ON MAXIMAL CHAINS IN POSETS WITH GROUP ACTIONS

Abdul Aali J. Mohammad \&
Department of Mathematics
College of Education
University of Mosul

Received
15/11/2006

Abbas H. Kathim
Department of Mathematics
College of Science
University of Kirkuk

Accepted

21/02/2007

هدفنا الرئييس من هذا البهث درلمة للسلاسل الظمع في بعض المجموء ـت المرتبــة جزئيا والتي عليها افعل زمرية ولاظنا ان هنه الدرلسة تتطينا بعض المؤشرات عن نوعية هذه الافعل . لذاسنحتاج اله درلسةسلوك أفعل الزمر على السلاسل.

ABSTRACT

Our main purpose in this work is to study the maximal chains in group-posets to observe that this study gives us indications on the type of some group actions on posets. Therefore we shall study the behavior of the group actions on chains .

§. 1 Introduction :

For any group G and any set X, we say that G acts on X from the left if to each $g \in G$ and $x \in X$ there corresponds a unique element in X denoted by g_{x} (or some times $g x$) such that for all $x \in X$ and $g_{1}, g_{2} \in G$; (i) $e_{x}=x \quad$ (ii) ${ }^{g_{1}}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x$.

Such a set X with a left action of G on it , is called a left G-set, or simply a G-set. [13].

Since the concept of a group action of a group G on a set X began as a group homomorphism $\rho: \mathrm{G} \rightarrow \mathrm{S}_{1 \times 1}$, we can consider any element g in G as a permutation $g: X \rightarrow X$ with $g(x)={ }^{g} x$ for all $x \in X$. So this concept can be extended on sets with additional mathematical structure, with $\rho: \mathrm{G} \rightarrow \mathrm{isom}(\mathrm{X}, \mathrm{X})$ and the isomorphism related to the structure on X .

§. 2 Group-posets :

In this section we give the definition of the group actions on posets. This definition is slightly different from the definition given in [5].

Definition (2-1) :

Let G be a group and P a poset, we say that there is a left action of G on P if for every $g \in G$ and $p \in P$ there corresponds a unique element $g_{p} \in P$ such that for all $p, q \in P$ and $g, g_{1}, g_{2} \in G ;$
(i) ${ }^{\mathrm{e}} \mathrm{p}=\mathrm{p}$
(ii) $g_{2}\left(g_{1} p\right)=\left(g_{2} g_{1}\right) p$
(iii) if $p>q$ then $\left.g_{p}\right\rangle g_{q}$

Such a poset P with a left action of G on it , is called a left G-poset, (or simply a G-poset) . When condition (iii) is neglected, P is called a G-set . For more details see [7] , [9] and [10] .

Also, for any group G and poset P there is at least the trivial action which defined by : ${ }^{g} p=p$ for all $g \in G, p \in P$.

The following theorem shows that a group action on poset can be defined as a poset automorphism on P .

Theorem (2-2) :
Let G acts on the poset P. Then to each $g \in G$ there corresponds an automorphism ρ_{g} on P defined by :
$\rho_{\mathrm{g}}(\mathrm{p})={ }^{\mathrm{g}} \mathrm{p}$ for all $\mathrm{p} \in \mathrm{P}$. Also, the map $\rho: G \rightarrow$ Aut (P); defined by
$\rho(\mathrm{g})=\rho_{\mathrm{g}}$ for all $\mathrm{g} \in \mathrm{G}$ is a homomorphism called the corresponding homomorphism to the G action on P .

Proof:

Similar to the proof in [9].

Proposition (2-3) :

Let E be a G-poset. Then $P(E)$ the family of all subsets of E (the power set of E) is a G-poset with an action defined by ;
$g_{Y}=\left\{x \in E: g^{-1} x \in Y\right\}$, for allg $\in G$ and $Y \in P(E)$.

Proof :

(i) Let $Y \in P(E)$, then ${ }^{\mathrm{e}} \mathrm{Y}=\left\{\mathrm{x} \in \mathrm{E}: \mathrm{e}^{-1} \mathrm{x} \in \mathrm{Y}\right\}=\{\mathrm{x} \in \mathrm{E}: \mathrm{x} \in \mathrm{Y}\}=\mathrm{Y}$
(ii) For any $\mathrm{Y} \in \mathrm{P}(\mathrm{E})$ and $\mathrm{g}_{1}, \mathrm{~g}_{2} \in \mathrm{G}$;

$$
\begin{aligned}
g_{2}\left(g_{1} Y\right) & =\left\{x \in E: g_{2}^{-1} x \in g_{1} Y\right\}=\left\{x \in E: g_{1}^{-1}\left(g_{2}^{-1} x\right) \in Y\right\} \\
& =\left\{x \in E: g_{1}^{-1} g_{2}^{-1} x \in Y\right\}=\left\{x \in E::^{\left(g_{2} g_{1}\right)^{-1}} x \in Y\right\}=\left(g_{2} g_{1}\right) Y .
\end{aligned}
$$

(iii) Let $X, Y \in P(E)$ with $Y>X$, and let $g \in G$. So $X \subset Y$, that is ${ }^{g} X \subset{ }^{g} Y$. Hence, ${ }^{g}{ }_{Y}>{ }^{g}{ }_{X}$. Therefore $P(E)$ is a G-poset.

