Some properties of $b\tau$ -denseness set in bitopological spaces

Mohammed YahyaAbid Kerbalaa University College of education of pure Sciences,Mathematics Dept.,

Abstract

In this paper we introduced the notion "bτ-dense sets" in bitopological spaces and proved some of their properties and related theorems by using the concept of bτ -open set. **المستخلص :** في هذا البحث قدمنا مفهوم المجموعات بي تاو - الكثيفه وبي تاو - غير الكثيفه في الفضاءات ثنائية التوبولوجيا واثبتا بعض الخواص المتعلقه بها باستخدام مفهوم المجموعات بي تاو -المفتوحه

Introduction:

In 2007, M. Ganster and M. Steiner [6] introduce the concept of $b\tau$ -closed set, which the complement of it is called $b\tau$ -open set where they defined a subset A of a topological space X to be $b\tau$ -closed if $cl_b(A) \subset U$ whenever $A \subset U$ and U is open, where $cl_b(A)$ denoted to the intersection of all b-closed sets containing a subset A in this paper we used a corresponding concept, i.e. $\tau_1\tau_2$ b τ -open in bitopological spaces, where the study of Bitopological space initiated by Kelly [3],[5] is defined as : A set equipped with two topologies is called a bitopological space, denoted by (X,τ_1,τ_2) where (X,τ_1) and (X,τ_2) are two topological spaces defined on topological spaces defined on X

Definition (1-1): [8] A subset S of X is called $\tau_1 \tau_2$ open if $S \in \tau_1 \cup \tau_2$ and the complement of $\tau_1 \tau_2$ - open set is $\tau_1 \tau_2$ -closed.

Example (1-2): Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. The sets in $\{\phi, X, \{a\}, \{b\}\}$ are called $\tau_1 \tau_2$ open and the sets in $\{\phi, X, \{b, c\}, \{a, c\}\}$ are called $\tau_1 \tau_2$ closed.

Definition (1-3):[1] A subset A of a space (X,τ_1,τ_2) is said to be $\tau_1\tau_2$ b-open set if $A \subset \tau_1\tau_2 cl(\tau_1\tau_2 \operatorname{int}(A)) \cup \tau_1\tau_2 \operatorname{int}(\tau_1\tau_2 cl(A))$

Remark(1-4):

- 1) The complement of $\tau_1 \tau_2 b$ -open set is called $\tau_1 \tau_2 b$ -closed set.
- 2) The intersection of all $\tau_1\tau_2$ b-closed sets of X containing a subset A of (X,τ_1,τ_2) is called $\tau_1\tau_2$ b-closure of A and is denoted by $\tau_1\tau_2$ b-cl(A). Analogously the $\tau_1\tau_2$ b- interior of A is the union of all $\tau_1\tau_2$ b -open sets contained in A denoted by $\tau_1\tau_2$ b-int(A).

Definition (1-5): A subset A of a bitopological space (X,τ_1,τ_2) is called to be $\tau_1\tau_2b\tau$ -open $if\tau_1\tau_2b$ cl(A) $\tau_1\tau_2b$ -cl

Definition (1-6): Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then A is called a $\tau_1 \tau_2 b \tau$ -neighbourehood of a point x in X, if there exists $\tau_1 \tau_2 b \tau$ -open set U in X such that $x \in U \subset A$.

Definition (1-7): The union of all $b\tau$ - open sets contained in a setA is called $b\tau$ -*interior* of A and denoted by $b\tau$ -int(A).

Definition (1-8): The intersection of all $b\tau$ -closed sets containing a set A is called $b\tau$ -closures of A and denoted by $b\tau$ - cl (A).

Definition (1-9): A point $x \in X$ is said to be a $b\tau$ *-limit Point* if and only if U is $\tau_1\tau_2b\tau$ -open set implies $U \cap (A - \{x\}) \neq \emptyset$ where \emptyset is the empty set.

The First Scientific Conference the Collage of Education for Pure Sciences 2012

Definition (1-10): The set of all $b\tau$ -limit points of $A \subseteq X$, is called the $b\tau$ -drived set of A and is denoted by $b\tau$ -D(A).

Definition (1-11): The set $b\tau cl(A) - b\tau int(A)$ is called $b\tau$ -frontier of A is denoted by $b\tau$ -f(A).

Remark (1-12) : every $\tau_1\tau_2$ -closed set is $\tau_1\tau_2b$ -closed set and every $\tau_1\tau_2b$ -closed set is $\tau_1\tau_2b\tau$ -closed set .

