On Credibility (sub, super) Martingale

BY

Noori Farhan AL-Mayahi and Firas Hussean Maghool

AL- Qadisiya University

College of Computer sciences and Mathematic

Department of mathematics.

nafm2005@yahoo.com & h.mfiras@yahoo.com

Abstract: In this paper introduced a Credibility (sub, super) Martingale and we define θ -Brownian motion and studied some properties on Credibility martingale.

Keyword: Credibility martingale, Credibility measure, θ -Brownian motion, convex function.

1-Preliminaries Definition(1.1)[1]: A family F of subsets of a set Ω is called a σ -field on a set Ω , if (1) $\Omega \in F$ (2) If $A \in F$, then $A^c \in F$ (3) If $A_n \in F, n = 1, 2, \dots$ then $\bigcup_{n=1}^{\infty} A_n \in F$

A measurable space is a pair (Ω, F) , where Ω is a set and F is σ -field on Ω A subset A of Ω is called measurable (measurable with respect to the σ -field F), if $A \in F$ i.e. any member of F is called a measurable set. It is clear to show that

(1)
$$\phi \in F$$
. for $\Omega \in F$ and $\phi = \Omega^c \in F$
(2) If $A_1, \dots, A_n \in F$, then $\bigcup_{i=1}^n A_i \in F$ and $\bigcap_{i=1}^n A_n \in F$

Definition(1.2)[1]:Let G be a collection of subsets of a set Ω . The smallest σ -field F containing G is called the σ -field generated by G, and it is denoted by $\sigma(G)$, i.e. $F = \sigma(G)$.

Let (Ω, τ) be a topological space. the σ -field generated by τ is called the Borel σ -field and it is denoted by $\beta(\Omega)$, i.e. $\beta(\Omega) = \sigma(\tau)$, the member of $\beta(\Omega)$ are called Borel sets of Ω .

Definition(1.3) : Let(Ω ,*F*) be a measurable space, a set function

 θ : $F \rightarrow [0,1]$ is said to be Credibility measure if it is satisfies the following axioms:

(1) $\theta(\Omega) = 1$ (Normality)

(2) $\theta(A) + \theta(A^c) = 1$ for all $A \in F$ (self – Duality).

(3) For every sequence $\{A_n\}$ in *F*, we have $\theta(\bigcup_{n=1}^{\infty} A_n) = \sup\{\theta(A_n) : n = 1, 2, ...\}$

if $\theta(A_n) \le 0.5$ (Maximality).

A Credibility space is a tripe (Ω, F, θ) where Ω is a set, F is a σ -field, θ Credibility measure on F.

Definition(1.4)[3]: Let (Ω, F, θ) be a Credibility space, a function $X: \Omega \to R$ is called a Credibility variable if X is measurable function($X^{-1}(A) \in F \quad \forall A \in \beta(R)$).

Definition(1.5)[3]: The Credibility variable $X_1, X_2, ..., X_m$ are said to be independent if $\theta(\bigcap_{i=1}^m (x_i \in \beta_i)) = \min_{1 \le i \le m} \theta(x_i \in \beta_i)$ for any Borel sets $\beta_1, \beta_2, ..., \beta_m$ of real numbers.

Definition(1.6): Let X be a Credibility variable on (Ω, F, θ) . Then the expected value of X defined by

$$E(X) = \int_{\Omega} X d\theta = \min_{a \in A \subset \Omega} \{X(a), \theta(A)\}$$

and the variance defined by $E(X - E(X))^2$.

Remark: we say X is integrable if $E(X) < \infty$.

Definition(1.7)[1]: Let $A \subseteq \Omega$. A function $l_A : \Omega \to R$ defined by

$$l_A(w) = \begin{cases} 1 & , w \in A \\ 0 & , w \notin A \end{cases}$$

Is called indicator function or (characteristic function) of A.

