Properties of The Function ϕ and The Composition Operator C_{ϕ} Induced by The Function ϕ By
 Aqeel Mohammed Hussain
 Department of Mathematics
 College of Education
 University of Qadisyia

Abstract

Let U denote the unit ball in the complex plane, the Hardy space H^{2} is the set of functions $f(z)=\sum_{n=0}^{\infty} f^{\wedge}(n) z^{n}$ holomorphic on U such that $\sum_{n=0}^{\infty}\left|f^{\wedge}(n)\right|^{2}<\infty$ with $f^{\wedge}(n)$ denotes then the Taylor coefficient of f.

Let ψ be a holomorphic self-map of U , the composition operator C_{ψ} induced by ψ is defined on H^{2} by the equation $$
\mathrm{C}_{\psi} \mathrm{f}=\mathrm{f} \circ \psi \quad\left(\mathrm{f} \in \mathrm{H}^{2}\right)
$$

In this paper we have studied the composition operator induced by the automorphism ϕ and discussed the adjoint of the composition of the symbol ϕ.We look also for some known properties on composition operators and tried to see the analogue properties in order to show how the results are changed by changing the function ψ in U .

In order to make the work accessible to the reader, we have included some known results with the details of the proofs for some cases and proofs for the properties .

Introduction

This paper consists of two sections. In section one ,we are going to study the automorphism ϕ and properties of ϕ, and also discuss the interior and the exterior fixed points of ϕ and also discuss ϕ is a rotation around the origin and ϕ is elliptic and ϕ is a linear fractional transformation .

In section two, we are going to study the composition operator C_{ϕ} induced by the symbol ϕ and properties of C_{ϕ}, and also discuss the adjoint of composition operator C_{ϕ} induced by the symbol ϕ and also discuss C_{ϕ} is an invertible operator and C_{ϕ} is a unitary operator and define the eigenvalue of C_{ϕ}

Section One

The properties of the Function ϕ

we are going to study the automorphism ϕ and properties of ϕ, and also discuss the interior and the exterior fixed points of ϕ and also discuss ϕ is a rotation around the origin and ϕ is elliptic and ϕ is a linear fractional transformation .

Definition(1.1) : [4]

Let $\mathrm{U}=\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}|<1\}$ which is called unit ball in the complex plane C and $\partial \mathrm{U}=\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}|=1\}$ is called the boundary of U.

Definition (1.2):

For $\beta \in U$, define $\phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}(z \in U)$. Since the denominator equal zero only at $z=\frac{1}{2 \bar{\beta}}$, the function ϕ is holomorphic on the ball $\left\{|z|<\frac{1}{2|\beta|}\right\}$. Since $\beta \in U$, then this ball contains U. Hence ϕ take U into U and holomorphic on U .

Definition(1.3) : [10]
Let $\psi: U \rightarrow U$ be holomorphic map on U. We say that ψ is a conformal automorphism or automorphism of U if and only if ψ is bijective .

Remark (1.4) :

For $\beta \in \mathrm{U}, \phi$ is conformal automorphism or automorphism of U .

Definition(1.5) : [10]

A point $\mathrm{p} \in \mathrm{C}$ is a fixed point for the function ψ, if $\psi(\mathrm{p})=\mathrm{p}$.

Proposition (1.6) :

For $\beta \in \mathrm{U}$, then $0, \frac{1}{\bar{\beta}}$ are fixed points for ϕ.

Proof:

Let $\phi(z)=z$ that is $\frac{-3 z}{3-6 \bar{\beta} z}=z$, therefore $6 \bar{\beta} z^{2}-6 z=0$. Hence ϕ has two fixed points $\mathrm{z}_{1}=0, \mathrm{z}_{2}=\frac{1}{\bar{\beta}}$

Definition(1.7): [4]

Let $\psi: U \rightarrow U$ be holomorphic map on U with the fixed point r, then:

1) r is interior fixed point for ψ if $r \in U$
2) r is exterior fixed point for ψ if $r \notin U$

Proposition (1.8):

If $\phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}$, then 0 is interior fixed point and $\frac{1}{\bar{\beta}}$ is exterior fixed point for ϕ.

