The First Scientific Conference the Collage of Education for Pure Sciences 2012

Some properties of $\boldsymbol{b} \boldsymbol{\tau}$-denseness set in bitopological spaces

Mohammed YahyaAbid
Kerbalaa University
College of education of pure Sciences,Mathematics Dept.,

Abstract

In this paper we introduced the notion " b τ - dense sets" in bitopological spaces and proved some of their properties and related theorems by using the concept of $\mathfrak{b} \tau$-open set.
(المستخلص :
في هذا البحث قدمنا مفهوم المجموعات بي تاو ـ الكثيفه وبي تاو -غير الكثيفه في الفضاءات ثنائية النوبولوجيا واثبنا
بعض الخوّاص المتعلقه بها باستخدام مفهوم المجموعات بي تاو -المفتوحه

Introduction:

In 2007, M. Ganster and M. Steiner [6] introduce the concept of $b \tau$-closed set, which the complement of it is called $b \tau$-open set where they defined a subset A of a topological space X to be $b \tau$-closed if $c l_{b}(A) \subset U$ whenever $A \subset U$ and U is open, where $c l_{b}(A)$ denoted to the intersection of all b-closed sets containing a subset A in this paper we used a corresponding concept, i.e. $\tau_{1} \tau_{2} b \tau$-open in bitopological spaces, where the study of Bitopological space initiated by Kelly [3],[5] is defined as : A set equipped with two topologies is called a bitopological space, denoted by ($\mathrm{X}, \tau_{1}, \tau_{2}$) where (X, τ_{1}) and (X, τ_{2}) are two topological spaces defined on topological spaces defined on X

Definition (1-1): [8] A subset S of X is called $\tau_{1} \tau_{2}$ open if $S \in \tau_{1} \cup \tau_{2}$ and the complement of $\tau_{1} \tau_{2}$ - open set is $\tau_{1} \tau_{2}$-closed.
Example (1-2): Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi, \mathrm{X},\{\mathrm{a}\}\}$ and $\tau_{2}=\{\phi, \mathrm{X},\{\mathrm{b}\}\}$. The sets in $\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\}\}$ are called $\tau_{1} \tau_{2}$ open and the sets in $\{\phi, \mathrm{X},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$ are called $\tau_{1} \tau_{2}$ closed.
Definition (1-3):[1] A subset A of a space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is said to be $\tau_{1} \tau_{2} b$-open set if $A \subset \tau_{1} \tau_{2} c l\left(\tau_{1} \tau_{2} \operatorname{int}(A)\right) \cup \tau_{1} \tau_{2} \operatorname{int}\left(\tau_{1} \tau_{2} c l(A)\right)$

Remark(1-4):

1) The complement of $\tau_{1} \tau_{2} \mathrm{~b}$-open set is called $\tau_{1} \tau_{2} \mathrm{~b}$-closed set.
2) The intersection of all $\tau_{1} \tau_{2}$ b-closed sets of X containing a subset A of (X, τ_{1}, τ_{2}) is called $\tau_{1} \tau_{2} \mathrm{~b}$-closure of A and is denoted by $\tau_{1} \tau_{2} \mathrm{~b}-\mathrm{cl}(\mathrm{A})$. Analogously the $\tau_{1} \tau_{2} \mathrm{~b}$ - interior of A is the union of all $\tau_{1} \tau_{2} \mathrm{~b}$-open sets contained in A denoted by $\tau_{1} \tau_{2} \mathrm{~b}$-int(A).