Definition (2-4): [16]

Let P be a G-poset. For each $p \in P$, the set $\left\{g \in G: g_{p}=p\right\}$ is called the stabilizer of p and denoted by $\operatorname{Stab}_{G}(p)$ or $G p$.

Proposition (2-5) : [8]

Let P be a G-poset. Then for any $p \in P, \operatorname{Stab}_{G}(p)$ is a subgroup of G.

Proposition (2-6) :

Let P be a G-poset. Then for all $\mathrm{p} \in \mathrm{P}$.
(1) $\mathrm{G} / \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})$ is a poset with ;
$g_{1} \cdot \operatorname{Stab}_{G}(p)>g_{2} \cdot \operatorname{Stab}_{G}(p)$ if and onlyif $g_{1}>^{g_{2}} p$
(2) $\mathrm{G} / \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})$ is a G-poset with an action defined by ;

$$
{ }^{\mathrm{t}}\left(\mathrm{~g} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})\right)=(\mathrm{tg}) \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p}) \text { for all } \mathrm{t}, \mathrm{~g} \in \mathrm{G}
$$

Proof:

(1)(i) It is obvious that the relation is reflexive .
(ii) Let $_{g_{1}} \cdot \operatorname{Stab}_{G}(p) \geq g_{2} \cdot \operatorname{Stab}_{G}(p)$ and $g_{2} \cdot \operatorname{Stab}_{G}(p) \geq g_{1} \cdot \operatorname{Stab}_{G}(P)$.

Then ${ }^{g_{1}} p \geq{ }^{g_{2}} p$ and ${ }^{g_{2}} p \geq{ }^{g_{1}}$ p.So ${ }^{g_{1}} p={ }^{g_{2}} p$.
Hence $\mathrm{g}_{1} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})=\mathrm{g}_{2} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})$.
(iii) Let $g_{1} \cdot \operatorname{Stab}_{G}(p) \geq g_{2} \cdot \operatorname{Stab}_{G}(p)$ and $g_{2} \cdot \operatorname{Stab}_{G}(p) \geq g_{3} \cdot \operatorname{Stab}_{G}(P)$.

Then ${ }^{g_{1}} p \geq{ }^{g_{2}} p$ and ${ }^{g_{2}} p \geq{ }^{g_{3}}$ p. So ${ }^{g_{1}} p \geq{ }^{g_{3}} p$.
Hence $g_{1} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p}) \geq \mathrm{g}_{3} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})$.
Therefore $\left(\mathrm{G} / \operatorname{stab}_{\mathrm{G}}(\mathrm{p}), \geq\right)$ is a poset.
$(2)(\mathrm{i}){ }^{\mathrm{e}}\left(\mathrm{g} \cdot \operatorname{stab}_{\mathrm{G}}(\mathrm{p})\right)=(\mathrm{eg}) \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{P})=\mathrm{g} \cdot \operatorname{stab}_{\mathrm{G}}(\mathrm{p})$,for all
g. $\operatorname{stab}_{G}(p) \in G / \operatorname{Stab}_{G}(p)$.
(ii) Let $\mathrm{g} . \operatorname{stab}_{\mathrm{G}}(\mathrm{p}) \in \mathrm{G} / \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})$ and $\mathrm{t}, \mathrm{r} \in \mathrm{G}$. Then ;

$$
\begin{aligned}
{ }^{\mathrm{r}}\left({ }^{\mathrm{t}}\left(\mathrm{~g} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})\right)\right) & ={ }^{\mathrm{r}}\left(\operatorname{tg} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})\right)=\mathrm{r}(\operatorname{tg}) \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p}) \\
& =(\mathrm{rt}) \mathrm{g} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{P})={ }^{\mathrm{rt}}\left(\mathrm{~g} \cdot \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})\right) .
\end{aligned}
$$

(iii) Let $\mathrm{g}_{1} \cdot \operatorname{stab}_{\mathrm{G}}(\mathrm{p})>\mathrm{g}_{2} \cdot \operatorname{stab}_{\mathrm{G}}(\mathrm{p})$, and $\mathrm{t} \in \mathrm{G}$.

Then ${ }^{g} 1_{p>}{ }^{g} 2 p . S o{ }^{t}\left(g_{1} p\right)>{ }^{t}\left(g_{2} p\right.$
That is $\operatorname{tg}_{1}>^{\operatorname{tg}} 2$ p. So $\operatorname{tg}_{1} \cdot \operatorname{Stab}_{G}(p)>\operatorname{tg}_{2} \cdot \operatorname{Stab}_{G}(\mathrm{p})$.
Hence, ${ }^{\mathrm{t}}\left(\mathrm{g}_{1} \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})\right)>{ }^{\mathrm{t}}\left(\mathrm{g}_{2} \operatorname{Stab}_{\mathrm{G}}(\mathrm{p})\right)$.
Therefore $\mathrm{G} / \mathrm{Stab}_{\mathrm{G}}(\mathrm{p})$ is a G - poset.