Proof:

Since ϕ has two fixed points $z_{1}=0, z_{2}=\frac{1}{\bar{\beta}},\left|z_{1}\right|=|0|=0<1$.Thus Z_{1} is interior fixed point.
Since $\beta \in U$, then $|\beta|<1$ and $|\bar{\beta}|=|\beta|<1$, therefore $\left|\frac{1}{\bar{\beta}}\right|=\left|\frac{1}{\beta}\right|=\frac{1}{|\beta|}>1$, hence $\left|z_{2}\right|=\left|\frac{1}{\bar{\beta}}\right|>1$. Thus z_{2} is exterior fixed point.

Remark(1.9) :

1 - For $\beta \in U, \phi^{-1}(z)=\frac{-3 z}{3-6 \bar{\beta} z}=\phi(z)$
2- For $\beta \in U$, then $\phi^{\prime}(0)=-1, \phi^{\prime}(\beta)=\frac{-9}{\left(3-6|\beta|^{2}\right)^{2}}$.

Definition(1.10) : [11]

Let $\psi: U \rightarrow U$ be holomorphic map on U. We say that ψ is a rotation around the origin if there exists $\lambda \in \partial U$ such that $\psi(z)=\lambda z \quad(z \in U)$

Proposition (1.11):

If $\beta=0, \phi(z)$ is a rotation a round the origin

Proof:

Since $\phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}$, since $\beta=0$, hence $\phi(z)=-z=\lambda z, \lambda=-1 \in \partial U$, then $\phi(z)$ is a rotation around the origin .

Theorem (1.12) : [11]

Let $\psi: \mathrm{U} \rightarrow \mathrm{U}$ be holomorphic map on U , then ψ is elliptic if and only if ψ is automorphism that has an interior fixed point.

Proposition (1.13) :

For $\beta \in \mathrm{U}, \phi$ is elliptic

Proof:

From (1.4), ϕ is automorphism, and from (1.8) ϕ has an interior fixed point, hence ϕ is elliptic .

Definition(1.14): [10]

A linear fractional transformation is a mapping of the form $\tau(z)=\frac{a z+b}{c z+d}$, where a, b, c, and d are complex numbers, and sometime is denoted it by $\tau_{\mathrm{A}}(\mathrm{z})$ where A is the non-singular 2×2 complex matrix $A=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$.

Proposition (1.15) :

ϕ is a linear fractional transformation .

Proof:

Since $\phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}=\frac{a z+b}{c z+d}$ such that $a=-3, b=0, c=-6 \bar{\beta}, d=3$ and a, b, c, and d are complex numbers and $\mathrm{A}=\left[\begin{array}{cc}-3 & 0 \\ -6 \bar{\beta} & 3\end{array}\right]$, hence by (1.14) ϕ is a linear fractional transformation .

Section Two

The Composition Operator C_{ϕ} Induced by The Function ϕ

we are going to study the composition operator C_{ϕ} induced by the symbol ϕ and properties of C_{ϕ}, and also discuss the adjoint of composition operator C_{ϕ} induced by the symbol ϕ and also discuss C_{ϕ} is an invertible operator and C_{ϕ} is a unitary operator and define the eigenvalue of C_{ϕ}

Definition(2.1): [4]

Let U denote the unit ball in the complex plane, the Hardy space H^{2} is the set of functions $\mathbf{f}(\mathbf{z})=\sum_{\mathbf{n}=\mathbf{0}}^{\infty} \mathbf{f}^{\wedge}(\mathbf{n}) \mathbf{z}^{\text {n }}$ holomorphic on U, such that $\sum_{\mathrm{n}=0}^{\infty}\left|\mathbf{f}^{\wedge}(\mathrm{n})\right|^{2}<\infty$ with $\mathrm{f}^{\wedge}(\mathrm{n})$ denotes then the Taylor coefficient of f.