Proposition (1-13) : Every $\tau_1\tau_2$ -closed subset of a bitopological space (X, τ_1 , τ_2) is $\tau_1\tau_2b$ -closed.

Proof:Let $A \subseteq X$ be $\tau_1 \tau_2$ -closed set, since $A^c \subset \tau_1 \tau_2 cl(A^c)$, hence $\tau_1 \tau_2 \operatorname{int}(A^c) \subset \tau_1 \tau_2 \operatorname{int}(\tau_1 \tau_2 cl(A^c))$, but $\tau_1 \tau_2 \operatorname{int}(A) \subset A$ for any subset A, hence $A^c \subset \tau_1 \tau_2 \operatorname{int}(\tau_1 \tau_2 cl(A^c))$, and $A^c \subset \tau_1 \tau_2 \operatorname{int}(\tau_1 \tau_2 cl(A^c)) \cup \tau_1 \tau_2 cl(\tau_1 \tau_2 \operatorname{int}(A^c))$, hence A^c is $\tau_1 \tau_2 b$ -open set, hence A is $\tau_1 \tau_2 b$ -open set. \Box

Remark(1-14): The converse of Proposition (1-13) is not true as the following example

Example (1-15): $\tau_1 \tau_2 b$ -closed set $\Rightarrow \tau_1 \tau_2$ -closed set.Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{X, \phi, \{b\}\}, \text{ then the sets in } \{X, \phi, \{b, c\}, \{a, c\}, \{c\}\} \text{ are } \tau_1 \tau_2 \text{ closed and the set in } \{X, \phi, \{b, c\}, \{a, c\}, \{c\}, \{a\}, \{b\}\} \text{ are all } \tau_1 \tau_2 b$ -closed, so $\{a\}, \{b\}$ are $\tau_1 \tau_2 b$ -closed but not 123-closed set.

Proposition (1-16) : Every $\tau_1 \tau_2 b$ -closed subset of a bitopological space (X, τ , τ_2) is $\tau_1 \tau_2 b \tau$ -closed. **Proof:**

Let $A \subseteq X$ be $\tau_1 \tau_2 b$ -closed set, and let $A \subseteq U$, where U is $\tau_1 \tau_2$ -open, since A is $\tau_1 \tau_2 b$ -closed set, hence $\tau_1 \tau_2 \operatorname{int}(\tau_1 \tau_2 cl(A)) \cap \tau_1 \tau_2 cl(\tau_1 \tau_2 \operatorname{int}(A)) \subset A$, but $A \subset U$, hence $\tau_1 \tau_2 \operatorname{int}(\tau_1 \tau_2 cl(A)) \cap \tau_1 \tau_2 cl(\tau_1 \tau_2 \operatorname{int}(A)) \subset U$, since $\tau_1 \tau_2 cl_b(A)$ is the smallest $\tau_1 \tau_2 b$ -closed set containing A, so,

 $\tau_1 \tau_2 cl_b(A) = A \cup (\tau_1 \tau_2 \operatorname{int}(\tau_1 \tau_2 cl(A))) \cap 123cl(123\operatorname{int}(A)))$ $\subset A \cup U$ $\subset U,$

i.e. A is $\tau_1 \tau_2 b \tau$ -closed.

Remark (1-17): the converse of Proposition (1-16) is not true as the following example

Example (1-18) $\tau_1 \tau_2 b \tau$ -closed set $\not \rightarrow \tau_1 \tau_2 b$ -closed set. For the same example (1.15), the set $\{a, b\}$ is $\tau_1 \tau_2 b \tau$ -closed but it is not $\tau_1 \tau_2 b$ -closed set.

Theorem (1-19): Let A be a subset of abitopological space (X, τ_1, τ_2) . then $\tau_1 \tau_2 b \tau$ -cl(A) is closed and $A \subseteq \tau_1 \tau_2 b \tau$ -cl(A) further A is closed if and only if $A = \tau_1 \tau_2 b \tau$ -cl(A).

Theorem (1-20): Let A be a subset of abitopological space (X,τ_1,τ_2) .then $\tau_1\tau_2b\tau$ -int(A) is open $\tau_1\tau_2b\tau$ -int(A) \subseteq A further A is open if and only if A= $\tau_1\tau_2b\tau$ -int(A).