Definition (2-7) : [2]

Let P be a poset. We say that the element a of P covers the element b of P if $\mathrm{a}>\mathrm{b}$ and there is no element $\mathrm{c} \in \mathrm{P}$ such that $\mathrm{a}>\mathrm{c}>\mathrm{b}$.

Proposition (2-8) :
Let P be a G-poset and $a, b \in P$ with a covers b, then g_{a} covers g_{b} for all $\mathrm{g} \in \mathrm{G}$.

Proof:

Suppose that g_{a} does not cover g_{p}, then there exist at least an element $\mathrm{c} \in \mathrm{P}$ such that $\mathrm{g}_{\mathrm{a}>\mathrm{c}>} \mathrm{g}_{\mathrm{b}}$. So $^{\mathrm{g}^{-1}\left(\mathrm{~g}_{\mathrm{a}}\right)>\mathrm{g}^{-1} \mathrm{c}>\mathrm{g}^{-1}\left(\mathrm{~g}_{\mathrm{b}}\right) .}$ That is $g^{-1} g_{a}>g^{-1} c>g^{-1} g_{b}$. So $e_{a}>g^{-1}$ c $>^{e}$ b. Hence $a>g^{-1} c>b$ and this is a contruduction. Therefore $\mathrm{g}_{\mathrm{a} \text { covers }} \mathrm{g}_{\mathrm{b}}$.

Definition (2-9) : [1]
Let P be a poset. Then the set, $\mathrm{C}(\mathrm{P})=\{(\mathrm{a}, \mathrm{b}):$ a covers b$\} \subset \mathrm{P} \times \mathrm{P}$, is called the covering poset of P .

Proposition (2-10) :

Let (P, \geq) be a poset, then $\left((\mathrm{P}), \geq_{\mathrm{C}}\right)$ is a poset such that : for all (a, b), $\left(a^{\prime}, b^{\prime}\right) \in C(P),(a, b) \underset{C}{ }\left(a^{\prime},^{\prime} b^{\prime}\right)$ if and onlyif $\quad\left\{(a, b)=\left(a^{\prime}, b^{\prime}\right)\right.$ or $\left.b \geq a^{\prime}\right\}$

Proof :

(i) $\operatorname{Let}(a, b) \in C(P)$, then $(a, b) \underset{C}{\geq}(a, b)$.
(ii) $\operatorname{Let}(a, b) \underset{\mathrm{C}}{\geq_{\mathrm{C}}}\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right)$ and $\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right){\underset{\mathrm{C}}{ }}_{\geq_{c}}(\mathrm{a}, \mathrm{b})$.

Then either ; $(a, b)=\left(a^{\prime}, b^{\prime}\right)$, or $b \geq a^{\prime}$ and $b^{\prime} \geq a$.
Now sup pose that $b \geq a^{\prime}$ and $b^{\prime} \geq a$, then we have $a>b, b \geq a^{\prime}, a^{\prime}>b^{\prime}$ and $b^{\prime} \geq a$. So, $a>a$ and this is a contradiction. Hence it must $b e(a, b)=\left(a^{\prime}, b^{\prime}\right)$.

Then either $(a, b)=\left(a^{\prime}, b^{\prime}\right)=\left(a^{\prime}, b^{\prime}\right), \operatorname{so}(a, b)=\left(a^{\prime \prime}, b^{\prime \prime}\right)$, or $b \geq a^{\prime}$ and $b^{\prime} \geq a^{\prime \prime}$.
So we have $b \geq a^{\prime}, a^{\prime}>b^{\prime}$ and $b^{\prime} \geq a^{\prime \prime}$. That is $b \geq a^{\prime \prime}$. Hence $(a, b) \underset{c}{ }\left(a^{\prime \prime}, b^{\prime \prime}\right)$
Therefore $\mathrm{C}(\mathrm{P})$ is a poset.

Theorem (2-11) :
Let P be a G-poset. Then $\mathrm{C}(\mathrm{P})$ is also a G-poset with an action defined by; ${ }^{g}(a, b)=\left(g_{a},{ }^{g} b\right)$ for all $(a, b) \in C(P)$ and $g \in G$.

Proof :

(i) ${ }^{\mathrm{e}}(\mathrm{a}, \mathrm{b})\left({ }^{\mathrm{e}} \mathrm{a},{ }^{\mathrm{e}} \mathrm{b}\right)=(\mathrm{a}, \mathrm{b})$ for all $(\mathrm{a}, \mathrm{b}) \in \mathrm{C}(\mathrm{P})$.
(ii) $\left.{ }^{g_{1}\left(g_{2}\right.}(a, b)\right)=g_{1}\left({ }^{g_{2}} a,{ }^{g_{2}} b\right)=\left({ }^{g_{1}}\left(g_{2} a\right),{ }^{g_{1}}\left({ }^{g_{2}} b\right)\right)$

$$
=\left(g_{1} g_{2} a, g_{1} g_{2} b\right)=g_{1} g_{2}(a, b)
$$

For all $(\mathrm{a}, \mathrm{b}) \in \mathrm{C}(\mathrm{P})$ and $\mathrm{g}_{1}, \mathrm{~g}_{2} \in \mathrm{G}$.