Definition(1.8)[2][4]: Let *T* be index set and let (Ω, F, θ) be a Credibility space, a Credibility stochastic process is a function from $T \times (\Omega, F, \theta)$ to the set of real number. That is Credibility stochastic process $X_t(w)$ is a function of two variables such that the function $X_{t^*}(w)$ is a Credibility variable for each t^*

When *T* is a countable set the Credibility stochastic process is said to be a discrete-time process, if *T* is interval of the real line, the Credibility stochastic process is said to be continuous-time process. For instance $\{X_n, n = 0, 1, ...\}$ is a discrete-time Credibility process indexed by the non negative integers, while $\{X_i, t \ge 0\}$ is a continuous-time process indexed by the non negative real numbers. Thus, a Credibility stochastic process is a family of Credibility variables that describes the evolution through time of some process.

Definition(1.9)[2]: A filtration $\{F_t\}_{t \in T}$ is a sequence of sub σ -field

of F such that for all $S < t, F_s \subseteq F_t$.

Definition(1.10): A Credibility stochastic process $X = \{X_t\}_{t \in T}$ is adapted to the filtration $\{F_t\}_{t \in T}$ if for $t \in T$, X_t is F_t -measurable.

Definition(1.11)[1]:Let (Ω, F, θ) be a Credibility space .A condition is said to be hold almost every where with respect the Credibility measure θ ,written a.e. $[\theta]$ (or simply a.e. if θ is understood), if there is a set $B \in F$ of θ -measure 0, (i.e. $\theta(B)=0$) such that the condition holds outside of B. **Definition(1.12):**A Credibility stochastic process $X = (X_t)_{t \in T}$ is a said to

be a sub martingale (respectively a super martingale) with respect to the filtration $\{F_t\}_{t\in T}$ if

- (1) X is adapted to the filtration $\{F_t\}_{t\in T}$.
- (2) $E(|X_t|) < \infty$ for $t \in T$ i.e. $(X_t \text{ is integrable } t \in T)$
- (3) $E(X_t | F_s) \ge X_s$ a.e (resp. $E(X_t | F_s) \le X_s$ a.e) $t \in T$, t > s.

A Credibility stochastic process $X = (X_t)_{t \in T}$ is martingale iff it is both a sub-and super martingale with respect to the filtration $\{F_t\}_{t \in T}$.

Definition(1.13): A Credibility stochastic process X_t is said to have independent increment if $X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, ..., X_{t_k} - X_{t_{k-1}}$ are independent Credibility variable for any time $t_0 < t_1 < ... < t_n$.

Definition (1.14): A Credibility stochastic process X is called normally distributed if it has function is defined as $\mu(x) = 2\left(1 + \exp\left(\frac{|x-e|}{\sqrt{6\sigma}}\right)\right)^{-1}$, where

 $x \in R, \sigma > 0$ denoted by $N(e, \sigma^2)$.

Definition(1.15): A Credibility stochastic process B_t is said to be θ -Brownian motion (also called wiener process) if

(1)
$$B_0 = 0$$
.

 $(2) E(B_t) = 0 \forall t > 0.$

- (3) B_t has stationary and independent increment.
- (4) every increment $B_{t+s} B_s$ is a normally distributed Credibility variable with expected value e_t and variance $\sigma^2 t^2$.

Definition(1.16):The standard θ -Brownian motion is Credibility stochastic process $(B_t)_{t \in T}$ such that

- (1) $B_0 = 0$.
- (2) For any finit sequence of time $t_0 < t_1 < ... < t_n$ the increment

 $B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}}$ are independent

(3) For any time 0 < s < t, $B_t - B_s$ is normally distributed with $E(B_t - B_s) = 0$ and $var(B_t - B_s) \le t - s$.

Remark: from define (1.15) and (1.16) have the flowing properties $E(B_t^2) = t$, $E(B_t - B_s) = 0$, $E(B_t - B_s)^2 \le t - s$, $\forall t > s$.

2-Main result

Definition(2.1)[1]: A function $g: R \rightarrow RI$ s convex function if

 $g(\lambda x + (1 - \lambda)y) \le \lambda g(X) + (1 - \lambda)g(y)$, $x, y \in \Re$ and $0 \le \lambda \le 1$

an important property of convex function is that they are always continuous.