Remark (2.2) : [1]

We can define an inner product of the Hardy space functions as follows:
$f(z)=\sum_{n=0}^{\infty} f^{\wedge}(n) z^{n}$ and $g(z)=\sum_{n=0}^{\infty} g^{\wedge}(n) z^{n}$, then the inner product of f and g is:
$\langle f, g\rangle=\sum_{n=0}^{\infty} f^{\wedge}(n) \overline{g^{\wedge}(z)}$

Definition (2.3): [10]

Let $\alpha \in U$ and define $k_{\alpha}(z)=\frac{1}{1-\overline{\alpha z}}(z \in U)$. Since $\alpha \in U$ then $|\alpha|<1$, hence the geometric series $\sum_{\mathrm{n}=\mathrm{o}}^{\infty}|\boldsymbol{\alpha}|^{2 \mathrm{n}}$ is convergent and thus $\mathrm{k}_{\alpha} \in \mathrm{H}^{2}$ and $\mathrm{k}_{\alpha}(\mathrm{z})=\bar{\alpha} \mathrm{z}^{\mathrm{n}}$.

Definition(2.4) : [4]

Let $\psi: U \rightarrow U$ be holomorphic map on U, the composition operator C_{ψ} induced by ψ is defined on H^{2} as follows $\mathrm{C}_{\psi} \mathrm{f}=\mathrm{f} \circ \psi\left(\mathrm{f} \in \mathrm{H}^{2}\right)$

Definition(2.5) : [2]

Let T be any bounded operator on a Hilbert space H , then the norm of an operator T is defined by $\|T\|=\sup \{\|T \mathbf{f}\|: f \in \mathbf{H},\|f\|=1\}$.

Littlewood's Subordination Principle (2.6) : [11]

Let $\psi: \mathrm{U} \rightarrow \mathrm{U}$ be holomorphic map on U with $\psi(0)=0$, then for each $\mathrm{f} \in \mathrm{H}^{2}, \mathrm{f} \circ \psi \in \mathrm{H}^{2}$ and $\|f \circ \psi\| \leq\|f\|$.
The goal of this theorem above $\mathrm{C}_{\psi}: \mathrm{H}^{2} \rightarrow \mathrm{H}^{2}$

Proposition(2.7) :

If $\phi(\mathrm{z})=\frac{-3 \mathrm{z}}{3-6 \bar{\beta} \mathrm{z}}$, then for each $\mathrm{f} \in \mathrm{H}^{2}, \mathrm{f} \circ \phi \in \mathrm{H}^{2}$ and $\|\mathrm{f} \circ \phi\| \leq\|\mathrm{f}\|$

Proof:

Since $\phi: U \rightarrow U$ be holomorphic map on U with $\phi(0)=0$ by (1.6) , then by (2.6)
$\mathrm{f} \in \mathrm{H}^{2}, \mathrm{f} \circ \phi \in \mathrm{H}^{2}$ and $\|\mathrm{f} \circ \phi\| \leq\|\mathrm{f}\|$, hence $\mathrm{C}_{\phi}: \mathrm{H}^{2} \rightarrow \mathrm{H}^{2}$

Remark (2.8) : [4]

1) One can easily show that $\mathrm{C}_{\kappa} \mathrm{C}_{\psi}=\mathrm{C}_{\psi \kappa \kappa}$ and hence $\mathrm{C}_{\psi}^{\mathrm{n}}=\mathrm{C}_{\psi} \mathrm{C}_{\psi} \cdots \mathrm{C}_{\psi}$
$=C_{\psi \circ \psi \circ \cdots \circ \psi}=C_{\psi_{n}}$
2) C_{ψ} is the identity operator on H^{2} if and only if ψ is identity map from U into U and holomorphic on U .
3) It is simple to prove that $\mathbf{C}_{\kappa}=\mathbf{C}_{\psi}$ if and only if $\kappa=\psi$.