Definition (1-5): A subset A of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is called to be $\tau_{1} \tau_{2} \mathrm{~b} \tau$-open if $\tau_{1} \tau_{2} \mathrm{~b}$ $\mathrm{cl}(\mathrm{A}) \tau_{1} \tau_{2} \mathrm{~b}-\mathrm{cl}$
Definition (1-6): Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and $A \subseteq X$.Then A is called a $\tau_{1} \tau_{2} b \tau$ neighbourehood of a point x in X, if there exists $\tau_{1} \tau_{2} b \tau$-open set U in X such that $x \in U \subset A$.
Definition (1-7): The union of all $\mathrm{b} \tau$ - open sets contained in a setA is called $\mathrm{b} \tau$ - interior of A and denoted by $b \tau-\operatorname{int}(\mathbf{A})$.
Definition (1-8): The intersection of all $b \tau$-closed sets containing a set A is called $b \tau$-closures of A and denoted by $\mathrm{b} \tau$ - $\mathbf{c l}(\mathbf{A})$.
Definition (1-9): A point $x \in X$ is said to be a $b \tau$-limit Point if and only if U is $\tau_{1} \tau_{2} \mathrm{~b} \tau$-open set implies $\mathrm{U} \cap(\mathrm{A}-\{\mathrm{x}\}) \neq \varnothing$. where \varnothing is the empty set.

The First Scientific Conference the Collage of Education for Pure Sciences 2012

Definition (1-10): The set of all b τ-limit points of $\mathrm{A} \subseteq \mathrm{X}$, is called the $b \tau$-drived set of A and is denoted by $b \tau$-D(A).
Definition (1-11): The set $\mathrm{b} \tau \operatorname{cl}(\mathrm{A})-\mathrm{b} \boldsymbol{\operatorname { c i n t }}(\mathrm{A})$ is called $b \tau-$ frontier of A is denoted by $b \tau$ f(A) .
Remark (1-12) : every $\tau_{1} \tau_{2}$-closed set is $\tau_{1} \tau_{2} b$-closed set and every $\tau_{1} \tau_{2} b$-closed set is $\tau_{1} \tau_{2} b \tau$-closed set.
Proposition (1-13) :Every $\tau_{1} \tau_{2}$-closed subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is $\tau_{1} \tau_{2} b$-closed.
Proof:Let $A \subseteq X$ be $\tau_{1} \tau_{2}$-closed set, since $A^{c} \subset \tau_{1} \tau_{2} c l\left(A^{c}\right)$, hence $\tau_{1} \tau_{2} \operatorname{int}\left(A^{c}\right) \subset \tau_{1} \tau_{2} \operatorname{int}\left(\tau_{1} \tau_{2} c l\left(A^{c}\right)\right)$, but $\quad \tau_{1} \tau_{2} \operatorname{int}(A) \subset A \quad$ for \quad any \quad subset $\quad A$, hence $A^{c} \subset \tau_{1} \tau_{2} \operatorname{int}\left(\tau_{1} \tau_{2} c l\left(A^{c}\right)\right)$, and $A^{c} \subset \tau_{1} \tau_{2} \operatorname{int}\left(\tau_{1} \tau_{2} c l\left(A^{c}\right)\right) \bigcup \tau_{1} \tau_{2} c l\left(\tau_{1} \tau_{2} \operatorname{int}\left(A^{c}\right)\right)$, hence A^{c} is $\tau_{1} \tau_{2} b$ open set, hence A is $\tau_{1} \tau_{2} b$-open set .
$\operatorname{Remark}(\mathbf{1 - 1 4}):$ The converse of Proposition (1-13) is not true as the following example
Example (1-15): $\tau_{1} \tau_{2} b$-closed set $\rightarrow \tau_{1} \tau_{2}$-closed set.Let $X=\{a, b, c\}, \tau_{1}=\{X, \phi,\{a\},\{b\},\{a, b\}\}$, $\tau_{2}=\{X, \phi,\{b\}\}$, then the sets in $\{X, \phi,\{b, c\},\{a, c\},\{c\}\}$ are $\tau_{1} \tau_{2}$-closed and the set in $\{X, \phi,\{b, c\},\{a, c\},\{c\},\{a\},\{b\}\}$ are all $\tau_{1} \tau_{2} b$-closed, so $\{a\},\{b\}$ are $\tau_{1} \tau_{2} b$-closed but not 123 -closed set.
Proposition (1-16) :Every $\tau_{1} \tau_{2} b$-closed subset of a bitopological space $\left(\mathrm{X}, \tau, \tau_{2}\right)$ is $\tau_{1} \tau_{2} b \tau$-closed.