We need the following fact a bout convex function for the proof of the next property. Let $x_1 < x_2$ and $y \in R$ then

$$\frac{g(x_2) - g(y)}{x_2 - y} \ge \frac{g(x_1) - g(y)}{x_1 - y} \qquad \dots \quad (i)$$

Now assume that $x_1 < y < x_2$ and let x_2 converge to y from a bove . the left side of (i) is bounded below ,and its value decreases as x_2 decreases to y .therefore the right derivative g^+ exists at y and

$$-\infty < g^+(y) = \lim_{x_2 \to y^+} \frac{g(x_2) - g(y)}{x_2 - y} < +\infty$$

Moreover $g(x) \ge g(y) + g^+(y)(x-y)$ $\forall x \in R$ Put $-\infty < g^+(y) = K < +\infty$ then $g(x) - g(y) \ge K(x-y)$... (ii)

Theorem(2.2): Let $g: R \to R$ be a convex function and let X and g(X)be integrable Credibility variable on (Ω, F, θ) for any sub σ -field G of *F* then $F(\sigma(X)) = \sigma(F(X))$ where $\sigma(X) = g \circ X$.

F then
$$E(g(X)) = g(E(X))$$
 where $g(X) = g$

Proof:

$$g(E(X)) = g(\int_{\Omega} Xd\theta) = g(\min_{a \in A \subset \Omega} \{X(a), \theta(A)\}) \ge \min_{a \in A \subset \Omega} \{g(X(a)), \theta(A)\} = E(g(X))$$

Then $g(E(X)) \ge E(g(X)) \dots (1).$

and since g is convex function, for (ii) and Replacing x with X and y with E(X), obtain $g(X) - g(E(X)) \ge K(X - E(X))$

Taking the expected value on both sides

$$E(g(X) - g(E(X)) \ge K(E(X) - E(X)) = 0$$

$$\therefore E(g(X)) \ge g(E(X)) \dots (2)$$

Then from (1) and (2) we have E(g(X)) = g(E(X)).

Theorem(2.3):Let X be G- measurable Credibility variable and g be convex function suppose X and g(X) be integrable and $sub \sigma$ -field $G \subset F$ then E(g(X | G)) = g(E(X | G)).

Proof: since g is convex function then g is continuous

 \Rightarrow g(X) is measurable then E(g(X | G) = g(X))

And since *X* is *G*-measurable then g(E(X | G) = g(X)) then

 $E(g(X \mid G)) = g(E(X \mid G)) \ .$

Theorem (2.4):Let $X = \{X_t, F_t\}_{t \in T}$ be a martingale (resp -sub martingle) and $g: R \to R$ a convex such that $g(X_t)$ is integrable for all t, then $\{g(X_t), F_t\}_{t \in T}$ is a martingale. **Proof**: By theorem (2.3) we have $E(g(X_t)/F_s) = g(E(X_t/F_s))$, t > s

Since X is martingale (resp-sub martingale) then

 $E(g(X_t) \mid F_s) = g(E(X_t \mid F_s)) = g(X_s).$

Example (2.5): If $\{X_t, F_t, \}_{t \in T}$ is martingale and $|X_t|^r, r \ge 1$ is integrable for

all t, then $\{|X_t|^r, F_t,\}_{t \in T}$ is a martingale.

Solution:

Since $|X_t|^r$, $r \ge 1$ is integrable then $E(|X_t|^r) < \infty$

will show that $|X_t|^r$ is convex function

 $g(\lambda x + (1 - \lambda)g(y)) = |\lambda x + (1 - \lambda)y|^r \qquad x, y \in \mathbb{R}, \quad 0 \le \lambda \le 1$

 $\leq \left| \lambda x \right|^r + \left| (1 - \lambda) y \right|^r \leq \lambda^r \left| x \right|^r + (1 - \lambda)^r \left| y \right|^r$

 $\leq \lambda |x|^{r} + (1 - \lambda) |y|^{r} \leq \lambda g(x) + (1 - \lambda)g(y)$

Then $|X_t|^r$ is convex function and from theorem (2.4) have

 $\{|X_t|^r, F_t, \}_{t \in T}$ is a martingale.

Theorem(2.6) A θ -Brownian motion is a super martingale.

Proof:

- $(1) E(|B_t|)_{t\geq 0} < \infty .$
- (2) $\{B_t, F_t\}$ is adapted to the filtration on $\{F_t\}_{t\geq 0}$.

