On Rings With Types Of γ (n)-Regularity

Abdul Aali Jasim Mohammad

College of Education-University of Mosul

Received: 23/9/2010 ; Accepted: 24/11/2010

Abstract:

Let R be an associative ring with identity. For a fixed integer n > 1, an element a in R is said to be $\gamma(n)$ -regular ($\gamma(n)$ -strongly regular) if there exists b in R such that $a=ab^na$ ($a=a^2b^n$). So a ring R is said to be $\gamma(n)$ -regular ($\gamma(n)$ -strongly regular) for a positive integer $n \neq 1$, if every element of R is $\gamma(n)$ -regular ($\gamma(n)$ -strongly regular).

In this paper we investigate some characterizations and several basic properties of those rings, also the connection between them and rings of some kind of commutivity.

(n)-
$$\gamma$$
 حلقة منتظمة من النمط

ملخص البحث:

R لتكن R حلقة تجميعية بمحايد . لعدد صحيح n اكبر من واحد ، العنصر a في R يسمى منتظما من النمط \mathcal{V} -(n) (منتظما بقوة من النمط \mathcal{V} -(n)) اذا وجد عنصر مثل b في n يسمى منتظما من النمط \mathcal{V} -(n) (منتظما من النمط \mathcal{V} -(n)) اذا وجد عنصر مثل b في R بحيث ان $a=ab^na$ من النمط R جحيث ان $a=ab^na$ تسمى حلقة منتظمة من النمط \mathcal{V} -(n) (حلقة منتظمة بقوة من النمط \mathcal{V} -(n)) حيث ان n عدد صحيح اكبر من واحد، اذا كان كل عنصر من R هو منتظما من النمط \mathcal{V} -(n) (منتظما بقوة من النمط المن النمط \mathcal{V} -(n)) .

في هذا البحث درسنا بعض الصفات الاساسية لهكذا حلقات و كذلك الروابط بينها وبين حلقات ذات صفات مشابهة للابدالية .

0: Introduction:

The conception of Von Neumann regular rings occurred in 1936 [13] defined a regular ring as a ring R with property that for each $a \in R$ there exists $b \in R$ such that a=aba.

A ring R with property that for each $a \in R$ there exists $b \in R$ such that $a=a^2b$, is called strongly regular ring. This concept has been defined some sixty year ago by R.F.Arens and I.Kaplansky [1] and was studied in recent years by many others (cf. [2], [8], [9]). Note that in such rings $a=ba^2$ if and only if $a=a^2b$ [4].

As a generalization of regularity property, MecCoy [6] defined π -regular rings, that is a ring R with every $a \in R$, a^n is regular element for some positive integer n .(cf. [6], [9], [11], [12]) .In 1954 Azumaya [2] defined strongly π -regular rings, that is ring R such that for every $a \in R$, there exists $b \in R$ and a positive integer in such that $a^n = a^{n+1}b$. Also Ehrlich [5] defined unit regular ring, that is a ring R with every $a \in R$ there exists a unit $u \in R$ such that a = aua.

A ring R is said to be γ -regular if for every $a \in \mathbb{R}$ there exists $b \in \mathbb{R}$ and an integer n > 1 such that $a = ab^n a$. This concept was introduced in 2006 by A.J.Mohammad and S.M.Salih [10]. Similarly definition of γ -strongly regular rings.

A ring R is said to be reduced, if R contains no non-zero nilpotent elements. So every idempotent element in a reduced ring is central [9].

For $a \in \mathbb{R}$, r(a) and l(a) denoted the right and left annihilator of a respectively.

Finally, throughout this paper R is associative ring with identity.

544

<u> $\$1: \gamma(n)$ -regular rings :</u>

In this section we introduce the definition of $\gamma(n)$ -regular rings as special case of regular rings .

Definition 1.1 :

An element a of a ring R is called $\gamma(n)$ -regular (for an integer n>1) if $a=ab^na$ for some $b\in R$

A ring R is said to be $\gamma(n)$ -regular ring if every element of R is $\gamma(n)$ -regular.

Hence every $\gamma(n)$ -regular ring is γ -regular ring and every γ -regular ring is a regular ring. So every $\gamma(n)$ -regular ring is regular ring.

