(a^n) \subseteq r(a^n)$ لكل $a \in R$ و $r \in z^+$ عندها تكون R حلقة منتظمة اذا $r(a^n)$ وفقط اذا كانت R حلقة منتظمة معممة من النمط π يمنى.

1. Introduction:

Throughout this paper, R denote an associative rings with identity. The right singular ideal and the Jacobson radical of a ring R are denoted by Y(R) and J(R), respectively. We say that R is right duo ring if all right ideal are ideal of R[6]. We say that ring R is regular if for all $a \in R$, there exists $b \in R$ such that a=aba. This concept was first introduced by von Neumann[8] and Chen [4]. As a generalization of this concept Azumaya[3] introduced π -regular rings as a ring R which π -regular if for every $a \in R$, $\exists n \in z^+$ and $b \in R$ such that $a^n = a^n ba^n$ An ideal I of the ring R is said to be regular if for all $a \in I$, there exists $b \in I$ such that a=aba.

2. Generalized π-regular ring: <u>Definition 2.1:</u> [4]

Let $0 \neq a \in R$, we say that a is a right (left)generalized π -regular, if there exists a positive integer n such that $a^n = aba^n$ (a^nba), for some, $b \in R$.

We call to the ring R is said to be a right (left) generalized π -regular if and only if every element in R is a right (left) generalized π -regular. If R is right and left generalized π -regular,we called R to be generalized π -regular ring.

Every regular and π -regular is generalized π -regular.

Examples:

1- Z_6 , Z_{10} , Z_{14} and Z_{15} is a generalized π -regular ring.

2- Let Z₂ be a ring of integers modulo 2, and let $R = \begin{bmatrix} z_2 & z_2 \\ 0 & z_2 \end{bmatrix}$. Therefore

R is a generalized π -regular ring.

Definition 2.2:

A right ideal I of a ring R is said to be right (left) generalized π -regular ideal if and only if for all $b \in I$, b is right (left) generalized π -regular element.

Proposition 2.3 :

Let R be a right generalized π -regular ring, then every two sided ideal I of R is a right generalized π -regular.

Proof :

Let I be an ideal of ring R. For any $x \in I$, since R is right generalized π -regular,there exists a positive integer n and $y \in R$ such that $x^n = xyx^n$, $x^n = xyxyx^n$, we set z = yxy, then we have $x^n = xzx^n$ with $z \in I$ (since $x \in I$ and I is an ideal). Hence I is a right generalized π -regular.

Proposition 2.4:

Let R be a ring if every principal right ideal is a right generalized π -regular, then R is a right generalized π -regular.

Proof :

It is clear.

Theorem 2.5:

Let R be a right generalized π -regular ring and I is a right ideal. Then R/I is a right generalized π -regular.

Proof :

Let $a+I \in R/I$, where $a \in R$. Since R is a generalized π -regular ring, then there exists a positive integer n such that $a^n = aba^n$ for some $b \in R$, then $a^n + I = aba^n + I = (a + I) (b + I) (a^n + I)$. Therefore, R/I is a right generalized π -regular ring.

Theorem 2.6:

Let I be an ideal of a ring R. If R/I is a right generalized π -regular ring and I is regular, then R is a right generalized π -regular ring.

Proof :

Let $a \in R$, then $a + I \in R/I$, if a + I = I we have $a \in I$, since I is a regular, there exists $d \in I$ such that a=ada, for any positive integer m, $a^m = ada^m$ and done for all $a \in I$, now if $a + I \neq I$, so there exists a positive integer n $(1 \neq n)$ such that

 $(a + I)^{n} = (a + I)(b + I)(a + I)^{n}$ for some $b \in \mathbb{R}$, $a^{n} + I = aba^{n} + I$. Therefore, $a^{n} - aba^{n} \in I$, since I is regular, then there exist $c \in I$ such that $a^{n} - aba^{n} = (a^{n} - aba^{n})c(a^{n} - aba^{n})$ $= (a^{n}c - aba^{n}c)(a^{n} - aba^{n})$

$$= a^{n} c a^{n} - a^{n} c ab a^{n} - a b a^{n} c a^{n} + a b a^{n} c a b a^{n}$$
$$a^{n} = a^{n} c a^{n} - a^{n} c a b a^{n} - aba^{n}ca^{n} + a b a^{n} c a b a^{n} + a b a^{n}$$
$$a^{n} = a(a^{n-1}c - a^{n-1}cab - ba^{n} c + ba^{n} cab + b) a^{n}$$

set $h = a^{n-1}c - a^{n-1}cab - ba^n c + ba^n cab + b \in \mathbb{R}$

So $a^n = a h a^n$. Therefore, R is a right generalized π -regular ring.