(3)
$$E(B_t | F_s) = E((B_t - B_s) + B_s | F_s), t > s$$

 $\leq E(B_t - B_s | F_s) + E(B_s | F_s) \text{ and } B_t - B_s \text{ is independent of } F_s$
 $\Rightarrow E(B_t - B_s | F_s) \leq E(B_t - B_s) = 0 \Rightarrow E(B_t | F_s) \leq B_s$

 $\therefore B_t$ is a super martingale.

Theorem(2.7): If B_t is super martingale with respect to the filtration F_t then $\{\exp(B_t), F_t, t \ge 0\}$ is super martingale.

Proof: since $\exp(B_t)$ is convex function and integrable $\operatorname{on}(\Omega, F, \theta)$ then By theorem (2.4) we have

 $E(\exp(B_t) | F_s) = \exp(E(B_t) | F_s) \le \exp(B_s) \quad , t > s$

 $\therefore \exp(B_t)$ is a sub martingale.

Example(2.8): If B_t is super martingale with respect to the filtration F_t then B_t^2 is not super martingale.

Solve :

$$E(B_t^2 | F_s) = E((B_t - B_s + B_s)^2 | F_s)$$

$$\leq E((B_t - B_s)^2 | F_s) + E(B_t^2 | F_s) + 2E((B_t - B_s)B_s | F_s)$$

By using independent $E((B_t - B_s)^2 | F_s) \le E(B_t - B_s)^2 = t - s$ and $E(B_s^2 | F_s) \le B_s^2$, $E((B_t - B_s)B_s | F_s) = B_s E(B_t - B_s | F_s) \le B_s E(B_t - B_s) = 0$ thus $E(B_t^2 | F_s) \le B_s^2 + t - s$

Example(2.9): If B_t is super martingale then $B_t^2 - t$ is super martingale. **Solve:** $E(B_t^2 - t | F_s) = E((B_t - B_s + B_s)^2 - t) | F_s), \quad t > s$ $E((B_t - B_s)^2 + 2B_tB_s - B_s^2 - t | F_s) \le E((B_t - B_s)^2 | F_s) + 2E(B_tB_s | F_s) - B_s^2 - t$ since $E((B_t - B_s)^2 | F_s) = E(B_t - B_s)^2 = t - s$ and $E(B_t | F_s) \le B_s$ then we have $E(B_t^2 - t | F_s) \le t - s + B_s^2 - t = B_s^2 - s$

Theorem (2.10): If $X = \{B_t, F_t\}_{t \ge 0}, Y = \{W_t, F_t\}_{t \ge 0}$ are two θ – Brownian motion and λ_1, λ_2 are positive constants then $\lambda_1 X + \lambda_2 Y = \{\lambda_1 B_t + \lambda_2 W_t, Ft\}_{t \ge 0}$ is a super martingale.

Proof: since
$$|\lambda_1 B_t + \lambda_2 W_t| \leq \lambda_1 |B_t| + \lambda_2 |W_t|$$

 $E(|\lambda_1 B_t + \lambda_2 W_t|) \leq \lambda_1 E(|B_t|) + \lambda_2 E(|W_t|) < \infty$
 $E(\lambda_1 B_t + \lambda_2 W_t | F_s) \leq \lambda_1 E(B_t | F_s) + \lambda_2 E(W_t | F_s)$
 $\leq \lambda_1 B_s + \lambda_2 W_s$

 $\therefore \lambda_1 X + \lambda_2 Y = \{\lambda_1 B_t + \lambda_2 W_t, F_t\}_{t \ge 0}$ is a super martingale.

<u>Reference</u>

[1] R.B .Ash, "Real Analysis and probability", university of Illinois,

Academic press(1972).

[2] Steven E. Shreve "Brownian Motion and stochastic Calculus"2 nd,N-389-97655-8 Springer-Verlag New York ,(1997).

[3] B. Liu," Foundation of Uncertainty Theory", Beijing 100084, China, UTLAB,(2006).

[4] Xiaowei Chen," American Option Pricing Formula for Uncertain Financial Market", National Natural Science Foundation of China Grant No.60874067(2011).