Examples 1.2 :

(1) The ring Z_3 is $\gamma(3)$ -regular ring.

(2)Boolean rings are γ (n)-regular rings for each integer n>1.

Note that every $\gamma(n)$ -regular ring is γ -regular ring , but the converse is not true in general , for example Z_5 is γ -regular ring but not $\gamma(n)$ -regular ring , and the ring Q of rational numbers is regular but not $\gamma(n)$ -regular.

It is clear that a homomorphic image of $\gamma(n)$ -regular ring is $\gamma(n)$ -regular ring .

Proposition 1.3 :

Let R be a $\gamma(n)\text{-regular ring then for every } a \in R$, l(a) and r(a) are direct summands .

Proof :

Since R is $\gamma(n)$ -regular ring, then for each $a \in \mathbb{R}$ there exists $b \in \mathbb{R}$ such that $a=ab^na$. So $(ab^n-1) a=0$. That is $ab^n-1\in I(a)$. So $1-ab^n\in I(a)$. Since $1=ab^n+(1-ab^n)$, then $R=(ab^n)R+I(a)$.

Now let $x \in (Rab^n) \cap l(a)$, then $x \in (Rab^n)$ and $xa = cab^n a = 0$. That is $x = cab^n$ for some $c \in R$. Hence $xa = cab^n a$, then ca = 0. So $cab^n = 0$. Hence x=0 there for l(a) is direct summand.

Similarly, r(a) is direct summand.

Proposition 1.4 :

If R is a ring with every nonzero element $a \in R$ there is a unique element $b \in R$ such that $a^n = a^n b a^n$ where n is an integer greater than one, then b is $\gamma(n)$ -regular element.

Proof :

Since $a^n = a^n ba^n$ for each $a \in \mathbb{R}$, then R has no divisors of zero. then by cancellation law, $1 = a^n b$. So, $b = ba^n b$.

Therefore b is $\gamma(n)$ -regular element.

<u>Theorem 1.5 :</u>

Let I be an ideal of a $\gamma(n)$ -regular ring R , then the ring R/I is also $\gamma(n)$ -regular ring .

Proof :

Let $a+I \in R/I$, then $a \in R$. Since R is $\gamma(n)$ -regular ring then there exists $b \in R$ such that $a=ab^na$. So $a+I=ab^na+I=(a+I)(b+I)^n(a+I)$.

Therefore R/I is $\gamma(n)$ -regular ring.

Definition 1.6 :

An ideal I of a ring R is said to be $\gamma(n)$ -regular ideal if for every element $a \in I$ there exists $b \in I$ such that $a = ab^n a$.

Lemma 1.7 :

Let x and y be two elements of aring R such that , xy^tx-x is $\gamma(n)$ -regular element , with $1 \neq t \in Z^+$, then x is regular element .

Proof :

Since $xy^{t}x - x$ is $\gamma(n)$ -regular element, then there exists an element

b∈R such that

$$\begin{split} xy^t x - x &= (xy^t x - x)b^n(xy^t x - x) \text{ . Hence} \\ xy^t x - x &= xy^t xb^n xy^t x - xy^t xb^n x - xb^n xy^t x + xb^n x \text{ .} \\ \text{So} \qquad x &= xy^t x - xy^t xb^n xy^t x + xy^t xb^n x + xb^n xy^t x - xb^n x \\ &= x(y^t - y^t xb^n xy^t + y^t xb^n + b^n xy^t - b^n)x \text{ .} \end{split}$$

Therefore x is a regular element.

Theorem 1.8 :

Let I be a $\gamma(n)$ -regular ideal of a ring R and R/I is also $\gamma(n)$ -regular ring. Then R is regular ring.

Proof :

Let $a \in \mathbb{R}$. So $a + I \in \mathbb{R}/I$. Since \mathbb{R}/I is $\gamma(n)$ -regular ring, then there exists $b + I \in \mathbb{R}/I$ such that $a+I=(a+I)(b+I)^n(a+I)$. Hence $a+I=(ab^na)+I$. So $a-ab^na \in I$. That is, $a-ab^na$ is $\gamma(n)$ -regular element. Then a is regular element [Lemma 1.7].