(iii) For all $(a, b),\left(a^{\prime}, b^{\prime}\right) \in C(P)$ and $g \in G$, with $\left(a^{\prime}, b^{\prime}\right)>_{c}(a, b)$.Then $b^{\prime} \geq a$
 That is $\left(g_{a^{\prime}}, g_{\left.b^{\prime}\right)>}^{C_{c}}\left(g_{a}, g_{b)}\right)\right.$. Hence $g_{\left(a^{\prime}, b^{\prime}\right)>_{c}} g_{(a, b) \text {. }}$

Therefore $\mathrm{C}(\mathrm{P})$ is a G-poset.

§3. Group-Chains :

In this section we study the group actions on chains and the behavior of these actions and when the trivial action is the only one.

Definition (3-1) : [2]
A poset P is called a chain (or totally ordered set) if : for all $\mathrm{a}, \mathrm{b} \in \mathrm{P}$: $a \geq b$ or $b \geq a$.

Equivalently, the poset P is called a chain if for every two different elements a, b of P either $\mathrm{a}>\mathrm{b}$ or $\mathrm{b}>\mathrm{a}$.

From the definition above, we conclude that every element of a chain covers at most one element and covered at most by one element. Also any chain has at most one maximal element I and one minimal element 0 .

Proposition (3-2) : [2]
Any chain X of n elements is isomorphic to the set of natural numbers $\underline{\mathrm{n}}=\{1,2, \ldots, \mathrm{n}\}$. That is there exists a bijection function $\mathrm{f}: \mathrm{X} \rightarrow \underline{\mathrm{n}}$ such that: $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ if and only if $x_{1} \geq x_{2}$.

Theorem (3-3) :
Let $X=\left\{\mathrm{x}_{\mathrm{i}}\right\}_{\mathrm{i} \in \mathrm{I}}$ be a G-chain and I be a set of successive integers with $\ldots \mathrm{x}_{\mathrm{i}-1}<\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}+1}<\ldots$

If $g_{x_{i}}=x_{j}$ then $g_{x_{i+r}}=x_{j+r}$ for all $i, j, i+r, j+r \in I$.

Proof:

(i) Let $i+1, j+1 \in I$. Since X is a chain, then x_{i+1} covers x_{i} and by proposition (2-8), $\mathrm{g}_{\mathrm{x}_{\mathrm{i}+1} \text { covers }} \mathrm{g}_{\mathrm{x}_{\mathrm{i}}}$.

(ii)Now we shall use the mathematical induction to prove that $g_{x_{i+r}}=x_{j+r}$. From (i) we see that $g_{x_{i+1}=x_{j+1}}$ for $r=1$. Suppose
 x_{i+n+1} covers X_{i+n}. So $g_{x_{i+n+1}}$ covers $g_{x_{i+n}}$. Now from $g_{x_{i+n}}=g_{x_{j+n}}$ we have $g_{x_{i+n+1}}=x_{j+n+1}$.

Therefore, $\mathrm{g}_{\mathrm{x}_{\mathrm{i}+\mathrm{r}}}=\mathrm{x}_{\mathrm{j}+\mathrm{r}}$ for all $\mathrm{i}, \mathrm{j}, \mathrm{i}+\mathrm{r}, \mathrm{j}+\mathrm{r} \in \mathrm{I}$.

Lemma (3-4) :
Let X be a G-chain and $g \in G$. If $g_{x_{i}}=x_{t}$ and $x_{i}<x_{t}$ then $\mathrm{g}^{-1} \mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}}$ for all $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}$.

Proof :

$\mathrm{g}_{\mathrm{x}_{\mathrm{i}}}=\mathrm{x}_{\mathrm{t}} \Rightarrow \mathrm{g}^{-1}\left(\mathrm{~g}_{\left.\mathrm{x}_{\mathrm{i}}\right)}\right) \mathrm{g}^{-1} \mathrm{x}_{\mathrm{t}} \Rightarrow \mathrm{g}^{-1} \mathrm{~g}_{\mathrm{x}_{\mathrm{i}}}=\mathrm{g}^{-1} \mathrm{x}_{\mathrm{t}} \Rightarrow g^{-1} \mathrm{x}_{\mathrm{t}}=\mathrm{x}_{\mathrm{i}}$.
Also,$x_{i}<x_{t} \Rightarrow g^{-1} \quad x_{i}<g^{-1} x_{t}$. Therefore $g^{-1} x_{i}<x_{i}$.
Proposition (3-5) :
Let X be a G-chain and $g \in G$ with $g^{-1}=g$. Then $g \in \operatorname{Stab}_{G}\left(x_{i}\right)$ for all $x_{i} \in X$.

