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Abstract 
       The aim of this paper is to present a method for solving third order ordinary differential 

equations with two point boundary condition  , we propose two-point osculatory interpolation 

to construct polynomial solution. The original problem is concerned using two-points 

osculatory interpolation with the fit equal numbers of derivatives at the end points of an 

interval [0 , 1] .  

           Also, many examples are presented to demonstrate the applicability, accuracy and 

efficiency of the method by compared with conventional method . 
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  خلاصة
  

انهدف مه هذا انبحث عزض غزٍمت نحم معادلاث تفاظلهَت اعيَادٍلت مله انزتبلت انةانةلت لاث انالزدغ انحدددٍلت عىلد انهدف مه هذا انبحث عزض غزٍمت نحم معادلاث تفاظلهَت اعيَادٍلت مله انزتبلت انةانةلت لاث انالزدغ انحدددٍلت عىلد 

الاودراج انيماسٌ  لد انىمطيَه نهحصول عهي انحم كميعددة حددد,أن أصم انمسانت ٍيعهلك ااسلياداو الاودراج انيماسٌ  لد انىمطيَه نهحصول عهي انحم كميعددة حددد,أن أصم انمسانت ٍيعهلك ااسلياداو وىا وميزح وىا وميزح حَث أحَث أومطيَه ومطيَه 

أٍعلا والالىا اعلط المةهلت  أٍعلا والالىا اعلط المةهلت    [0,1]الاودراج انيماسٌ  لد انىمطيَه دانذً ٍيفك مع اندانلت دماليماتها عىلد ومطيلٌ وهاٍلت انفيلزة الاودراج انيماسٌ  لد انىمطيَه دانذً ٍيفك مع اندانلت دماليماتها عىلد ومطيلٌ وهاٍلت انفيلزة 

  .. مت انمميزحت مه خلال انمماروت مع انطزق انيمهَدٍت الخزىمت انمميزحت مه خلال انمماروت مع انطزق انيمهَدٍت الخزىنيوظَح اندلت د انكفاءة دسهونت الداء نهطزٍنيوظَح اندلت د انكفاءة دسهونت الداء نهطزٍ

 

1. Introduction 
           In the study of nonlinear phenomena in physics, engineering and other sciences, many 

mathematical models lead to two-point BVP's associated with non-linear high order ordinary 

differential equations . In recent decades, many works have been devoted to the analysis of these 

problem and many different techniques have been used or developed in order to deal with two main 

questions : existence and uniqueness of solutions [1],[2] and Computation of solutions. 

          In this paper we use two-point  osculatory interpolation ,essentially this is a generalization of 

interpolation using Taylor polynomials . The idea is to approximate a function  y  by a polynomial  

P  in which values of  y and any number of its derivatives at given points are fitted by the 

corresponding function values and derivatives of  P .  

            We are particularly concerned with fitting function values and derivatives at the two end 

points of a finite interval, say [0,1] where a useful and succinct way of writing osculatory 

interpolant  P2n+1 of degree 2n + 1 was given for example by Phillips [3] as : 

 

         P2n+1(x) = 


n

j 0

{ y )( j (0) q j (x) + (-1) j  y )( j (1) q j (1-x) }     ,    (1) 

         q j (x) = ( x j / j!)(1-x) 1n  




jn

s 0







 

s

sn
 x

s
  = Q j (x) / j!           ,   (2) 
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so that (1) with (2) satisfies : 

        y )( j (0) = 
)(

12

j

nP  (0)  ,   y )( j (1) = 
)(

12

j

nP  (1)  ,     j = 0, 1, 2,…, n . 

 implying that  P2n+1  agrees with the appropriately truncated Taylor series for  y  

about  x = 0 and x = 1. We observe that (1) can be written directly in terms of the 

Taylor coefficients  and  about x = 0 and x = 1 respectively, as : 

           P2n+1(x) = 


n

j 0

{ a j Q j (x) + (-1) j b j Q j (1-x) }               ,       (3) 

2. Solution of Two-Point Third Order BVP's for ODE 

        A general form of  3
rd

 - order ordinary BVP's is :- 

y
(3)

(x) = f( x, y, y
(1)

, y
(2)

 )    ,    0 ≤ x ≤ 1   ,       (4)  

     subject to the boundary conditions :   

            y( i )(0) = Ai  ,   y
( j )(1) = Bj   , i= 0,1,…, k-1 , j= 0,1 , … , 3- k+1 ,    (5) 

     The simple idea of suggested method is use a two - point polynomial interpolation to 

replace y in problem (4) and (5) by a P2n+1 which enables any unknown derivatives of y to 

be computed, the first  step therefore is to construct the P2n+1, to do this we need evaluate 

Taylor coefficients of  y about x = 0 :      

          y   y
(i)

(0) / i!                  ,        (6a)         