Proof:

Let $A \subseteq X$ be $\tau_{1} \tau_{2} b$-closed set, and let $A \subseteq U$, where U is $\tau_{1} \tau_{2}$-open, since A is $\tau_{1} \tau_{2} b$-closed set, hence $\quad \tau_{1} \tau_{2} \operatorname{int}\left(\tau_{1} \tau_{2} c l(A)\right) \cap \tau_{1} \tau_{2} c l\left(\tau_{1} \tau_{2} \operatorname{int}(A)\right) \subset A$, but $A \subset U$, hence $\tau_{1} \tau_{2} \operatorname{int}\left(\tau_{1} \tau_{2} c l(A)\right) \cap \tau_{1} \tau_{2} c l\left(\tau_{1} \tau_{2} \operatorname{int}(A)\right) \subset U$, since $\tau_{1} \tau_{2} c l_{b}(A)$ is the smallest $\tau_{1} \tau_{2} b$-closed set containing A, so,

$$
\begin{aligned}
\tau_{1} \tau_{2} c l_{b}(A) & =A \bigcup\left(\tau_{1} \tau_{2} \operatorname{int}\left(\tau_{1} \tau_{2} c l(A)\right) \cap 123 c l(123 \operatorname{int}(A))\right) \\
& \subset A \bigcup U \\
& \subset U
\end{aligned}
$$

i.e. A is $\tau_{1} \tau_{2} b \tau$-closed. \square

Remark (1-17):the converse of Proposition (1-16) is not true as the following example
Example (1-18) $\tau_{1} \tau_{2} b \tau$-closed set $\rightarrow \tau_{1} \tau_{2} b$-closed set.For the same example (1.15), the set $\{a, b\}$ is $\tau_{1} \tau_{2} b \tau$-closed but it is not $\tau_{1} \tau_{2} b$-closed set.
Theorem (1-19): Let A be a subset of abitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) . then $\tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{A})$ isclosed and $\mathrm{A} \subseteq \tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})$ further A is closed if and only if $\mathrm{A}=\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})$.
Theorem (1-20): Let A be a subset ofabitopological space (X, τ_{1}, τ_{2}).then $\tau_{1} \tau_{2} b \tau$-int(A)is open $\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{A}) \subseteq \mathrm{A}$ further A is open if and only if $\mathrm{A}=\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{A})$.
Theorem (1-21): Let A be a subset of abitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) Then $\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{A})=\mathrm{X}$ $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A})$ and $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})=\mathrm{X}-\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{X}-\mathrm{A})$.
Proof: Since $\mathrm{X}-\mathrm{A} \subseteq \tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A})$ we have $\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A}) \subseteq \mathrm{A}$. But $\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A})$ is open (by theorem (1-19)), so X $-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A}) \subseteq \tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{A})$. On the other hand, $\mathrm{X}-\tau_{1} \tau_{2} b \tau$ $-\operatorname{int}(\mathrm{A})$ is closed by theorem $(1-20)$, and $\mathrm{X}-\mathrm{A} \subseteq \mathrm{X}-\tau_{1} \tau_{2} b \tau$ - int (A), so $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A}) \subseteq \mathrm{X}-\tau_{1} \tau_{2}$ $b \tau$-intA .And hence $\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{A}) \subseteq \mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A})$. This shows that $\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{A})=\mathrm{X}-$ $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A})$, and the other relation follows from replace A by $\mathrm{X}-\mathrm{A} ■$