Proof :

Let $g_{x_{i}}=x_{t}$ Then $x_{i}=g^{-1} x_{t}$. So $x_{i}=g_{x_{t}}$. Suppose that $x_{i} \neq x_{t}$. Then either $x_{i}<x_{t}$ or $x_{t}<x_{i}$. If $x_{i}<x_{t}$ then $g_{x_{i}}<\mathrm{x}_{\mathrm{t}}$. So, $x_{t}<x_{i}$. That is a contradiction. Similarly we have a contradiction if $x_{t}<x_{i}$.

Hence, since X is a chain, then $x_{i}=x_{t}$. So, $g_{x_{i}}=x_{i}$.
Therefore $\mathrm{g} \in \operatorname{Stab}_{\mathrm{G}}\left(\mathrm{x}_{\mathrm{i}}\right)$ for all $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}$.

Theorem (3-6) :
Let (X, \leq) be a G-chain. Then the action of G on X is only the trivial action if X has 0 or I .

Proof:

(i) Let $0=x_{1} \in \mathrm{X}$ and $\mathrm{g} \in \mathrm{G}$. Suppose that $\mathrm{g}_{\mathrm{x}_{1} \neq \mathrm{x}_{1}}$, then $\mathrm{x}_{1}<{ }^{\mathrm{g}} \mathrm{x}_{1}\left[\mathrm{x}_{1}=0\right]$. Also, $g_{x_{i}}^{-1}<x_{1}=0$. So this is a contradiction. So, $g_{x_{1}}=x_{1}$. Now from theorem (3-3) we have $\mathrm{g}_{\mathrm{x}_{\mathrm{i}}}=\mathrm{x}_{\mathrm{i}}$ for all $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}$ and $\mathrm{g} \in \mathrm{G}$.
 Also, $\mathrm{x}_{1}<\mathrm{g}^{-1} \mathrm{x}_{1}$. So this is a contradiction.
 $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}$ and $\mathrm{g} \in \mathrm{G}$.

The following corollary can be proved directly from the previous theorem , but we will give another proof.

Corollary (3-7):

Let $\mathrm{P}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$ be a G-chain with $\mathrm{p}_{1}>\mathrm{p}_{2}>\ldots>\mathrm{p}_{\mathrm{n}}$. Then P is a trivial G-chain.

Proof:

Suppose that there exists $g \in G$ and $p_{i} \in P$ such that ${ }^{g} p_{i}=p_{t}$ with $t \neq i$. That is $g_{p_{i} \neq p_{t}}$. Suppose that $t>i$, then $g_{p_{i+(n-t)}}=p_{t+(n-t)}=p_{n}$ such that $i+(n-t) \in\{1,2, \ldots, n\}$. Also, $\quad g_{p_{i+(n-t)+1}=}=p_{n+1}$ such that $\mathrm{i}+(\mathrm{n}-\mathrm{t})+1 \in\{1,2, \ldots, \mathrm{n}\}$. But $|\mathrm{P}|=\mathrm{n}$. So $\mathrm{p}_{\mathrm{n}+1} \notin \mathrm{P}$. Hence $\mathrm{g}_{\mathrm{p}_{\mathrm{i}+(\mathrm{n}-\mathrm{t})+1} \neq \mathrm{p}_{\mathrm{n}+1}}$.

Now let $\quad g_{p_{i+(n-t)+1}=} p_{r}$. Since $p_{i+(n-1)}>p_{i+(n-1)+1}$, then $\mathrm{g}_{\mathrm{p}_{\mathrm{i}+(\mathrm{n}-\mathrm{t})}}>\mathrm{g}_{\mathrm{p}_{\mathrm{i}+(\mathrm{n}-\mathrm{t})+1}}$. So, $\mathrm{p}_{\mathrm{n}}>\mathrm{p}_{\mathrm{r}}$ and this is a contradiction. Similarly we have contradiction when $t<i$. Hence $t=i$.

Therefore the G action on P is the trivial action only.

§. 4 Maximal chains :

Finally in this section we will study the maximal chains in group-posets and we shall observe that the study of these kinds of chains give us some indications on the type of some group actions on posets.

Definition (4-1) : [3]
Let P be a poset and $\mathrm{X}=\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{j}}\right\} \subseteq \mathrm{P}$ be a chain such that $x_{i}<x_{i+1}<\ldots<x_{j}$, then X is called a maximal chain in P if and only if :
(i) There is no element as $c \in P$ such that : $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}+1}<\ldots<\mathrm{c}<\ldots<\mathrm{x}_{\mathrm{j}}$.
(ii) There is no element as $\mathrm{k} \in \mathrm{P}$ such that: $\mathrm{k}<\mathrm{x}_{\mathrm{i}}$ or $\mathrm{x}_{\mathrm{j}}<\mathrm{k}$.

Proposition (4-2) :
Let P be a G-poset and Y be a maximal chain in P . Then ${ }^{\mathrm{g}} \mathrm{Y}$ is also a maximal chain in P with $\left|\mathrm{g}_{\mathrm{Y}}\right|=|\mathrm{Y}|$.