Therefore R is a regular ring.

Corollary 1.9 :

Let R_1 and R_2 be two $\gamma(n)\mbox{-regular rings}$. Then $R_1 \bigoplus R_2$ is regular ring .

Proof :

Since $(R_1 \bigoplus R_2)/R_1 \cong R_2$ and R_2 is $\gamma(n)$ -regular ring, then $R_1 \bigoplus R_2$ is regular ring [Theorem 1.8].

<u>Theorem 1.10 :</u>

A finite direct sum of $\gamma(n)$ -regular rings is a regular ring.

Proof :

The proof is by mathematical induction

<u>Theorem 1.11 :</u>

Every ideal in a reduced $\gamma(n)$ -regular ring is $\gamma(n)$ -regular ideal.

Proof :

Let I be an ideal of a reduced $\gamma(n)$ -regular ring R, and $a \in I$. Then there exists $b \in \mathbb{R}$ such that $a=ab^na$. Since b^na is idempotent element, it is central.

So ,
$$(b^{n+1}a)(b^{n+1}a) = (b^{n+1}a)(bb^na) = (b^{n+1}a)(b^nab)$$

= $b^{n+1}(ab^na)b = (b^{n+1}a)b$.

 \equiv

=

Now let $y = b^{n+1}a$, then $y \in I$. So, $ay^n a = a(b^{n+1}a)a = a[(b^{n+1}a)(b^{n+1}a) \dots (b^{n+1}a)(b^{n+1}a)]a$ $a[(b^{n+1}a)b \dots bb]a = a[(b^{n+1}a)b^{n-1}]a = a[(bb^na)b^{n-1}]a$ $a(b^nabb^{n-1})a = a(b^nab^n)a = (ab^na)(b^na) = ab^na = a$.

Therefore I is $\gamma(n)$ -regular.

2 :Strongly ¥(n)-regular rings :

In this section we introduce the definition of strongly $\gamma(n)$ -regular rings and we will show that this definition is equivalence to the definition of $\gamma(n)$ -regular rings where the rings are commutative, reduced rings, and so on.

Definition 2.1 :

A ring R is called strongly $\gamma(n)$ -regular ring (for some integer $n \ge 1$) if for every element $a \in \mathbb{R}$, there exists $b \in \mathbb{R}$ such that $a = a^2 b^n$.

Remark 2.2 :

- (1) In strongly γ (n)-regular ring R, $a=a^2b^n$ if and only if $a=b^na^2$ [4].
- (2) It is obvious that a homomorphic image of a strongly $\gamma(n)$ regular ring is strongly $\gamma(n)$ -regular ring .

<u>Theorem 2.3 :</u>

For any ring R, the following statements are equivalent :

(1) R is strongly γ (n)-regular ring.

(2) R is reduced γ (n)-regular ring.

Proof :

 $1 \Longrightarrow 2 \text{ . Since } R \text{ is strongly } \gamma(n)\text{-regular ring , then for every } a \in R$ there exists $b \in R$ such that $a = a^2 b^n = b^n a^2$. So $b^n a = b^n (a^2 b^n) = (b^n a^2) b^n = a b^n$. Hence $a b^n a = a^2 b^n = a$. That is R is $\gamma(n)$ -regular ring .

Now suppose that $c^{t}=0$ for some $c \in R$ and t is a positive integer. Since $c=c^{2}d^{n}$ for some $d\in R$. Then $c^{t-1} = c^{t-2}c = c^{t-2}$

 ${}^{2}c^{2}d^{n} = c^{t}d^{n} = 0$. Similarly $c^{t-2}=0$ and so on, to have c=0. Hence R is a reduced ring. $2 \implies 1$. Since R is $\gamma(n)$ -regular ring then for every $a \in \mathbb{R}$ there exists $b \in \mathbb{R}$ such that $a=ab^{n}a$. $a=a^{2}a^{3}b^{n}-a^{2}b^{n}a+a^{2}b^{n}a^{2}b^{n} = a^{2}-a^{3}b^{n}-a^{2}+a^{3}b^{n} = 0$. Since R is reduced then $a-a^{2}b^{n}=0$, that is $a=a^{2}b^{n}$. Similarly $(a-b^{n}a^{2})^{2}=0$ implies $a=b^{n}a^{2}$. Therefore R is strongly $\gamma(n)$ -regular ring.