Proposition 2.7:

Let R be a right generalized π -regular ring. Then :

(1) J(R) is nil ideal.

(2) Y(R) is nil ideal.

Proof (1) :

Let $a \in J(R)$. Since R is a right generalized π -regular ring, then there exists, a positive integer n such that $a^n = a ba^n$ for some $b \in R$, (1 $ab)a^n = 0$, Since $a \in J(R)$ then 1-a b is invertible. Therefore must $a^n = 0$ for all $a \in J(R)$. So J(R) is nil ideal.

Proof (2):

Let $a \in Y(R)$. Since R is a right generalized π -regular ring ,then there exists a positive integer n such that $a^n = aba^n$ for some $b \in R$. Since $a \in Y(R)$ then r(ab) is essential right ideal of R. So $r(ab) \bigcap a^n R \neq 0$. There exists $0 \neq x \in r(ab) \bigcap a^n R$, abx=0 and $x = a^n r = aba^n r = abx=0$, but r(ab) is essential. Therefor $a^n R=0$ which lead us to $a^n=0$ for all $a \in Y(R)$. So Y(R) is a nil ideal.

A ring R is called reversible if ab=0 implies ba=0 for every $a, b \in R$ [5].

Theorem 2.8:

Let R be a reversible ring and $a \in R$. If r(a) is right generalized π -regular ring then for any positive integer m >1 and $x \in r(a^m)$, $a^{m-1}x$ is a nilpotent element.

Proof :

Let $x \in r(a^m)$. Then $a^m x=0$, $aa^{m-1}x=0$, and hence $a^{m-1}x \in r(a)$. Since r(a) is generalized π -regular, there exists a positive integer n with $(1 \neq n)$ and $y \in r(a)$ such that $(a^{m-1}x)^n = a^{m-1}x \ y(a^{m-1}x)^n$ we have $y \ a=0$ (since $y \in r(a)$, ay=0=y a, R is reversible ring) so $(a^{m-1}x)^n=0$, it is a nilpotent element.

3.The connection between generalized π-regular rings and other rings: Proposition 3.1:

Let R be a reversible ring. Then R is a right generalized π -regular

ring if and only if $aR + r(a^n) = R$ for all $a \in R$ and $n \in Z^+$.

Proof :

Let R be a right generalized π - regular, and $a \in R$, then there exists a positive integer n such that $a^n = aba^n$, for some $b \in R$. If $aR + r(a^n) \neq R$, then there exists a maximal right ideal M of R such that $aR + r(a^n) \subseteq M$. Since

 $a^n = aba^n$, $(1-ab)a^n = 0$, since R is reversible $a^n(1-ab) = 0$, $1-ab \in r(a^n) \subseteq M$. So $1 \in M$, which is a contradiction therefore $aR + r(a^n) = R$ for all $a \in R$.

Conversely : Assume that $aR + r(a^n) = R$, for all $a \in R$ and $n \in z^+$. Hence ab+d=1, $a \in R$ and $d \in r(a^n)$ so $aba^n + da^n = a^n$, since $d \in r(a^n)$, $a^n d = 0$, R is reversible $da^n = 0$, so $aba^n = a^n$ for all $a \in R$. Therefore R is a right generalized π -regular ring.

Theorem 3.2:

Let R be a right generalized π -regular ring without zero divisors elements, then R is a division ring.

Proof :

Let $0 \neq a \in R$. Since R is a right generalized π -regular ring, then there exists a positive integer n such that $a^n = aba^n$, for some $b \in R$, implies that $(1-ab)a^n = 0$. Since R without zero divisors then either a^n = 0 or 1- ab=0. If $a^n = 0$ then a is a zero divisors which a contradiction. Thus 1- ab = 0, 1= ab, so a is a right invertible element. Let $b \in R$ and R is a right generalized π -regular ring, then there exists a positive integer $m(m \neq 1)$ such that $b^m = bcb^m$, for some $c \in R$, gives 1=bc. Now a=a.1=abc=1c, so a=c, therefore R is a division ring.