Theorem (2.9) : [11]

Let $\psi: U \rightarrow U$ be holomorphic map on $U . C_{\psi}$ is an invertible operator on H^{2} if and only if ψ automorphism of U and $C_{\psi}^{-1}=C_{\psi^{-1}}$

Proposition(2.10) :

C_{ϕ} is an invertible operator on H^{2}

Proof:

Since ϕ is automorphism of U by (1.4), hence \mathbf{C}_{ϕ} is an invertible operator on H^{2}.

Theorem (2.11) : [5]

$\mathrm{V}_{\alpha \in \mathrm{U}}\left\{\mathrm{K}_{\alpha}\right\}$ forms a dense subset of H^{2}.

Definition(2.12): [12]

Let H^{∞} be the set of all bounded holomorphic function on U .

Theorem (2.13) : [10]

Let $\psi: U \rightarrow U$ be holomorphic map on U, then for all $\alpha \in U$

$$
\mathbf{C}_{\psi}^{*} \mathbf{K}_{\alpha}=\mathbf{K}_{\psi(\alpha)}
$$

Definition(2.14): [6]

Let $\mathrm{g} \in \mathrm{H}^{\infty}$, the Toeplits operator T_{g} is an operator on H^{2} given by :

$$
\left(\mathrm{T}_{\mathrm{g}} \mathrm{f}\right)(\mathrm{z})=\mathrm{g}(\mathrm{z}) \mathrm{f}(\mathrm{z}) \quad\left(\mathrm{f} \in \mathrm{H}^{2}, \mathrm{z} \in \mathrm{U}\right)
$$

For each $\mathrm{f} \in \mathrm{H}^{2}$, it is well- know that $\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}=\mathrm{T}_{\overline{\mathrm{h}}} \mathrm{f}$, such that $\mathrm{h} \in \mathrm{H}^{\infty}$.

Proposition(2.16):

Let $\beta \in \mathrm{U}$, then $\mathrm{C}_{\phi}^{*}=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{T}_{\mathrm{h}}^{*}$ where $\mathrm{h}(\mathrm{z})=1-2 \bar{\beta} \mathrm{z}, \mathrm{g}(\mathrm{z})=1, \gamma(\mathrm{z})=\frac{6 \beta-3 \mathrm{z}}{3}$

Proof:

By (2.15), $T_{h}^{*} f=T_{\bar{h}} f$ for each $f \in H^{2}$. Hence for all $\alpha \in U$,

$$
\left\langle\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}, \mathrm{k}_{\alpha}\right\rangle=\left\langle\mathrm{T}_{\overline{\mathrm{h}}} \mathrm{f}, \mathrm{k}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~T}_{\overline{\mathrm{h}}}^{*} \mathrm{k}_{\alpha}\right\rangle \cdots \cdots(2-1)
$$

On the other hand,

$$
\left\langle\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}, \mathrm{k}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~T}_{\mathrm{h}} \mathrm{k}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~h}(\alpha) \mathrm{k}_{\alpha}\right\rangle \cdots \cdots(2-2)
$$

From (2-1) and (2-2) one can see that $\mathrm{T}_{\overline{\mathrm{h}}}^{*} \mathrm{k}_{\alpha}=\mathrm{h}(\alpha) \mathrm{k}_{\alpha}$. Hence $\mathrm{T}_{\mathrm{h}}^{*} \mathrm{k}_{\alpha}=\overline{\mathrm{h}(\alpha)} \mathrm{k}_{\alpha}$.
Calculation give :

$$
\text { But } \overline{\mathrm{V}_{\alpha \in \mathrm{U}}\left\{\mathrm{~K}_{\alpha}\right\}}=\mathrm{H}^{2} \text {, then } \mathrm{C}_{\phi}^{*}=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{T}_{\mathrm{h}}^{*}
$$

Definition (2.17) : [

Let T be an operator on a Hilbert space H, T is called unitary operator if $\mathrm{T} \mathrm{T}^{*}=\mathrm{T}^{*} \mathrm{~T}=\mathrm{I}$, and T is called normal operator if $\mathrm{T} \mathrm{T}^{*}=\mathrm{T}^{*} \mathrm{~T}$.