Proof:

(i) Since Y is a maximal chain in P, so we can say $Y=\left\{x_{i}, x_{i+1}, \ldots, x_{j}\right\}$ such that x_{r+1} is covers x_{r} for all $i<r<j$. So , $g_{Y}=\left\{g_{x_{i}},{ }^{g}{ }_{x_{i+1}}, \ldots,{ }^{g} x_{j}\right\}$ for all $g \in G$. Hence $g_{x_{i}}<g_{x_{i+1}}<\ldots<\mathrm{g}_{\mathrm{j}}$. Suppose that there exists an element as $\mathrm{c} \in \mathrm{P}$ such that $\mathrm{g}_{\mathrm{x}_{\mathrm{i}}<} \mathrm{g}_{\mathrm{x}_{\mathrm{i}+1}<\ldots<\mathrm{c}<\ldots<{ }^{\mathrm{g}} \mathrm{x}_{\mathrm{j}} \text {. } \text {. }}$

Then $g^{-1}\left(\mathrm{~g}_{\mathrm{x}_{\mathrm{i}}}\right)<\mathrm{g}^{-1}\left(\mathrm{~g}_{\mathrm{x}_{\mathrm{i}+1}}\right)<\ldots<\mathrm{g}^{-1} \mathrm{c}<\ldots<\mathrm{g}^{-1}\left(\mathrm{~g}_{\mathrm{x}_{\mathrm{j}}}\right)$.
That is $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}+1}<\ldots<\mathrm{g}^{-1} \mathrm{c}<\ldots<\mathrm{x}_{\mathrm{j}}$ and this is a contradiction since Y is a maximal chain.
(ii) suppose that there exists an element $b \in P$ such that $b \leq^{g} X_{i}$ then :
$\mathrm{b} \leq \mathrm{g}_{\mathrm{x}_{\mathrm{i}}} \Rightarrow \mathrm{g}^{-1} \mathrm{~b} \leq \mathrm{x}_{\mathrm{i}} \Rightarrow \mathrm{g}^{-1} \mathrm{~b}=\mathrm{x}_{\mathrm{i}} \Rightarrow \mathrm{b}=\mathrm{g}_{\mathrm{x}_{\mathrm{i}}}$. Similarly, if $\mathrm{g}_{\mathrm{x}_{\mathrm{j}} \leq \mathrm{a}}$ then $g_{x_{i}}=a$. Therefore ${ }^{g} Y$ is a maximal chain.

Now let the map $f: Y \rightarrow^{g} Y$ is defined by $: f(y)={ }^{g} y$ forall $y \in Y$.
f is injective map since : $f\left(y_{1}\right)=f\left(y_{2}\right) \Rightarrow{ }^{g} \quad y_{1}={ }^{g} y_{2} \Rightarrow y_{1}=y_{2}$.
Also f is onto since if $x \in^{g} Y$ then there exits $y \in Y$ such that $x={ }^{g} y$. Hence,f is bijection and $|Y|=|g|$.

Definition (4-3) : [4]
Let P be a poset and $\mathrm{x} \in \mathrm{P}$. Then the subset C of P is called a cutset of the element x in P if every element of C is not comparable with x and all the maximal chains in P cut with $\mathrm{C} \cup\{\mathrm{x}\}$. We shall note to this set by cut x.

Theorem (4-4) :
Let P be a G-poset and C is the cutset of $\mathrm{x} \in \mathrm{P}$. Then ${ }^{\mathrm{g}} \mathrm{C}$ is the cutset of g_{x}. That is $\mathrm{g}_{\mathrm{C}}=$ cut g_{x}.

Proof :

Let $\mathrm{y} \in \operatorname{cut} \mathrm{g}_{\mathrm{x} \text { then }} \mathrm{g}^{-1} \mathrm{y}$ is not comparable with g_{x}. So $\mathrm{g}^{-1} \mathrm{y}$ is not comparable with x . That is $\mathrm{g}^{-1} \mathrm{y} \in \mathrm{C}$. So $\left.\mathrm{g}_{(} \mathrm{g}^{-1} \mathrm{y}\right) \in^{\mathrm{g}} \mathrm{C}$. That is $\mathrm{y} \in^{\mathrm{g}} \mathrm{C}$. Hence cut ${ }^{\mathrm{x}} \subseteq^{\mathrm{g}} \mathrm{C}$.

Now let $\mathrm{g}_{\mathrm{s} \in} \mathrm{g} \mathrm{C}$. Then $\mathrm{s} \in \mathrm{C}$. So s in not comparable with x . That is g_{s} is not comparable with g_{x}. So $\mathrm{g}_{\mathrm{s} \in \text { cut }} \mathrm{g}_{\mathrm{x}}$. Therefore $\mathrm{g}_{\mathrm{C}=\operatorname{cut}} \mathrm{g}_{\mathrm{X}}$

Theorem (4-5) :
Let P be a finite G -poset with $\mathrm{P}(\mathrm{M})=\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{n}}\right\}$ be the set of the maximal chains in P with $\left|M_{i}\right|=\left|M_{j}\right|$ if and only if $i=j$. Then the trivial action is the only action of G on P .