Corollary 2.4 :

Every reduced γ (n)-regular ring is strongly regular ring.

Definition 2.5:

A ring R is called strongly $\pi(n)$ -regular ring (for some integer n) if for every element $a \in \mathbb{R}$, there exists $b \in \mathbb{R}$ such that $a^n = a^{2n}b$.

Proposition 2.6 :

Let R be strongly $\pi(n)$ -regular ring. Then a^n is strongly $\gamma(n)$ regular element for every $a \in \mathbb{R}$.

Proof :

Since R is a strongly $\pi(n)$ -regular ring, then for every $a \in \mathbb{R}$ there exists $b \in \mathbb{R}$ such that $a^n = a^{2n}b$. $a^n(a^nb)b = a^{2n}b^2 = \ldots = a^{2n}b^n$. Therefore a^n is strongly $\gamma(n)$ -regular element.

<u>Theorem 2.7 :</u>

Let I be an ideal of a strongly $\gamma(n)$ -regular ring R . Then R/I is also strongly $\gamma(n)$ -regular ring .

Proof :

Let $a+I \in R/I$, then $a \in R$. Since R is a strongly $\gamma(n)$ -regular ring, then there exists $b \in R$ such that $a=a^2b^n$. So, $a+I = a^2b^n+I = (a+I)^2(b+I)^n$. Therefore R/I is strongly $\gamma(n)$ -regular ring.

Lemma 2.8 : [9]

Let a be a none zero element in a reduced ring R . Then l(a)=R(a) and $l(a)=l(a^2)$.

<u>Theorem 2.9 :</u>

Let R be a reduced ring and r/l(a) is $\gamma(n)$ -regular ring for every $a \in \mathbb{R}$. Then R is strongly $\gamma(n)$ -regular ring.

Proof :

Let $a \in \mathbb{R}$, then $\mathbb{R}/l(a)$ is $\gamma(n)$ -regular ring. So there exists $b+l(a)\in\mathbb{R}/l(a)$ such that $a+l(a)=(a+l(a))(b+l(a))^n(a+l(a))$. Hence $a+l(a)=(ab^na)+l(a)$. So $a-ab^na\in l(a)$. that is $(a-ab^na)a=0$ and $(1-ab^n)a^2=0$. Hence $1-ab^n\in l(a^2)=r(a^2)=r(a) \Longrightarrow a(1-ab^n)=0 \Longrightarrow a=a^2b^n$. Similarly $a=b^na^2$. Therefore \mathbb{R} is a strongly $\gamma(n)$ -regular ring.

Note that R is also $\gamma(n)$ -regular ring, that is since R is strongly $\gamma(n)$ -regular ring.

3 : Semi-commutative rings :

In this section we deal with the relation between strongly $\gamma(n)$ -regular rings and $\gamma(n)$ -regular rings which they are semicommutative rings.

Definition 3.1 : [12]

A ring R is said to be a semi-commutative ring if every idempotent element is central.

Hence every reduced ring is semi-commutative ring .[12]

<u>Theorem 3.2 :</u>

For any ring R, the following statements are equivalent :

(1) R is strongly γ (n)-regular ring.

(2) R is a semi-commutative γ (n)-regular ring.

Proof :

 $(1) \Longrightarrow (2)$. From corollary 2.4.

 $(2) \Longrightarrow (1)$. Let $0 \ne a \in \mathbb{R}$, then there exists $b \in \mathbb{R}$ such that $a=ab^n a$. Since ab^n is an idempotent element and \mathbb{R} is semi-commutative ring, then ab^n is central. So $(ab^n)a=a(ab^n)$. That is $a=ab^n a=a^2b^n$. Similarly, $a=b^n a^2$ [Since $b^n a$ is an idempotent element]. Therefore \mathbb{R} is a strongly $\gamma(n)$ -regular ring.

Proposition 3.3:

Let R be a semi-commutative $\gamma(n)$ -regular ring . Then R is a unit regular ring .