Theorem (2.18) : [9]
Let $\psi: U \rightarrow U$ be holomorphic on U, then C_{ψ} is normal operator if and only if $\psi(z)=\lambda z$ for some $\lambda,|\lambda| \leq 1$

$$
\begin{aligned}
& \mathrm{C}_{\phi}^{*} \mathbf{k}_{\alpha}(\mathrm{z})=\mathbf{k}_{\phi(\alpha)}(\mathbf{z}) \\
& =\frac{1}{1-\overline{\phi_{\beta}(\alpha) z}}=\frac{1}{1+\frac{3 \bar{\alpha} z}{3-6 \beta \bar{\alpha}}} \\
& =\frac{1}{\frac{3-6 \beta \bar{\alpha}+3 \overline{\alpha z}}{3-6 \beta \bar{\alpha}}}=\frac{3-6 \beta \bar{\alpha}}{3-\bar{\alpha}(6 \beta-3 z)}=\frac{(1-2 \alpha \bar{\beta})}{1-\bar{\alpha}\left(\frac{6 \beta-3 z}{3}\right)} \\
& =\overline{1-2 \alpha \bar{\beta}) \cdot(1) \cdot \frac{1}{1-\bar{\alpha}\left(\frac{6 \beta-3 z}{3}\right)}} \\
& =\overline{\mathrm{h}(\alpha)} \cdot \mathrm{T}_{\mathrm{g}} \mathrm{~K}_{\alpha}(\gamma(\mathrm{z}))=\mathrm{T}_{\mathrm{g}} \overline{\mathrm{~h}(\alpha)} \mathrm{K}_{\alpha}(\gamma(\mathrm{z}))
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}(\mathrm{z}) \text {, therefore } \\
& \mathrm{C}_{\phi}^{*} \mathrm{k}_{\alpha}(\mathrm{z})=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{T}_{\mathrm{h}}^{*} \mathrm{k}_{\alpha}(\mathrm{z}) .
\end{aligned}
$$

Theorem (2.19) :

Let $\psi: U \rightarrow U$ be holomorphic map on U, then C_{ψ} is unitary if and only if $\psi(z)=\lambda z$ for some $\lambda,|\lambda|=1$

Proof:

Suppose C_{ψ} is unitary, hence by (2.17) $\mathrm{C}_{\psi} \mathrm{C}_{\psi}{ }^{*}=\mathrm{C}_{\psi}{ }^{*} \mathrm{C}_{\psi}=\mathrm{I}$, hence $\mathrm{C}_{\psi} \mathrm{C}_{\psi}{ }^{*}=\mathrm{C}_{\psi}{ }^{*} \mathrm{C}_{\psi}$, hence C_{ψ} is normal operator, hence by $(2.18) \psi(z)=\lambda z$ for some $\lambda,|\lambda| \leq 1$. It is enough to show that $|\lambda|=1$ $\mathrm{C}_{\psi}{ }^{*} \mathrm{C}_{\psi} \mathrm{K}_{\beta}(\mathrm{z})=\mathrm{C}_{\psi}^{*} \mathrm{~K}_{\beta}(\psi(\mathrm{z}))=\mathrm{K}_{\psi(\beta)}(\psi(\mathrm{z}))=\frac{1}{1-\overline{\psi(\beta)} \psi(\mathrm{z})}=\frac{1}{1-\bar{\lambda} \bar{\beta} \lambda \mathrm{z}}=\frac{1}{1-|\lambda|^{2} \bar{\beta} \mathrm{z}}$. On the other hand $C_{\psi}{ }^{*} C_{\psi} K_{\beta}(z)=K_{\beta}(z)$, hence $\frac{1}{1-|\lambda|^{2} \bar{\beta} z}=K_{\beta}(z)=\frac{1}{1-\bar{\beta} z}$. Thus $|\lambda|^{2} \bar{\beta}=\bar{\beta}$, then $|\lambda|=1$.