Proof:

To prove this theorem we must first prove that ${ }^{M_{i}}=M_{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$, after that we must show that $\mathrm{g}_{\mathrm{x}}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{M}_{\mathrm{i}}$ and $\mathrm{g} \in \mathrm{G}$

First part :

Our argument proceeds by induction on the number n to prove that $\mathrm{g}_{\mathrm{M}_{\mathrm{i}}=} \mathrm{M}_{\mathrm{i}}$ for all $1 \leq \mathrm{i} \leq \mathrm{n}$.

Let $\left|M_{1}\right|=r_{1},\left|M_{2}\right|=r_{2}, \ldots,\left|M_{n}\right|=r_{n}$ such that $\mathrm{r}_{1}<\mathrm{r}_{2}<\ldots<\mathrm{r}_{\mathrm{n}}$.
(i) Let $\mathrm{n}=2$. That is $\mathrm{P}(\mathrm{M})=\left\{\mathrm{M}_{1}, \mathrm{M}_{2}\right\}$ with $\left|\mathrm{M}_{1}\right| \neq\left|\mathrm{M}_{2}\right|$.
 this is a contradiction. Hence ${ }^{g} M_{1}=M_{1}$. Similarly we have ${ }^{g} M_{2}=M_{2}$.
(ii) Now assume that $n=k$ with $g_{M_{i}}=M_{i}$ for all $1 \leq i \leq k$.

Let $\mathrm{n}=\mathrm{k}+1$. Since ${ }^{\mathrm{g}_{\mathrm{M}_{\mathrm{i}}}=\mathrm{M}_{\mathrm{i}} \text { for all } 1 \leq \mathrm{i} \leq \mathrm{k} \text {. } \text {. } \text {. } \text {. }}$

Suppose that $\mathrm{g}_{\mathrm{M}_{\mathrm{k}+1} \neq \mathrm{M}_{\mathrm{k}+1} \text { then }} \mathrm{g}_{\mathrm{M}_{\mathrm{k}+1}}=\mathrm{M}_{\mathrm{j}}$ for some $1 \leq \mathrm{j} \leq \mathrm{k}$. So $\left|g_{M_{k+1}}\right|=\left|M_{j}\right|=r_{j}$.But $\left|g_{M_{k+1}}\right|=\left|M_{k+1}\right|=r_{k+1}$. Hence $r_{j}=r_{k+1}$, that is $j=k+1$, and this is a contradiction since $k+1>j$. So $g_{M_{k+1}}=M_{k+1}$.

Second part:

Since $\left\{\mathrm{Mi}_{\mathrm{i}=1}^{\mathrm{n}}{ }_{1}\right.$ is the family of the maximal chains in P , the M_{i} is a finite maximal chain in P. Using corollary (3-7) we get : $\mathrm{g}_{\mathrm{x}}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{M}_{\mathrm{i}}, \mathrm{g} \in \mathrm{G}$ with $1 \leq \mathrm{i} \leq \mathrm{n}$.

Therefore from part one, the action of G on P is the trivial action only.

The above theorem is not true when P has two maximal chains M_{i}, M_{j} with $\left|M_{i}\right|=\left|M_{j}\right|$ as in the following example.

Example (4-6):

Let $\mathrm{P}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ be a poset with $\mathrm{a}>\mathrm{b}$ and $\mathrm{c}>\mathrm{d}$. So $P(M)=\left\{M_{1}, M_{2}: M_{1}=\{a, b\}, M_{2}=\{c, d\}\right\}$. Hence $\left|M_{1}\right|=\left|M_{2}\right|$.

Let $\mathrm{G}=\mathrm{C}_{2}=\{\mathrm{e}, \mathrm{g}\}$ with $\mathrm{g}^{2}=\mathrm{e}$, and $\mathrm{g}_{\mathrm{a}}=\mathrm{c}, \mathrm{g}_{\mathrm{b}}=\mathrm{d}$.
Therefore P is a G-poset and the action is not trivial .

Proposition (4-7):

Let $P(M)=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ be the set of the maximal chains in the G-poset P. Let ${ }^{g_{i}}=_{M_{t}}$, then ${ }^{g_{j}}{ }_{j} \neq M_{t}$ for all $j \neq i$.

Proof:

Suppose that $g_{M_{j}}=M_{t}$ for some $j \neq i$. Then $g_{M_{j}}={ }^{g} M_{i}$ for some $j \neq \mathrm{i}$. So $\mathrm{g}^{-1}\left(\mathrm{~g}_{\mathrm{M}_{\mathrm{j}}}\right)=\mathrm{g}^{-1}\left(\mathrm{~g}_{\mathrm{M}_{\mathrm{i}}}\right)$ for some $\mathrm{j} \neq \mathrm{i}$.