Proof :

Let $a \in \mathbb{R}$, then there exists $b \in \mathbb{R}$ such that $a=ab^na$. Hence ab^n and b^na are idempotent elements. So they are central elements.

Now $ab^n = a(b^n a)b^n = a(b^n (b^n a)) = (ab^n)(b^n a) = b^n (ab^n)a = b^n a$.

Let $u=a+ab^n-1$ and $v=ab^n+ab^{2n}-1$. Since $ab^n=b^na$ and $a=ab^na$, we have :

 $uv = (a+ab^{n}-1)(ab^{n}+ab^{2n}-1)$ = $a^{2}b^{n} + a^{2}b^{2n} - a + ab^{n}ab^{n} + ab^{n}ab^{2n} - ab^{n} - ab^{n} - ab^{2n} + 1$ $= a + ab^{n} - a + ab^{n} + ab^{n}b^{n} - ab^{n} - ab^{n} - ab^{n}b^{n} + 1 = 1$.

Similarly, vu = 1 and $ava = a(ab^n + ab^{2n} - 1)a = a$. Therefore R is a unit regular ring.

Corollary 3.4 :

Every strongly γ (n)-regular ring is a unit regular ring .

Proof :

Let R be a strongly $\gamma(n)$ -regular ring, then it is reduced $\gamma(n)$ -regular ring [Corollary 2.4]. Since every reduced ring is semi-commutative ring, then by [proposition 3.3] R is a unit regular ring.

Definition 3.5 :

A ring R is called clean if each element can be expressed as the sum of a unit and idempotent .

Corollary 3.6 :

Let R be a strongly $\gamma(n)$ -regular ring. Then a^n is a unit $\gamma(n)$ -regular element for each $a \in \mathbb{R}$.

Proof :

Since R is a strongly $\gamma(n)$ -regular ring, then R is a semi-commutative $\gamma(n)$ -regular ring. Hence a is a unit regular element [Corollary 3.4]. Since R is $\gamma(n)$ -regular ring, then for a \in R there exists b \in R such that $a = ab^n a$. So ab^n and $b^n a$ are central idempotent elements. That is $a = ab^n a = a^2 b^n$.

Let $u = ab^{2n} - ab^n + 1$ and $v = a - ab^n + 1$, then uv = vu = 1 and $u^n = ab^nb^n - ab^n + 1$. Hence $a^n = a^nu^na^n$. Therefore a^n is a unit $\gamma(n)$ -regular element.

Corollary 3.7 :

Let R be a reduced $\gamma(n)$ -regular ring. Then for each a $\in \mathbb{R}$:

(1) a^n is a unit $\gamma(n)$ -regular element.

(2) a = eu for some idempotent element $e \in R$ and unit element $u \in R$.

(3) a is a clean element.

Proof :

(1) follows from [Corollary 3.6].

(2) and (3) follows from [12].

In the following ; N(R) is the set of the nilpotent elements of R.

Proposition 3.8 :

Let R be a semi-commutative $\gamma(n)$ -regular ring. Then for each $a \in R$, $a^t = eu + x$ for some idempotent element e , unit element e and nilpotent element x.

Proof :

Since R is a semi-commutative $\gamma(n)$ -regular ring, then R/N(R) is strongly regular [12]. Hence R/N(R) is reduced, that is, semicommutative ring. So for each $a+N(R)\in R/N(R)$, $a^t+N(R)$ is a unit $\gamma(n)$ -regular element [Corollary 3.6]. Hence there exists a unit u+N(R)such that $a^t+N(R) = (a^t+N(R))(u^t+N(R))^n(a^t+N(R))$. That is u^n is a unit element in R [12]. Now since $a^tu^n + N(R)$ is an idempotent in R/N(R) then $(a^tu^n + N(R))^2 = (a^tu^n a^tu^n) + N(R) = a^tu^n + N(R)$. Then there exists an idempotent element $e\in R$ such that $a^tu^n + N(R) = e + N(R)$ [6]. So, $a^t + N(R) = (a^tu^n + N(R))((u^n)^{-1} + N(R)) = e(u^n)^{-1} + N(R)$. Hence, $a^t - e(u^n)^{-1} \in N(R)$. Therefore $a^t = e(u^n)^{-1} + x$ for some $x \in N(R)$.