Conversely, Suppose is unitary $\psi(z)=\lambda z$ for some $\lambda,|\lambda|=1$. For $\beta \in U$, for every $z \in U$
$C_{\psi}^{*} C_{\psi} K_{\beta}(z)=C_{\psi}^{*} K_{\beta}(\psi(z))=K_{\psi(\beta)}(\psi(z))=\frac{1}{1-\overline{\psi(\beta)} \psi(\mathrm{z})}=\frac{1}{1-\bar{\lambda} \bar{\beta} \lambda z}=\frac{1}{1-|\lambda|^{2} \bar{\beta} z}=\frac{1}{1-\bar{\beta} z}=K_{\beta}(z)$.
Moreover, for every $\mathrm{z} \in \mathrm{U}$
$\mathrm{C}_{\psi} \mathrm{C}_{\psi}{ }^{*} \mathrm{~K}_{\beta}(\mathrm{z})=\mathrm{C}_{\psi} \mathrm{K}_{\psi(\beta)}(\mathrm{z})=\mathrm{K}_{\psi(\beta)}(\psi(\mathrm{z}))=\frac{1}{1-\overline{\psi(\beta)} \psi(\mathrm{z})}=\frac{1}{1-\bar{\lambda} \bar{\beta} \lambda \mathrm{z}}=\frac{1}{1-|\lambda|^{2} \bar{\beta} \mathrm{z}}=\frac{1}{1-\bar{\beta} \mathrm{z}}=\mathrm{K}_{\beta}(\mathrm{z})$.
hencee $\mathrm{C}_{\psi} \mathrm{C}_{\psi}{ }^{*}=\mathrm{C}_{\psi}{ }^{*} \mathrm{C}_{\psi}=\mathrm{I}$ on the family $\left\{\mathrm{K}_{\alpha}\right\}_{\alpha \in \mathrm{U}}$. But by (2.11) $\mathrm{V}_{\alpha \in \mathrm{U}}\left\{\mathrm{K}_{\alpha}\right\}$ forms a dense subset of H^{2}, hence $\mathrm{C}_{\psi} \mathrm{C}_{\psi}{ }^{*}=\mathrm{C}_{\psi}{ }^{*} \mathrm{C}_{\psi}=\mathrm{I}$ on H^{2}. Therefore C_{ψ} is unitary composition operator on H^{2}.

Proposition(2.20):

If $\beta=0$, then \mathbf{C}_{ϕ} is unitary composition operator .

Proof:

Since $\phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}$, since $\beta=0, \phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}=-z=\lambda z, \lambda=-1,|\lambda|=1$, hence by (2.19)
C_{ϕ} is unitary composition operator .

Definition (2.21) : [12]

Let $\psi: U \rightarrow U$ be holomorphic map on U, the eigenvalue equation for the composition operator κ is define by $\mathrm{C}_{\psi} \mathrm{f}=\kappa \mathrm{f}$ or $\mathrm{f} \circ \psi=\kappa \mathrm{f}$.

Theorem (2.22): [11]

Let $\psi: U \rightarrow U$ be holomorphic map on U, and that fixes the point $p \in U$ and suppose that $C_{\psi} f=\kappa f$ for some non-constant $f \in H^{2}$ and some $\kappa \in C$. Then $\kappa=\left(\psi^{\prime}(p)\right)^{n}$ for some $n=0,1,2, \ldots$

Proposition(2.23):

$(-1)^{n}$ is an eigenvalue of C_{ϕ} for some $\mathrm{n}=0,1,2, \ldots \ldots$

Proof:

Since $\phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}, \phi^{\prime}(z)=\frac{(3-6 \bar{\beta} z)(-3)-(-3 z)(-6 \bar{\beta})}{(3-6 \bar{\beta} z)^{2}}=\frac{-9}{(3-6 \bar{\beta} z)^{2}}$, and since ϕ fixed the point $0 \in \mathrm{U}$, and by $(2.22) \kappa=\left(\phi^{\prime}(0)\right)^{\mathrm{n}}=(-1)^{\mathrm{n}}$ is an eigenvalue of C_{ϕ} for some $\mathrm{n}=0,1,2, \ldots$

Definition (2.24) : [7]

The spectrum of an operator T on a Hilbert space H, denoted by $\sigma(T)$ is the set of all complex numbers λ for which $T-\lambda I$ is not invertible. The spectral radius of T, denoted by $r(T)$ is defined as $\mathrm{r}(\mathrm{T})=\sup \{|\lambda|: \lambda \in \sigma(\mathrm{T})\}$.

