THE CONNECTED AND CONTINUITY IN BITOPOLOGICAL SPACES

NADA MOHAMMED ABBAS

Debarment of Mathematics ,College of Education

For Pure Sciences Babylon University.

ABSTRACT :- In this paper we introduce and study several properties of the connected and continuity in bitopological spaces by using β -open set.

ملخص البحث :- سندرس في هذا البحث الترابط والاستمرارية في الفضاءات التبولوجية الثنائية باستخدام المجموعة المفتوحة (β-open set)

1- INTRODUCTION :-

In 1963, J.C. Kelly [5] initiated the study of bitopological spaces. A set X equipped with two topologies τ and τ' is called a bitopological space denoted by (X, τ, τ') . The notion of β -open sets due to Mashhour et al .[1]or semi – preopen sets due to Andrijevic' [2]. Plays a significant role in general topology. In [1] the concept of β -continuous function is introduced and further Popa and Noiri [4] studied the concept of weakly β -continuous functions. In 1992,Khedr et al [3] introduced and studied semi- precontinuity or β -continuous in bitopological spaces. In this paper we introduce and study the definition of β -open sets to define the connected and continuous in bitopological spaces. Throughout the present paper (X, τ, τ_{β}) denotes a bitopological space . Let (X, τ)

be a topological space and A be a subset of X the closure and interior of A are denoted by cl(A) and Int(A) respectively.

Let (X, τ, τ_{β}) be bitopological space and let A be a subset of X. The closure and interior of A with respect to τ are denoted by τ -cl(A) and τ -Int(A). The closure and interior of A with respect to τ_{β} are denoted by τ_{β} -cl(A) and τ_{β} -Int(A). A separation of space X denoted by $X = C \setminus D$, where C and D are two nonempty disjoint sets.

2-BASIC DEFINITION:-

Definition (2.1) [1] :- Let (X, τ) be a topological space, a subset A of space X will be called β -open if A \subseteq cl(Int(cl(A))).

The complement of a β -open set is said to be β -closed sets containing A the subset of X is known as β –closure of A and it is denoted by τ_{β} -cl(A)

(i.e) $A \subseteq \tau_{\beta}$ -cl(A).

PROPOSITION (2.2) :- Let U be open set then U is β -open.

Proof :- since U is open set .so we have U = Int(U). Since $Int(U) \subseteq cl(U)$. then $Int(Int(U)) \subseteq Int(cl(U))$ and $cl(Int(Int(U))) \subseteq cl(Int(cl(U)))$. Therefore $U \subseteq cl(u) \subseteq cl(Int(cl(U)))$. So we have $U \subseteq cl(Int(cl(U)))$. Hence U is β -open.

Definition (2.3) [1]:- Bitopological space is any set *X* with two topological spaces τ and τ_{β}

Example (2.4) :- let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\tau_{\beta} = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b\}\}$ so (X, τ, τ_{β}) is bitopological spaces

3- CONNECTED SPACES

Definition (3.1) :- Abitopological space (X, τ, τ_{β}) is connected if X cannot be expressed as the union of two nonempty disjoint sets U and V such that $[U \cap \tau - cl(V)] \cup [\tau_{\beta} - cl(U) \cap V] = \emptyset$

Suppose X can be expressed then X is called disconnected and we write $X = U \setminus V$ and call this separation of X.

Example (3.2) :- :- let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\tau_{\beta} = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b\}\}$, then $\{a, c\}$ is connected

PROPOSITION (3.3) :- if *X* contains no nonempty proper subset which is both τ - open and τ_{B} -closed, then *X* is connected.

Proof: Let *X* contains no nonempty proper subset which is both τ - open and τ_{β} closed. Suppose that *X* is disconnected.

Then X can be expressed as the union of two nonempty disjoint sets U and V such that $[U \cap \tau - cl(V)] \cup [\tau_{\beta} - cl(U) \cap V] = \emptyset$ Since $U \cap V = \emptyset$ and $U \cup V = X$, we have $U = V^{c}$ and $V = U^{c}$ Since $\tau_{\beta} - cl(U) \cap V = \emptyset$, so $\tau_{\beta} - cl(U) \subseteq V^{c}$.

Hence $\tau_{\beta} - cl(U) \subseteq U$. therefore U is τ_{β} -closed set.

Similarly V is τ -closed set.

Since $U = V^c$, U is τ - open. Therefore there exists a nonempty proper subset which is both τ - open and τ_{β} -closed. this is contradiction to our assumption Therefore X is connected.

PROPOSITION (3.4):- if *U* is connected subset of bitopological space (X, τ, τ_{β}) which has separation $X = C \setminus D$, then $U \subseteq C$, or $U \subseteq D$. **Proof :-** suppose that (X, τ, τ_{β}) has separation $X = C \setminus D$. Then $X = C \cup D$, where *C* and *D* are two nonempty disjoint sets such that $[C \cap \tau - cl(D)] \cup [\tau_{\beta} - cl(C) \cap D] = \emptyset$. Since $C \cap D = \emptyset$, we have $C = D^c$ and $D = C^c$. Now, $[(C \cap U) \cap \tau - cl(D \cap U)] \cup [\tau_{\beta} - cl(C \cap U) \cap (D \cap U)] \subseteq [C \cap \tau - cl(D)] \cup [\tau_{\beta} - cl(C) \cap D] = \emptyset$.

Hence $U = (C \cap U) \setminus (D \cap U)$ is separation of U.

Since *U* is connected, So we have either $C \cap U = \emptyset$ or $D \cap U = \emptyset$.

Consequently $U \subseteq C^c$ or $U \subseteq D^c$. Therefore $U \subseteq C$ or $U \subseteq D$.