4 : Quasi-commutative rings :

The definition of quasi-commutative rings was introduced by Kandasamy [15], that is a ring R with $ab = b^n a$ for every pair $a,b \in R$ and for some positive integer n depending on a and b.

We now turn to the case where n is a fixed integer greater than one .

Definition 4.1 :

A ring R is said to be q(n)-commutative, where n is an integer greater than one, if for every $1 \neq a \in R$ and $b \in R$, $ab = b^n a$.

Proposition 4.2 :

Let R be a quasi-commutative $\gamma(n)\mbox{-regular ring}$, then R is strongly regular ring .

Proof :

Let $a \in \mathbb{R}$, then there exists $b \in \mathbb{R}$ such that $a = ab^n a$. Since \mathbb{R} is a quasi-commutative ring, then $ab^n = (b^n)^t a = b^{nt} a$ for some positive integer t. Hence $a = ab^n a = b^{nt} a^2$. Also we have $b^n a = a^m b^n$ for some positive integer m. Then $a = ab^n a = aa^m b^n = a^2(a^{m-1}b^n)$. Therefore \mathbb{R} is strongly regular ring.

<u>Theorem 4.3 :</u>

Let R be a q(n)-commutative ring . Then the following statements are equivalent :

(1) R is γ (n)-regular ring.

(2) R is strongly regular ring.

Proof:

(1) \Rightarrow (2). Since R is a q(n)-commutative ring, then R is quasicommutative ring. Hence by [proposition 4.2], R is strongly regular ring. (2) \Rightarrow (1). Since R is strongly regular ring, then for every a \in R there exists b \in R such that a = a²b.

Now since R is q(n)-commutative ring, then $ab = b^n a$. Hence $a = aab = ab^n a$. Therefore R is $\gamma(n)$ -regular ring.

Corollary 4.4 :

Let R be a q(n)-commutative reduced ring . Then the following statements are equivalent :

(1) R is γ (n)-regular ring.

(2) R is regular ring.

Proof :

 $(1) \Longrightarrow (2)$. The proof is straight forward check which we omit .

(2) \Rightarrow (1). Since R is reduced and regular, then R is strongly regular ring. Therefore R is $\gamma(n)$ -regular ring [Theorem 4.3].

Corollary 4.5 :

The center of every reduced q(n)-commutative γ (n)-regular ring is γ (n)-regular ring .

Proof :

Let R be a reduced q(n)-commutative γ (n)-regular ring. Then R is regular ring. So cent R is regular [6]. Therefore cent R is γ (n)-regular ring [Corollary 4.4].

Corollary 4.6 :

Let R be a q(n)-commutative reduced ring such that every ideal of R is a maximal right ideal, then R is $\gamma(n)$ -regular ring.

Proof :

Since R is reduced and every prime ideal is maximal right ideal, then R is regular ring [7].

Now since R is q(n)-commutative ring and reduced then R is $\gamma(n)$ -regular ring [Corollary 4.4].

Corollary 4.7 :

Let R be a q(n)-commutative reduced ring such that R/P is γ (n)-regular ring for every prime ideal P in R. Then R is γ (n)-regular ring.

Proof :

Let P be a prime ideal in R. Then R/P is division ring, because R/P is a $\gamma(n)$ -regular ring and with nonzero divisors. Therefore P is a maximal right(left) ideal in R and R is $\gamma(n)$ -regular ring [Corollary 4.6].

Proposition 4.8 :

Let R be a q(n)-commutative ring . Then the following statements are equivalent :

(1) R is $\gamma(n)$ -regular ring.

(2) r(a) is direct summand for every $a \in R$.

Proof :

 $(1) \Longrightarrow (2)$. From proposition 1.3.

 $(2) \Longrightarrow (1)$. Let $a \in \mathbb{R}$. Since r(a) is direct summand, then $\mathbb{R} = a\mathbb{R} + r(a)$. Since $1 \in \mathbb{R}$, then 1 = ar + d for some $r \in \mathbb{R}$ and $d \in r(a)$. So,

 $a = a^2r + ad$. That is $a = a^2r$. Since R is q(n)-commutative ring, then $a = a(ar) = ar^n a$. Therefore R is $\gamma(n)$ -regular ring.