Theorem (1-21): Let A be a subset of abitopological space (X, τ_1 , τ_2) Then $\tau_1 \tau_2 b \tau$ -int(A) = X - $\tau_1 \tau_2 b \tau$ -cl(X-A) and $\tau_1 \tau_2 b \tau$ -cl(A) = X - $\tau_1 \tau_2 b \tau$ -int(X-A).

Proof: Since X-A $\subseteq \tau_1 \tau_2 b \tau$ -cl(X-A) we have X - $\tau_1 \tau_2 b \tau$ -cl(X-A) \subseteq A .But X - $\tau_1 \tau_2 b \tau$ -cl(X-A) is open (by theorem (1-19)),so X - $\tau_1 \tau_2 b \tau$ -cl(X-A) $\subseteq \tau_1 \tau_2 b \tau$ -int(A). On the other hand, X- $\tau_1 \tau_2 b \tau$ -int(A) is closed by theorem(1-20), and X-A \subseteq X- $\tau_1 \tau_2 b \tau$ -int(A), so $\tau_1 \tau_2 b \tau$ -cl(X-A) \subseteq X- $\tau_1 \tau_2 b \tau$ -int(A). This shows that $\tau_1 \tau_2 b \tau$ -int(A) = X- $\tau_1 \tau_2 b \tau$ -cl(X-A), and the other relation follows from replace A by X-A \blacksquare

The First Scientific Conference the Collage of Education for Pure Sciences 2012

2. $b\tau$ -densnesse set in bitopological spaces

Definition(2-1): Let A be a subsets of thebitopological space (X, τ_1, τ_2) . Then A is said to be $\tau_1 \tau_2$ $b\tau$ -dense in X if $\tau_1 \tau_2 b\tau$ -cl(A) =X.

Definition(2-2): A subset A of abitopological space (X, τ_1, τ_2) is *non* $\tau_1 \tau_2 b \tau$ *-dense* set if $\tau_1 \tau_2 b \tau$ *-int* $(b \tau$ *-cl*(A))= \emptyset that is the $\tau_1 \tau_2 b \tau$ - interior of the $\tau_1 \tau_2 b \tau$ -closure of A is empty.

Theorem(2-3):Let A be a subset of abitopological space (X, τ_1 , τ_2) Then the following statements are equivalent:

i) A is non $\tau_1 \tau_2 b \tau$ -dense in X.

ii) $\tau_1 \tau_2 b \tau$ -cl(A) contains no $\tau_1 \tau_2 b \tau$ -nhd.

Proof : (i) \leftrightarrow (ii) we have A is non $\tau_1 \tau_2 b \tau$ -dense

 $\leftrightarrow \tau_1 \tau_2 \ b \ \tau \operatorname{-int} (\operatorname{spcl}(A)) = \emptyset$

 \leftrightarrow No point of X is a $\tau_1 \tau_2 b \tau$ -int point of $b \tau$ -cl(A)

 $\leftrightarrow \tau_1 \tau_2 b \tau cl$ (A) has not a $\tau_1 \tau_2 b \tau$ -nhd of any of its Points

 $\leftrightarrow \tau_1 \tau_2 b \tau cl (A)$ contains no $\tau_1 \tau_2 b \tau$ -nhds

Theorem(2-4): Let A be a subset of a bitopological spaces (X, τ_1, τ_2)

if A is non $\tau_1 \tau_2 b \tau$ -dense, then $\tau_1 \tau_2 b \tau$ -cl(A) is not the entire space X.

Proof: Since X is $\tau_1 \tau_2 b \tau$ -closed then $X = \tau_1 \tau_2 b \tau$ -cl(X). Again since X is

 $\tau_1 \tau_2 b \tau$ -open, we have $\tau_1 \tau_2 b \tau_- \operatorname{int}(\tau_1 \tau_2 b \tau - \operatorname{cl}(X)) = \tau_1 \tau_2 b \tau_- \operatorname{int}(X) = X$. Since A is non $\tau_1 \tau_2 b \tau_-$ dense in X, $\tau_1 \tau_2 b \tau_- \operatorname{int}(\tau_1 \tau_2 b \tau_- \operatorname{cl}(A)) = \emptyset$. Thus $\tau_1 \tau_2 b \tau_- \operatorname{int}(\tau_1 \tau_2 b \tau_- \operatorname{cl}(X)) = X$, And $\tau_1 \tau_2 b \tau_-$ int $(\tau_1 \tau_2 b \tau_- \operatorname{cl}(A)) = \emptyset$. It follows $A \neq X \blacksquare$