PROPOSITION (3.5):- if $U = \bigcup U_i$ be any family of connected sets in bitopological space (X, τ, τ_β) with $\bigcap U_i \neq \emptyset$, then U is connected set in (X, τ, τ_β) .

Proof:- Let $U = \bigcup U_i$ be any family of connected sets in bitopological space (X, τ, τ_β) for each $i \in I$, where *I* be index set with $\cap U_i \neq \emptyset$. Suppose that *U* is disconnected. Then $U = C \cup D$, where *C* and *D* are two nonempty disjoint sets such that $[[C \cap \tau - cl(D)] \cup [\tau_\beta - cl(C) \cap D]] = \emptyset$ Since U_i is connected and $U_i \subseteq U$, we have $U_i \subseteq C$ or $U_i \subseteq D$. Therefore $\bigcup U_i \subseteq C$ or $\bigcup U_i \subseteq D$, hence $U \subseteq C$ or $U \subseteq D$. Since $\cap U_i \neq \emptyset$, we have $x \in (\cap U_i)$. therefore $x \in U_i$ for all *i*. Consequently, $x \in U$. So either $x \in C$ or $x \in D$. Suppose $x \in C$. since $C \cap D = \emptyset$, so we have $x \notin D$ therefore $U \not \subset D$ and $U \subseteq C$ This is contradiction with the assumption of $U = C \cup D$. So *U* is connected.

4- CONTINUOUS FUNCTION

Definition (4.1):- A function $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ is said to be continuous if $f^{-1}(U)$ is $(\tau, \tau_{\beta}) - \beta$ -open in X for each ω -open set U of Y.

PROPOSITION (4.2): A function $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ is continuous iff $f^{-1}(U)$ is $(\tau, \tau_{\beta}) - \beta$ -closed for each ω -closed set in Y **Proof :** Suppose that f is continuous and let U be ω -closed set in Y. Then U^{c} is ω -open set in Y. since f is continuous, So we have $f^{-1}(U^{c})$ is $(\tau, \tau_{\beta}) - \beta$ -open in X. Consequently, $f^{-1}(U)$ is $(\tau, \tau_{\beta}) - \beta$ -closed in X. Now, let $f^{-1}(U)$ is $(\tau, \tau_{\beta}) - \beta$ -closed in X for each ω -closed set U in Y. Let V be ω -open set in Y. Then V^{c} be ω -closed set in Y. Therefore by our assumption, $f^{-1}(V^{c})$ is $(\tau, \tau_{\beta}) - \beta$ -closed in X.

PROPOSITION (4.3): A function $f: (X, \tau) \to (Y, \omega)$ is continuous iff $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ is continuous.

Proof:- Suppose that $f: (X, \tau) \to (Y, \omega)$ is continuous.

So we have $f^{-1}(U)$ is τ - open set . since every τ - open set is $(\tau, \tau_{\beta}) - \beta$ -open set Then $f^{-1}(U)$ is $(\tau, \tau_{\beta}) - \beta$ -open set.

Therefore $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ is continuous.

Conversely, let $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ is continuous function.

Let U be any ω -open set in (Y, V).

Since $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ is continuous.

So we have $f^{-1}(U)$ is $(\tau, \tau_{\beta}) - \beta$ -open set (X, τ, τ_{β}) .

Therefore $f^{-1}(U)$ is τ - open. This completes the proof.

PROPOSITION (4.4):- if $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ is continuous and

 $g: (Y, \omega, \omega_{\beta}) \to (Z, \varphi, \varphi_{\beta})$ is continuous then $g \circ f$ is continuous.

Proof :- let *U* be any ω -open set in $(Z, \varphi, \varphi_{\beta})$.

Since g is continuous function, then $g^{-1}(U)$ is $(\omega, \omega_{\beta}) - \beta$ -open in $(Y, \omega, \omega_{\beta})$.

So $g^{-1}(U)$ is ω -open in $(Y, \omega, \omega_{\beta})$.

Since f is continuous function.

So $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is $(\tau, \tau_{\beta}) - \beta$ -open set (X, τ, τ_{β}) .

PROPOSITION (4.4):- let $f: (X, \tau, \tau_{\beta}) \to (Y, \omega, \omega_{\beta})$ be continuous function then the image of connected space under f is connected.

Proof:- let $f:(X,\tau,\tau_{\beta}) \to (Y,\omega,\omega_{\beta})$ be continuous function and let X be connected space.

Suppose that Y is disconnected.

Then $Y = C \cup D$ where C is ω -open set in Y, D is τ_{β} -open in Y.

Since f is continuous, so we have $f^{-1}(C)$ is $(\tau, \tau_{\beta}) - \beta$ -open set and

 $f^{-1}(D)$ is $(\tau, \tau_{\beta}) - \beta$ -open set in X.

Also $X = f^{-1}(C) \cup f^{-1}(D)$, where $f^{-1}(C)$ and $f^{-1}(D)$ are two nonempty disjoint sets.

Then X is disconnected. this is contradiction to fact that X is connected. therefore Y is connected.

References:-

- M.E.Abd El-Monsef,S.N.El-Deep and R.A.Mahmoud, β-open set and βcontinuous mappings, Bull.Fac.Sci.Assint Univ.,12(1983)77-90.
- 2- D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986)24-32.
- **3-** F.H.Khedr,S.M.Al-Areefi and T.Noiri, Precontinuity and semi-precontinuity in bitopological spaces ,Indian J.Pure Appl.Math.,23(1992),625-633.
- 4- V.Popa and T.Noiri,On weakly β- continuous functions.An.Univ.Timisoara.Ser.stiint.Mat.,32(1994)83-92.
- 5- J.C. Kelly, Bitopological spaces, proc. London Math. Society, 13 (1963), 71-89.