<u>Theorem 4.9 :</u>

Let R be a q(n)-commutative reduced ring . Then the following statements are equivalent :

(1) R is γ (n)-regular ring.

(2) Every element a∈R can be written as a = ue for some idempotent
 e∈R and unit u∈R.

Proof :

 $(1) \Longrightarrow (2)$. From Corollary 3.7.

(2) \Rightarrow (1).Let a = eu, where e is idempotent and u is unit,then e = au⁻¹. Now ea = au⁻¹a, but ea = eeu = e²u = eu = a. So a = au⁻¹a which is regular element.

Therefore by [Corollary 4.4] R is γ (n)-regular ring.

Theorem 4.10 :

Let R be a q(n)-commutative ring . Then the following statements are equivalent :

(1) R is γ (n)-regular ring.

(2) For every right ideal I and left ideal J in R, $IJ = I \cap J$.

Proof :

(1) \Rightarrow (2). Since R is γ (n)-regular ring, then it is regular. Hence (2) holds by [9;Theorem 1.1.7].

(2) \implies (1). Let $a \in \mathbb{R}$. Since $a \in a \mathbb{R} \cap \mathbb{R}a = a \mathbb{R}a$. So a = aba for some $b \in \mathbb{R}$. Since \mathbb{R} is q(n)-commutative ring, then $a = (ab)a = b^n a^2$. Hence \mathbb{R} is strongly $\gamma(n)$ -regular ring. Therefore \mathbb{R} is $\gamma(n)$ -regular ring.

<u>Theorem 4.11 :</u>

Let R be a q(n)-commutative reduced ring such that every principal left ideal of R is left annihilator, then R is γ (n)-regular ring. **Proof :**

Since R is reduced and every principal left ideal of R is a left annihilator, then R is strongly regular ring [9]. Since R is q(n)commutative, then by [Theorem 4.3] R is $\gamma(n)$ -regular ring.

Proposition 4.12 :

Let R be q(n)-commutative ring . Then the following statements are equivalent :

(1) R is γ (n)-regular ring.

(2) Every principal ideal is a direct summand.

Proof :

 $(1) \Longrightarrow (2)$. Clearly from [10].

 $(2) \Longrightarrow (1)$. Let $R = aR \bigoplus K$ for some ideal K of R. Since $1 \in R$, then

1 = ar + k for some $r \in R$ and $k \in K$.

Since R is q(n)-commutative ring, then $ar = r^n a$.

So, $1 = r^n a + k$. That is $a = ar^n a + ak$.

Hence $ak = a - ar^n a \in aR \cap K = \{0\}$. So $a = ar^n a$. Therefore R is $\gamma(n)$ -regular ring.

<u>Theorem 4.13 :</u>

Let R be a q(n)-commutative reduced ring such that every maximal ideal of it is a right annihilator, then R is γ (n)-regular ring. <u>**Proof**</u>:

Let $a \in R$. Suppose that $aR + r(a) \neq R$, then there exists a maximal right ideal M containing aR + r(a).

So M = r(b) for some $b \in \mathbb{R}$.

Hence $b \in l(aR + r(a)) \subseteq l(a) = r(a)$ [9; Theorem 1.3.10].

So $b \in M = r(b)$. Then $b^2 = 0$. Since R reduced, then b = 0, a contradiction. Hence aR + r(a) = R. Now $1 \in R$ implies 1 = ax + y for some $x \in R$ and $y \in r(a)$. So $a = a^2x + ay$, that is $a = a^2x$. Hence R is strongly regular ring.

Therefore R is γ (n)-regular ring [Theorem 4.3].

<u>Theorem 4.14 :</u>

Let R be a q(n)-commutative ring. Then R is γ (n)-regular ring if and only if each ideal in R is a radical ideal.

Proof :

Suppose that R is $\gamma(n)$ -regular ring. Then R is regular ring. Hence every ideal is radical ideal [11].