The First Scientific Conference the Collage of Education for Pure Sciences 2012

2- $b \tau$-densnesse set in bitopological spaces

Definition(2-1): Let A be a subsets of thebitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$). Then A is said to be $\tau_{1} \tau_{2}$ $b \tau$-dense in X if $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})=\mathrm{X}$.
Definition(2-2): A subset A of abitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is non $\tau_{1} \tau_{2} b \tau$-dense set if $\tau_{1} \tau_{2}$ $b \tau-\operatorname{int}(b \tau-\operatorname{cl}(\mathrm{A}))=\varnothing$ that is the $\tau_{1} \tau_{2} b \tau$-interior of the $\tau_{1} \tau_{2} b \tau$-closure of A is empty.
Theorem(2-3):Let A be a subset of abitopologicalspace ($\mathrm{X}, \tau_{1}, \tau_{2}$) Then the following statements are equivalent:
i) A is non $\tau_{1} \tau_{2} b \tau$-dense in X .
ii) $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})$ contains no $\tau_{1} \tau_{2} b \tau$-nhd.

Proof: (i) \leftrightarrow (ii) we have A is non $\tau_{1} \tau_{2} b \tau$-dense
$\leftrightarrow \tau_{1} \tau_{2} b \tau-\operatorname{int}(\operatorname{spcl}(\mathrm{A}))=\varnothing$
\leftrightarrow No point of X is a $\tau_{1} \tau_{2} b \tau$-int point of $b \tau-\mathrm{cl}(\mathrm{A})$
$\leftrightarrow \tau_{1} \tau_{2} b \tau \mathrm{cl}(\mathrm{A})$ has not a $\tau_{1} \tau_{2} b \tau$-nhd of any of its Points $\leftrightarrow \tau_{1} \tau_{2} b \tau \mathrm{cl}(\mathrm{A})$ contains no $\tau_{1} \tau_{2} b \tau$-nhds■
Theorem(2-4): Let A be a subset ofa bitopological spaces ($\mathrm{X}, \tau_{1}, \tau_{2}$)
if A is non $\tau_{1} \tau_{2} b \tau$-dense, then $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})$ is not the entire space X .
Proof: Since X is $\tau_{1} \tau_{2} b \tau$-closed then $\mathrm{X}=\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X})$. Again since X is
$\tau_{1} \tau_{2} b \tau$-open, we have $\tau_{1} \tau_{2} b \tau_{-} \operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{X})\right)=\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{X})=\mathrm{X}$. Since A is non $\tau_{1} \tau_{2} b \tau$ dense in $\mathrm{X}, \tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})\right)=\varnothing$. Thus $\tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{X})\right)=\mathrm{X}$, And $\tau_{1} \tau_{2} b \tau-$ $\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})\right)=\varnothing$. It follows $\mathrm{A} \neq \mathrm{X} \quad \square$
Theorem (2-5): The union of finite number of non $\tau_{1} \tau_{2} b \tau$-dense set is non $\tau_{1} \tau_{2} b \tau$-dense sets. Proof: it suffices to prove that the theorem for the case oftwo non sp-dense sets, say A and B For simplicity we put $\mathrm{G}=\tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{A} \cup \mathrm{B})\right) \quad$ So that $\quad \mathrm{G} \subset \tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{A} \cup \mathrm{B})$ $=-\tau_{1} \tau_{2} b \tau_{-} \mathrm{cl}(\mathrm{A}) \cup \tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})$. It follows that $\quad \mathrm{G} \cap\left[\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})\right]^{\prime} \subset\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A}) \cup \tau_{1} \tau_{2}\right.$ $b \tau-\mathrm{cl}(\mathrm{B})) \cap\left[\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})\right]^{\prime}=\left[\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A}) \cap\left(\tau_{1} \tau_{2} b \tau \operatorname{cl}(\mathrm{~B})\right)^{\prime}\right] \cup\left[\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B}) \cap\left(\tau_{1} \tau_{2} b \tau-\right.\right.$ $\left.\mathrm{cl}(\mathrm{B}))^{\prime}\right]=\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A}) \cap\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})\right)^{\prime}$ Since $\left[\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B}) \cap\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})\right)^{\prime}=\varnothing\right] \subset \tau_{1} \tau_{2}$ $b \tau-\operatorname{cl}(\mathrm{A})$. Then $\tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\mathrm{G} \cap\left(\left(\tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{B})\right)^{\prime}\right) \subset \tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{A})\right)=\varnothing\right.$, since A is non $\tau_{1} \tau_{2} b \tau$-dense. But $\tau_{1} \tau_{2} b \tau$-int $\left[\mathrm{G} \cap\left(\tau_{1} \tau_{2} b \tau\right.\right.$-cl(B))]' $=\mathrm{G} \cap \tau_{1} \tau_{2} b \tau$-cl(B)', since $\mathrm{G} \cap$ $\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})\right)^{\prime}$ is an sp-open set ,It follows that $\mathrm{G} \cap\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})\right)^{\prime}=\varnothing$, which implies $\mathrm{G} \subset$ $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})$ then $\tau_{1} \tau_{2} b \tau$-int $(\mathrm{G}) \subset \tau_{1} \tau_{2} b \tau$-int $\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{B})\right)=\varnothing$, Sinse $\left[\mathrm{B}\right.$ is non $\tau_{1} \tau_{2} b \tau$ dense] . \quad But $\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{G})=\tau_{1} \tau_{2} b \tau-\operatorname{int}\left[\tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A} \cup \mathrm{B})\right)\right]=\tau_{1} \tau_{2} b \tau$ $\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\operatorname{cl}(\mathrm{A} \cup \mathrm{B})\right)$. So that $\quad \tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A} \cup \mathrm{B})\right)=\varnothing$. Hense $\mathrm{A} \cup \mathrm{B}$ is non $\tau_{1} \tau_{2} b \tau$-dense
Theorem(2-6) :Let A be a subset of abitopological spaces ($\mathrm{X}, \tau_{1}, \tau_{2}$), Then A is non $\tau_{1} \tau_{2} b \tau$-dense in X if and only if $\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})$ is $\tau_{1} \tau_{2} b \tau$-dense in X .