Hence $M_{j}=M_{i}$ for some $j \neq i$. This is a contradiction since $j \neq i$

Proposition (4-8) :

Let P be an injective G-poset, and $\mathrm{P}(\mathrm{M})=\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{n}}\right\}$ be the family of the maximal chains in P. Then :
(i) $\left(\left|M_{i}\right|=\left|M_{j}\right|\right.$ if and only if $\left.i=j\right)$, implies that $G=\{e\}$.
(ii) If $\left|M_{1}\right|=\left|M_{2}\right|=\ldots=\left|M_{n}\right|$, then $|G| \leq n!$.
(iii) If we reordered the maximal chains such that:

$$
\left|\mathrm{N}_{1}\right|=\left|\mathrm{N}_{2}\right|=\ldots=\left|\mathrm{N}_{\mathrm{r}}\right| \neq\left|\mathrm{N}_{\mathrm{r}+1}\right|=\ldots=\left|\mathrm{N}_{\mathrm{t}}\right| \neq\left|\mathrm{N}_{\mathrm{t}+1}\right|=\ldots=\left|\mathrm{N}_{\mathrm{n}}\right| \text {, with } \mathrm{N}_{\mathrm{i}} \in \mathrm{P}(\mathrm{M}) \text {, }
$$

$1 \leq \mathrm{i} \leq \mathrm{n}$, then : $|\mathrm{G}| \leq \mathrm{r}!\mathrm{x}(\mathrm{t}-\mathrm{r})!\mathrm{x} \ldots \mathrm{x}(\mathrm{n}-\mathrm{k})$!.

Proof:

(i) Since $\left.\rho(\mathrm{g})=\rho_{\mathrm{g}}\right)(\mathrm{p})=\mathrm{p}=\mathrm{I}(\mathrm{p})$ for all $\mathrm{p} \in \mathrm{P}, \mathrm{g} \in \mathrm{G}$, then $\mathrm{g} \in \operatorname{ker}(\rho)$.
$\operatorname{But} \operatorname{ker}(\rho)=\{\mathrm{e}\}$ because ρ is injective.
Then $\mathrm{g}=\mathrm{e}$ for all $\mathrm{g} \in \mathrm{G}$. $\operatorname{So} \mathrm{G}=\operatorname{ker}(\rho)=\{\mathrm{e}\}$.
(ii) $\left|M_{1}\right|=\left|M_{2}\right|=\ldots=\left|M_{n}\right|$. So for all $M_{i} \in P(M)$ and $g \in G$ there exists some $M_{t} \in P(M)$ such that $g_{M_{i}}=M_{t}$. From proposition (4-7) we have $\mathrm{g}_{\mathrm{M}_{\mathrm{i}} \neq \mathrm{M}_{\mathrm{t}} \text { for all } \mathrm{j} \neq \mathrm{i} .}$.

So the Number of permutations on the maximal chains is $n!$.
Now since P is an injective G-poset, then $|G| \leq n!$.
(iii) Applying (ii) on every part of equal parts of :
$\left|\mathrm{N}_{1}\right|=\left|\mathrm{N}_{2}\right|=\ldots=\left|\mathrm{N}_{\mathrm{r}}\right| \neq\left|\mathrm{N}_{\mathrm{r}+1}\right|=\ldots=\left|\mathrm{N}_{\mathrm{t}}\right| \neq\left|\mathrm{N}_{\mathrm{t}+1}\right|=\ldots \neq\left|\mathrm{N}_{\mathrm{k}+1}\right|=\ldots=\left|\mathrm{N}_{\mathrm{n}}\right| \mathrm{we}$ get that the number of permutations on the equal parts are , $\mathrm{r}!$, ($\mathrm{t}-\mathrm{r}$)!, ..,(n-k)! respectively . Using the fundamental principle of counting , the number of the permutations on the maximal chains is r! x(t-r)! x ... x(n-k)! .
Since P is an injective G-poset , then $|G| \leq r!x(t-r)!x \ldots x(n-k)!$.

REFERENCES

[1] Behrendt. Gerhard, "Covering Poset" Discrete Math. 71. No.3, (1988), 189-195.
[2] Birkhoff G., "Lattice Theory", Amer. Math. Soc. Coll. Pub. Vol. XXV, Third Edition, (1967).
[3] Donnellant T., "Lattice Theory", Pergamon Press, (1968).
[4] Hanlon P., "The Incidence Algebra of a Group Reduced Partially Order Set" Combinatorial Math. 7, Sprnger. No. 829.
[5] Mohammad A.J. \& Mohammad S.A. " β-operations on Finite Posets", J. Edu. \& Sci., Vol. 19, (1994), 104-114.
[6] Mohammad A.J. \& Mohammad S.A. "On Finite, Group-Sets of Finite Groups", J. Edu. \& Sci., Vol.22, (1994), 78-84.
[7] Morris I. \& Wensley C.D., "Adams Operations and 2-operations in -Rings", Discrete Mathematics, 50, (1984), 253-270.
[8] Neumann P. M., Stoy G.A. \& Thompsone E.C., "Groups and Geometry", Vol.I. The Mathematical Institute, Oxford, (1982).
[9] Rose J.S., " A Course on Group Theory", Cambridge University Press, Cambridge, (1978).
[10] Solomon L., "The Burnside Algebra of a Finite Group", J. Combine. Theory 2, (1967), 603-615.