     Then insert the series form (6a) into (4) and equate the coefficients of powers of 

x to obtain  . Also, evaluate Taylor coefficients of y(x) about x =1 :   

y 1)
i

 y
(i) 

(1) / i!    ,       (6b)          

         Then insert the series form (6b) into (4) and equate coefficients of powers of      ( x-1) 

, to obtain  ,then derive equation (4) with respect to x and iterate the above process to 

obtain  and  ,now iterate the above process many times to obtain , ,then 

, and so on, that is ,we can get  and , for all i ≥ n . 
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          Now, to evaluate  , , for i < n, we get half number of these unknown coefficients 

from given boundary condition ,then use all these 's and 's to construct P2n+1 of the   

form : 

P2n+1 (x) 
i

           ,   (7a) 

Where    Q j (x) / j! = ( x j / j!)(1-x) 1n  




jn

s 0







 

s

sn
 x

s
                    ,  (7b) 

we see that (7a) have n unknown coefficients .  

         Now, to evaluate the remainder coefficients integrate equation (4) on [0 , x] 3 - 

times  to obtain : 

       y''(x) 
 
 – 2    = f( s, y ,y', y '') ds                          ,     (81) 

       y'(x) – – 2  x= (1-s)f(s ,y ,y', y '' ) ds             ,      (82) 

      y( ) –  –  – 2   x
2 
/ 2! = f(s, y , y', y'') ds   ,      (83)  

          use P2n+1 as a replacement of y ,y ',y'' in (8) and putting in all above 

integration , then we have system of 3 equations with 3 unknown coefficients which 

can be solved using the MATLAB package, version 7.9, to get the unknown 

coefficients, thus insert it into (7), thus (7) represent the solution of (4) . 

       Now, we introduce many examples of third order TPBVP's for ODE to illustrates 

suggested method . Accuracy and efficiency of the suggested method is established 

through comparison with B – Spline  [4] . 

Example  

    Consider the following linear third order BVP's :  

y''' –  y' = e
x
     ,      0 < x < 1     , 

subject to the BC :    y(0) = 0 , y(1) = 1 , y'(1) = 0  .  

The exact solution for this problem is :  

                    y(x) = 4.8618 –  1.4603e
x 
–  3.4015e

-x
 + 1/2 x e

x
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        Now, we solve this equation using suggested method from equations (2) and (3) 

we have : 

P17 = 0.000000050x
17

- 0.000000421x
16 

+ 0.000001569x
15

 -0.000003343x
14

+0.000004470x
13

-

0.000003839x
12  

+  0.000002261x
11

 - 0.000000606x
10

 + 0.000017838x
9
 - 0.000021374x

8
 + 0.001079587x

7
- 

0.002585821x
6
 + 0.037009314x

5
 - 0.119241301x

4
 + 0.573519604x

3 
-1.930895608x

2
 +  2.441117621x    

 

         For more details ,table (1) give the results for different nodes in the domain, for 

n = 8 , i.e. P17 and errors obtained by comparing it with the exact solution. Table (2) 

give a comparison between the P17 and B – Spline method given in[4] to illustrate the 

accuracy of suggested method. Also, figure (1) gives comparison between the exact 

and suggested method P17. 

 

3. Conditioning of BVP's 

             In particular, BVP's for which a small change to the ODE or boundary conditions results in a 

small change to the solution must be considered, a BVP's that has this property is said to be well-

conditioned.[5] Otherwise, the BVP's is said to be ill-conditioned. To be useful in applications, a 

boundary value problems should be well posed. This means that given the input to the problem 

there exists a unique solution, which depends continuously on the input .Consider the following 

third order BVP's : 

      y
(3)

(x) = f( x, y(x), y'(x), y''(x) )  , x [0, 1]                ,             (9a) 

With BC: y(i)
(0) = Ai , y

(j)
(1) = βj ,  i= 0,1,…,k-1 ,  j= 0,1,…, n-k+1  ,                (9b) 

          For a well-posed problem we now make the following assumptions:  

1. Equation (9) has an approximate solution P  C
n
[0, 1], with this solution and  ρ > 

0 , we associate the spheres : 

                 Sρ(P(x)) := { y  IR
n
 : | P(x) − y(x) | ≤ ρ } 

2. f( x, P(x), P'(x), P''(x) ) is continuously differentiable with respect to P, and ∂f / ∂P 

is continuous . 

            The following assumptions are important due to the error associated with 

approximate solutions to BVP's, depending on the semi-analytic technique, 

approximate solution ў(x) to the linear nth-order BVP's (9) may exactly satisfy the 

perturbed ODE : 

      ў
(n)

 = u(x) ў
(n-1)

 +…+ d(x)ў
'
+ q(x) ў + r(x)  ;  0 < x < 1   ;          (10a) 

http://en.wikipedia.org/wiki/Well-posed_problem
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where r : R → R
m
 , and the linear BC : 

                    B0 ў(0) + B1 ў(1) = β +    ;                                            (10b)  

 

where β +  = σ , σ  R
m
 and { ,β, σ} are  constants. If ў is a reasonably good 

approximate solution to (9), then ║r(x)║ and ║σ║ are small. However, this may not 

imply that ў is close to the exact solution y. A measure of conditioning for linear 

BVP's that relates both ║r(x)║ and ║σ║ to the error in the approximate solution can 

be determined. The following discussion can be extended to nonlinear BVP's by considering 

the variational problem on small sub domains of the nonlinear BVP's [6]. 