Theorem (2-5): The union of finite number of non $\tau_1 \tau_2 b \tau$ -dense set is non $\tau_1 \tau_2 b \tau$ -dense sets. **Proof :** it suffices to prove that the theorem for the case of two non sp-dense sets ,say A and B For simplicity we put $G = \tau_1 \tau_2 b \tau - int(\tau_1 \tau_2 b \tau - cl(A \cup B))$ So that $G \subset \tau_1 \tau_2 b \tau - cl(A \cup B)$ $= -\tau_1 \tau_2 b \tau_- cl(A) \cup \tau_1 \tau_2 b \tau_- cl(B)$. It follows that $G \cap [\tau_1 \tau_2 b \tau - cl(B)]' \subset (\tau_1 \tau_2 b \tau - cl(A) \cup \tau_1 \tau_2 b \tau_- cl(B))' = [\tau_1 \tau_2 b \tau - cl(A) \cap (\tau_1 \tau_2 b \tau - cl(B))'] \cup [\tau_1 \tau_2 b \tau - cl(B) \cap (\tau_1 \tau_2 b \tau - cl(B))'] = [\tau_1 \tau_2 b \tau - cl(B))' = [\tau_1 \tau_2 b \tau - cl(B))' = [\tau_1 \tau_2 b \tau - cl(B))' Since [\tau_1 \tau_2 b \tau - cl(B) \cap (\tau_1 \tau_2 b \tau - cl(B))' = \emptyset] \subset \tau_1 \tau_2 b \tau - cl(A)$. Then $\tau_1 \tau_2 b \tau - int(G \cap ((\tau_1 \tau_2 b \tau - cl(B))') \subset \tau_1 \tau_2 b \tau - cl(B)) \cap (\tau_1 \tau_2 b \tau - cl(B))' = \emptyset$, since A is non $\tau_1 \tau_2 b \tau$ -dense. But $\tau_1 \tau_2 b \tau$ -int $[G \cap (\tau_1 \tau_2 b \tau - cl(B))]' = G \cap \tau_1 \tau_2 b \tau - cl(B)'$, Since $G \cap (\tau_1 \tau_2 b \tau - cl(B))'$ is an sp-open set , It follows that $G \cap ((\tau_1 \tau_2 b \tau - cl(B)))' = \emptyset$, which implies $G \subset \tau_1 \tau_2 b \tau - cl(B)$ then $\tau_1 \tau_2 b \tau - int(G) = \tau_1 \tau_2 b \tau - int(\tau_1 \tau_2 b \tau - cl(B)) = \emptyset$, since $A \cup B$ is non $\tau_1 \tau_2 b \tau - cl(B)$ then $\tau_1 \tau_2 b \tau - int(G) = \tau_1 \tau_2 b \tau - int(\tau_1 \tau_2 b \tau - cl(B)) = \emptyset$. Hense $A \cup B$ is non $\tau_1 \tau_2 b \tau - cl(A \cup B)$. So that $\tau_1 \tau_2 b \tau - int(\tau_1 \tau_2 b \tau - cl(A \cup B)) = \emptyset$. Hense $A \cup B$ is non $\tau_1 \tau_2 b \tau - cl(A \cup B)$.

Theorem(2-6) :Let A be a subset of abitopological spaces (X, τ_1, τ_2) , Then A is

non $\tau_1 \tau_2 b \tau$ -dense in X if and only if X- $\tau_1 \tau_2 b \tau$ -cl(A) is $\tau_1 \tau_2 b \tau$ -dense in X.

Proof: By theorem (1-21) $\tau_1\tau_2 b\tau$ -int(A) = X - $\tau_1\tau_2 b\tau$ -cl(X-A) and $\tau_1\tau_2 b\tau$ -cl(A) = X - $\tau_1\tau_2 b\tau$ -int (X-A) it follows that $\tau_1\tau_2 b\tau$ -int($\tau_1\tau_2 b\tau$ -cl(A))= X- $\tau_1\tau_2 b\tau$ -cl(X- $\tau_1\tau_2 b\tau$ -cl(A)). Since A is non $\tau_1\tau_2 b\tau$ -dense then $\tau_1\tau_2 b\tau$ -int($\tau_1\tau_2 b\tau$ -cl(A))= \emptyset then X- $\tau_1\tau_2 b\tau$ -cl(X- $\tau_1\tau_2 b\tau$ -cl(A)) is $\tau_1\tau_2 b\tau$ -cl(A)) = \emptyset then $\tau_1\tau_2 b\tau$ -cl(X- $\tau_1\tau_2 b\tau$ -cl(A)) is $\tau_1\tau_2 b\tau$ -cl(A))

The First Scientific Conference the Collage of Education for Pure Sciences 2012

Definition (2-7): A subset A of a bitopological spaces (X, τ_1, τ_2) is called $-\tau_1 \tau_2 b \tau$ -dense-initself if $A \subseteq \tau_1 \tau_2 b \tau$ - D(A) that is every points of A is $\tau_1 \tau_2 b \tau$ -limit point of A.