Conversely : Let $\mathbf{I} = \sqrt{\mathbf{I}}$ for each ideal I in R. Take $\mathbf{I} = a^2 \mathbf{R} = \sqrt{\mathbf{a}^2 \mathbf{R}}$. Then $a^2 \in a^2 \mathbf{R}$. So $a \in \sqrt{\mathbf{a}^2 \mathbf{R}} = a^2 \mathbf{R}$. That is $a = a^2 \mathbf{b}$ for some $\mathbf{b} \in \mathbf{R}$. Hence R is strongly regular ring. Therefore by [Theorem 4.3] R is $\gamma(n)$ -regular ring.

Corollary 4.15 :

Let R be a q(n)-commutative ring . Then R is $\gamma(n)$ -regular ring if and only if each ideal in R is semi-prime .

Theorem 4.16 :

Let R be a q(n)-commutative regular ring , then R is strongly γ (n)-regular ring .

Proof :

Let $a \in \mathbb{R}$, then there exists $b \in \mathbb{R}$ such that a = aba. Since \mathbb{R} is q(n)commutative ring, then $ab = b^n a$. So $a = a^2 b^n$. Therefore \mathbb{R} is
strongly $\gamma(n)$ -regular ring.

<u>Theorem 4.17 :</u>

Let R be q(n)-commutative ring , then the following statements are equivalent :

- (1) R is strongly $\gamma(n)$ -regular ring.
- (2) R is strongly regular ring.

Proof :

 $(1) \Longrightarrow (2)$. The proof is straight forward check which we omit .

(2) \implies (1) . Since R is strongly regular ring, then there exists $b \in \mathbb{R}$ such that $a = a^2b$. Since R is q(n)-commutative ring then $ab = b^n a$. Hence $a = ab^n a$. Since R is strongly regular ring, then R is reduced. So $a = a^2b^n$. Therefore R is strongly $\gamma(n)$ -regular ring.

Reference

- [1] Arens R.F. and Kaplansky I., Topological Representation of Algebras, Trans Amer. Math. Soc. 63 (1948), 457 – 481.
- [2] Azumaya G., Strongly π -Regular Rings, J. Fac. Sci. Hokkaido Univ. Vol. 13(1954), 34 39.
- [3] CHIN. A. Y. M., Clean elements in abelian Proc. Indian Acad. Sci. (Math. Sci.) Vol. 119, No.2, (2009), pp. 145 – 148.
- [4] Drazen M.P., Rings with Central Idempotent or Nilpotent elements, Proc. Edinburgh Math. Soc. 9(1958), 157 – 165.
- [5] Ehrlich G., Unit Regular Rings, Portugal. Math. Vol. 27(1968), 209 212.

- [6] Goodearl , K.R. " Von Neumann Regular Rings " (1979), Pitman , London.
- [7] Lam T. Y., A First Course in Noncommutative Rings, Springer Verlag, New York, Inc., (1991).
- [8] Luth J., A note on strongly regular rings, Proc. Japan Acad., Vol. 40(1964), 74 75.
- [9] Mahmood A. S., On Von Neumann Regular Rings, M. Sc. Thesis, Mosul University (1990).
- [10] Mohammad A. J. and Salih S. M., On γ-regular rings, J. Edu.
 Sci. Vol. (18) No. 4(2006), 118 139.
- [11] Naoum A. G. and Kider J. R., Commutative π-Regular Rings, Iraq
 J. Sci., Vol. 35, No. 4(1994), 1169 1184.
- [12] Naoum F. S., On π -Regular Rings, Ph.D. Thesis, Mosul University, (2004).
- [13] Neumann J. V. ,Regular Rings , Proc. Nat. Acad. Sci. U. S. A. Vol. 22(1936) , 707 – 713 .
- [14] Osba, E. A., Henriksen, M., Alkam, O. and Smith, F. H. "The maximal regular ideal of some commutative rings ", Comment. Math. Univ. Carolina, Vol. 47(2006), pp. 1 10.
- [15] Vasantha Kandasamy W. B., On Quasi-Commutative Rings,Aribb. J. Math. Comput. Sci. Vol. 5, No. 1&2(1995), 22 24.