         Letting : e(x)= |ў (x)      y(x) |; then subtracting the original BVP's (9) from the 

perturbed BVP's (10) results in : 

e
(n)

(x) = |ў
(n)
(x)      y

(n)
(x) |                                                          ;   (11a) 

e
(n)

(x)= u(x) e
(n-1)

(x) +…+d(x) e'(x)+ q(x) e(x) + r(x);  0 < x < 1 ;    (11b)       

          with BC :  B0 e(0) + B1 e(1) = σ  ;    (11c)         However, the form of the solution 

can be furthered simplified by letting :  Θ(x) = Y(x) Q
-1

  ; where Y is the fundamental 

solution and Q is defined in (7b) . Then the general solution can be written as : 

                e(x) = Θ(x) σ + 
1

0

G(x, t) r(t) dt           ;                           (12)  

where G(x, t) is Green's function [7], taking norms of both sides of (12) and using the 

Cauchy - Schwartz inequality [7] results in : 

               ║e(x)║∞ ≤ k1║ σ ║∞ + k2║r(x)║∞        ;                        (13)     

 where   k1 = ║Y(x)Q
-1
║∞    ;      and   k2  = 

1

0

 ║G(x, t) ║∞ dt  , 

In (13), the L∞ norm, sometimes called a maximum norm, is used due to the common 

use of this norm in numerical BVP's software. For any vector v  R
N
, the L∞ norm is 

defined as :  ║ v ║∞ =   | vi |:The measure of conditioning is called the 

conditioning constant k, and it is given by :  k = max(k1, k2)           ;      (14) 

           When the conditioning constant is of moderate size, then the BVP's is said to 

be well-conditioned. 
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           Referring again to (13), the constant k thus provides an upper bound for the 

norm of the error associated with the perturbed solution, 

          ║e(x) ║∞ ≤ k [║σ ║∞ + ║r(x) ║∞]                 ;             (15)        

         It is important to note that the conditioning constant only depends on the 

original BVP's and not the perturbed BVP's. As a result, the conditioning constant 

provides a good measure of conditioning that is independent of any numerical 

technique that may cause such perturbations. The well conditioned nature of a BVP's 

and the local uniqueness of its desired solution are assumed in order to solve the 

problem numerically.  
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Table 1: The result of the suggested method for P17 of example  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Errors 

| y(x)-P17 | 

Osculatory  

interpolation P17 

Exact Solution 

 y(x) 

Xi 

0.000000000000000 0.000000000000000 0.000000000000000 0 
8.207667501E-6 0.225364769121097 0.225372976788598 0.1 

1.6409559988E-5 0.415396761919977 0.415413171479965 0.2 
2.4687764646E-5 0.573162139019653 0.573186826784299 0.3 
3.3125132263E-5 0.701526571840217 0.701559696972480 0.4 
4.1806106877E-5 0.803196800952235 0.803238607059112 0.5 
5.0817571211E-5 0.880761958161851 0.880812775733061 0.6 
6.0249715510E-5 0.936735208333540 0.936795458049050 0.7 
7.0196939637E-5 0.973596285135070 0.973666482074707 0.8 
8.0758798338E-5 0.993835520392147 0.993916279190485 0.9 

0.000000000000000 1.000092040986118 1.000092040986118 1 

S.S.E = 2.992474308328639E-008 
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Table 2 : A comparison between P17 and B – Spline method for example. 
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 Figure 1: Comparison between the exact and suggested method P17 of example 
 

Osculatory 

interpolation P17 

B – Spline 

 

Exact Solution 

y(x) 

 Xi 

0.000000000000000 0 0.000000000000000 0 

0.225364769121097 0.2254 0.225372976788598 0.1 
0.415396761919977 0.4154 0.415413171479965 0.2 
0.573162139019653 0.5732 0.573186826784299 0.3 
0.701526571840217 0.7015 0.701559696972480 0.4 
0.803196800952235 0.8032 0.803238607059112 0.5 
0.880761958161851 0.8808 0.880812775733061 0.6 
0.936735208333540 0.9367 0.936795458049050 0.7 
0.973596285135070 0.9736 0.973666482074707 0.8 
0.993835520392147 0.9938 0.993916279190485 0.9 
1.000092040986118 1 1.000092040986118 1 

S.S.E = 2.992474308328639E-008 S.S.E =0.00001   