Example (2-8):let X={a,b,c,d,e}, with τ_1 ={ Ø,X,{b},{d,e},{b,d,e},{a,c,d,e}}, τ_2 ={ Ø,X,{b}} are a topology on X .consider the subset A={a,c}, then a is $\tau_1\tau_2 b\tau$ - limit point of A since the α -

nhds of a are {a,c,d,e} and X each of which contains a point of A other than a, also c is $\tau_1 \tau_2$ $b\tau$ -limit point of A since the α -nhds of c are {a,c,d,e} and X each of which contains a point of A other than c .hence A is $\tau_1 \tau_2 b\tau$ -dense- in-itself.

Theorem (2-9): If A is $\tau_1 \tau_2 b \tau$ -dense -in -itself set then $\tau_1 \tau_2 b \tau$ -cl(A) is $\tau_1 \tau_2 b \tau$ -dense-in-itself.

Proof :By theorem (let A be a subset of a topological space bitopological spaces (X, τ_1, τ_2) then $\tau_1 \tau_2 b \tau$ -cl (A) = A $\cup \tau_1 \tau_2 b \tau$ -D(A) [2],[3]) since A is $\tau_1 \tau_2 b \tau$ -dense - in -itself that is (every point of A is $\tau_1 \tau_2 b \tau$ -limit point of A) then A $\cup \tau_1 \tau_2 b \tau$ -D(A) = A hence $\tau_1 \tau_2 b \tau$ -cl(A) = A then $\tau_1 \tau_2 b \tau$ -cl(A) is $\tau_1 \tau_2 b \tau$ -dense-in-itself

Theorem (2-10): The union of any family of $\tau_1 \tau_2 b \tau$ -dense-in-itself sets is $\tau_1 \tau_2 b \tau$ -dense - in-itself.

Proof: let {A_i}, i∈I, be a family of $\tau_1\tau_2 b\tau$ --dense-in-itself sets . so $A_i \subseteq \tau_1\tau_2 b\tau$ -D(A_i) \forall i∈I, Let p∈∪A_i then p∈A_i .for some i∈I. Hence for each $\tau_1\tau_2 b\tau$ --pen set U with p∈U, $A_i \cap (U = \{p\}) \neq \emptyset$. Thus (∪A_i) $\cap (U = \{p\}) \neq \emptyset$, hence p ∈ ($\tau_1\tau_2 b\tau$ -D(UA_i)) therefore $\cup A_i \subseteq (\tau_1\tau_2 b\tau$ -D(∪A_i)); hence $\cup A_i$ is $\tau_1\tau_2 b\tau$ --denes-in-itsef

References:

[1] D. Andrijevic, "On b -open sets", Mat. Vesnik, Vol. 48, 1996, 59-64.

- [2]G. B. Navalagi"Definition Bank In General Topology", Topology Atlas Survey Articles Section URL: http://dxi.ca/t/a/i/c/32htm ,2000.
- [3]Jeli's , M., " $T_i\mbox{-}pairwise$ continuous Functions and Bitopological Separation Axioms" , Mat. Vesnik 41, 3(1989) , 155-159 .
- [4] J. N. Sharma and A.R. Vasishtha," topology", meerut ,1976.
- [5] Kelly, J. C. "Bitopological spaces", proc. London Math. Soc 13 (1963), 71-89.
- [6] Maximilian Ganster, Markus Steiner, "On bτ-closed sets", Applied General Topology, Vol. 8, No. 2, (2007), 243–247.
- [7]O. Ravi and 2M. LellisThivagar "A Bitopological (1,2)^{*} Semi-generalised Continuous Maps"Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 79–88
- [8] O. Ravi and M. L. Thivagar, On Stronger forms of (1, 2)* quotient mappings in bitopologicalspaces, Internat. J. Math. Game Theory and Algebra, to appear.