Theorem (2.25) : [5]

If $\psi: U \rightarrow U$ be holomorphic map on U, and ψ has interior fixed point p then $r\left(C_{\psi}\right)=1$.

Proposition (2.26) :

If $\phi(z)=\frac{-3 z}{3-6 \bar{\beta} z}$, then $r\left(C_{\phi}\right)=1$

Proof:

Since $\phi: U \rightarrow U$ be holomorphic map on U, and ϕ has interior fixed point 0 . By (2.25) $r\left(C_{\phi}\right)=1$.

REFERENCES

[1] Ahlfors, L.V. ,"Complex Analysis", Sec , Ed., McGraw-Hill Kogakusha Ltd , (1966).
[2] Appell, M.J., Bourdon , P.S. \& Thrall, J.J. ," Norms of Composition Operators on the Hardy Space" , Experimented Math ., pp.111-117, (1996).
[3] Berberian, S.K., " Introduction to Hilbert Space" ,Sec. Ed .,Chelesa publishing Com., New York , N.Y., (1976).
[4] Bourdon, P.S. \& Shapiro, J.H., "Cyclic Phenomena for Composition Operators", Math. Soc., (596), 125, (1999).
[5] Cowen ,C.C. "Linear Fraction Composition Operator on H^{2} ", Integral Equations Operator Theory ,11, pp. 151-160, (1988).
[6] Deddnes, J.A. "Analytic Toeplits and Composition Operators ", Con . J. Math. , vol (5), pp. 859865, (1972).
[7] Halmos , P.R ., "A Hilbert Space Problem Book " , Springer- Verlag , New York , (1982).
[8] Radjavi ,H \& Rosenthal, P.," Invariant Subspace" , Springer-Verlage, Berlin , Heidelberg , Newyork, (1973).
[9] Schwartz , H.J., " Composition Operator on H^{2} " , Ph .D.thesis.Univ.of Toled , (1969).
[10] Shapiro, J.H., " Composition operators and Classical Function Theory ", Springer- Verlage, New York, (1993).
[11] Shapiro, J.H., " Lectures on Composition operators and Analytic Function Theory " • www.mth.mus.edu./~shapiro / pubrit / Downloads / computer / complutro . pdf .
[12] Shapiro, J.H.," Composition operators and Schroders Functional Equation ", Contemporary Math., 213, pp.213-228, (1998).

> خواص الدالة ϕ و المؤثر التركيبي ${ }_{\phi}$ المتولد بـالدالة من قبل
> عقيل ححم حسين
> قسم الرياضيـات
> كلية التربية
> جامعة القادسية

(لمستخلص

$$
\text { النحليلية على U بحيث أن } \mathrm{C} \text { ب }{ }^{\wedge} \text { يرمز إلى معاملات تيلر النونية. }
$$

لنكن

$$
\mathrm{C}_{\psi} \mathrm{f}=\mathrm{f} \circ \psi \quad\left(\mathrm{f} \in \mathrm{H}^{2}\right) .
$$

 بالإضافة إلى ذلك نظرنا إلى بعض النتائج المعروفة وحاولنا الحصول على نتائج مناظرة لنتككن من ملاحظة كيفية تغير النتائج عندما تتنير الدالة التحليلية ψ. ومن أجل جعل مهمة القارئ أكثر سهولة، عرضنا بعض النتائج المعروفة عن المؤثرات التركيبية وعرضنا براهين مفصلة وكذللك بر هنا بعض النتائج.