Theorem 3.3:

Let R be a ring, $l(a^n) = l(a)$ for all $a \in R$ and any positive integer n. Then the following condition are equivalent.

1- R is regular.

2- R is right generalized π -regular.

Proof :

 $1 \rightarrow 2$ It is clear.

 $2 \rightarrow 1$ Let $a \in R$, since R is a right generalized π -regular ring, then there exists a positive integer n such that $a^n = aba^n$, for some $b \in R$, (1ab) $a^n = 0$, $(1 - b \ a) \in l(a^n) = l(a)$. So $(1 - a \ b)a = 0$. a = aba for all $a \in R$. Therefore, R is a regular ring.

A right ideal I of a ring R is said to be GP-ideal, if for all $a \in I$ there exists $b \in I$

such that $a^n = a^n b[7]$.

Theorem 3.4:

Let R be a right duo ring. Then R is right generalized π - regular if and only if every principal right ideal is left GP-ideal.

Proof :

Let R be a right generalized π - regular and $a \in R$. Let $x \in aR$, since R is a right generalized π -regular ring, then there exists a positive integer n such that $x^n = xbx^n$, for some $b \in R$, set $xb \notin aR$, so $d \in aR$, $x^n = dx^n$ for all $x \in aR$ then aR is a left GP- ideal.

conversely

Let every principal right ideal is left GP- ideal and $a \in R$, since $a \in aR$, there exists a positive integer n such that $a^n = ba^n$, for some $b \in aR$, now there exists $c \in R$ such that b=ac, therefore $a^n = aca^n$ that is hold for all $a \in R$. Then R is right generalized π - regular ring.

A ring R is said to be right (left) semi π - regular if for all $a \in R$, there exists a positive integer n and an element $b \in R$, such that $a^n = a^n b(a^n = ba^n)$ and $r(a^n) = r(b) (l(a^n) = l(b))[2]$.

Theorem 3.5:

Let R be a right generalized π - regular ring and for any non zero element x,y in a ring R, Rxy $\bigcap l(a^n)=0$ for any positive integer n. Then R is a left semi- regular ring.

Proof:

Let $a \in \mathbb{R}$, since \mathbb{R} is a right generalized π -regular, then there exists a positive integer n such that $a^n = aba^n$, for some $b \in \mathbb{R}$. Set that c=ab, $x^n = cx^n$, now we to show that $l(a^n) = l(c)$. Let $x \in l(c)$, then xc=0, xab=0, $xaba^n=0$, $xa^n=0$, $x \in l(a^n)$, which yield to $l(c) \subseteq l(a^n)$ -----(1). Let $y \in l(a^n)$, $ya^n=0$. (since $a^n = aba^n$), so $yaba^n = 0(c=ab)$, $yca^n = 0$, $yc \in l(a^n)$ also $yab=yc \in Rab$, but $Rab \cap l(a^n)=0$, must yc=0, $y \in l(c)$ which yield to $l(a^n) \subseteq l(c) ----(2)$. From (1)and (2) we get that $l(a^n) = l(c)$. Therefore \mathbb{R} is a left semi- regular ring.

REFRENCES

- 1-Anderson, F.W. and Fuller, K.R. (1992);" Ring and Categories of Modules ", Graduate Texts in Math. No.13, Springer- Verlag, New Yourk.
- 2-Al kouri, M. R. (1996);" **On** π-**Regular Rings** ", M. Sc. Thesis, Mosul University.
- 3-Azumaya, Gi (1954);" **Strongly** π-**Regular Ring** ", J.Fac. Sci., Hokkaido Univ. ser., vol. 13, pp. 34-39.
- 4-Chen J. and Ding N. (2001);" **On Regularity of Rings** ¹", 1 Algebra Colloquium, vol.8, No.3, pp. 267-274.
- 5-Cohn, P.M. (1999);" **Reversible Rings** ", Bull. London Math. Soc. ,vol. 31, pp. 641-648.
- 6-Feller, E. H. (1958);"Properties of Primary non Commutative Rings" Trans. Amer. Math. Soc., vol. 89, No.1, PP.79-91.
- 7-Mahmood, R. D.(2000);" On Pure Ideals and Pure Submodules",Ph. D Thesis, Mosul University.
- 8-Von Neumann, J. (1936);" On Regular Rings ", Proc. Nat. Scad. Sciences U. S. A., 22, PP. 707-713.