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ABSTRACT 

            In this paper, we study a functional analytical framework for a linear 

peridynamic model of  spring system in  one  dimension,Various properties of the 

peridynamic operators are examining  for general micromodulus,one this properties 

of  peridynamic operator are self-adjont.  
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1-INTRODUCTION 

The peridynamics,a continuum theory that employs a nonlocal model of force 

interaction. Specifically, the stress/strain relationship of classical elasticity is replaced 

by an integral operator that sums internal forces separated by a finite distance [1] .for 

a review of the recent applications of the peridynamic (PD) framework The 

peridynamic theory is alternative based on integral[3].The relation between general 

linear peridynamic model and the classical Navier equation[4].It  explained in [8] how 

the general state-based PD material model converges to the continuum elasticity 

model as the ratio of the PD horizon to effective length scale decreases, assuming that 

the underlying deformation is sufficiently smooth. 

 Rather differential equation the purpose of peridynamic theory is provide more 

generalizes or other framework than the classical theory for problems involving 

discontinuities or other singularities in the deformation the integral equation express 

nonlocal force model that describes long-rang material interaction the convergence 

peridynamic model to classical elasticity theory by the limit small the horzin, i.e 

δ 0  [9]. Such properties make Peridynamic theory  a powerful tool for modeling 

problems involving cracks, interfaces or defects.  

In this paper ,by mathematical analysis we discuss  some propertics of perdynamic 

model. The properties of the models depend crucially on the particular micromodulus 

functions used to specify the spring systems. we discussed the self –adjont of 

peridynamic operator.Since the operator is one-to-one we conclude  to  the  
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peridynamic operator is isomatry.By mathematical  analysis method which  indication 

the model is elasticity if the operator is self-adjoin .   

 

 

2-The peridynamic model[2] : 

          The peridynamic is the second-order partial integro-differential equation in time 

variable[ 4],,[5],[7]:   
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 where ρ denotes the mass density , u the displacement field of the body , f  the 

pairwise force function that describes the internal forces, and b an in homogeneity 

that collects all external forces per unit volume. By t >0, the time under consideration 

is denoted. and Rº denote the open ball of radius δ where δ>0 is the so-called 

peridynamic horizon of interaction such that :  
}`:{  xxxR 

is sub region of R(the set of real number)   Where 

The assumption of no explicit time dependence, and Newton’s third law (For every 

action, there is an equal and opposite reaction )lead to: 
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It is typical for the peridynamic model to require 
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A first-order approximation justifies for small relative displacements 
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with the stiffness tensor (or micromodulus function[12]) C =C(x, x`) and  

denoting forces in the reference configuration 0f without loss of generality, we may 

assume 0f since otherwise 0f can be incorporated into the right-hand side b in 

general, the stiffness tensor C is neither definite nor depending on only xx ̀  the 

length However, C has to be symmetric with respect to its arguments as well as with 

respect to its tensor structure such that 
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 view of (4) 

The stiffness tensor can be shown to read as: 
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For the special case of proportional materials the equation (8)take the form  : 
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The linear peridynamic equation of motion (1) now reads as 
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In this paper we discuss along with boundary condition( case steady –state ,one 

dimensional , homogenous and linear model) , the eq (9) and eq(1) reduces to: 
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We called   
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  is kernel function of the peridynamic integral operator 

which also determines the micromodulus function. 

 

3-Mathematical analysis for the peridynamic model[6 ][10] 

 

To set up a suitable functional setting to discuss  convergence properties of 

peridynamic model equations, we first make some definition  on the kernel 

function,[1 ]: 
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If we assume that u(x)  is sufficiently smooth ,by performing the Taylor extension, 

we can introduce an equivalent definition of  peridynamic operator[6] ,the equation 

(12) take the form: 
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 ,     k odd , since  the integrand is an odd function in 

xx ̀ 

The eq(14) become: 
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For all nk 2,...,6,4,2 . 

We denote  L  be form:  
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)(*  , and )(xu k  is the derivative of order k  

the   a real-valued and symmetric positive  vector which we can use to determine 

the right-hand side  of (15) for polynomial exact solutions ).(xu  

Definition (3.1): 

The space )(s dependent on the kernel function[4], consists of all the functions 

)()( 2 Lxu  such that                                
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We also define the corresponding inner product associated with the )(s  

 Norm: 
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 we use )(
s  to denote the dual space of )(s and 1  is vector. 

 

Remark (3.2): 

The norm is well defined since 1  is real-valued symmetric positive definite 

vector and it is uniformly bounded below by1. 

 

Lemma (3.3): 

The space )(s  is Hilbert space[11] corresponding to the inner product 

(.,.)
)(2 RS

 

  

Proof: 

Let { nu } be coushy sequence in )(s , by definition, it is equivalent to say 
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So by the completeness of , there exists an element )(2 Lv , such 

that 
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space is complete, and it is thus a Hilbert space )(S then  the 

 

Lemma (3.4):  

The peridynamic operator L is self-adjont operator on )(S . 1 L  isomatry 

from )()(  
 toSS .   

Proof:  

By  relation  
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Since the kernel function is symmetric i.e. `` xxxx    
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then  


L is self-adjoint 
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to prove 1 L  isometry from )(2 S to )(2 

S   

we  prove - 1


L
 
is one-to-one 
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