Proof: By theorem (1-21) $\tau_{1} \tau_{2} b \tau-\operatorname{int}(\mathrm{A})=\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{X}-\mathrm{A})$ and $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})=\mathrm{X}-\tau_{1} \tau_{2}$ $b \tau$-int (X-A) it follows that $\tau_{1} \tau_{2} b \tau-\operatorname{int}\left(\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})\right)=\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}\left(\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})\right)$. Sinse
 $\operatorname{cl}(\mathrm{A}))=\varnothing$ then $\tau_{1} \tau_{2} b \tau-\mathrm{cl}\left(\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})\right)=\mathrm{X}$ then $\tau_{1} \tau_{2} b \tau-\mathrm{cl}\left(\mathrm{X}-\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})\right)$ is $\tau_{1} \tau_{2} b \tau-$ dense■

Definition (2-7) : A subset A of a bitopological spaces ($\mathrm{X}, \tau_{1}, \tau_{2}$) is called - $\tau_{1} \tau_{2} b \tau$-dense- initself if $\mathrm{A} \subseteq \tau_{1} \tau_{2} b \tau-\mathrm{D}(\mathrm{A})$ that is every points of A is $\tau_{1} \tau_{2} b \tau$-limit point of A .
Example (2-8): let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$, with $\tau_{1}=\{\emptyset, \mathrm{X},\{\mathrm{b}\},\{\mathrm{d}, \mathrm{e}\},\{\mathrm{b}, \mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}\}, \tau_{2}=\{\emptyset, \mathrm{X},\{\mathrm{b}\}\}$ are a topology on X .consider the subset $\mathrm{A}=\{\mathrm{a}, \mathrm{c}\}$,then a is $\tau_{1} \tau_{2} b \tau$ - limit point of A since the α nhds of a are $\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ and X each of which contains a point of A other than a, also c is $\tau_{1} \tau_{2}$ $b \tau$-limit point of A since the α-nhds of c are $\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ and X each of which contains a point of A other than c .hence A is $\tau_{1} \tau_{2} b \tau$-dense- in-itself .
Theorem (2-9): If A is $\tau_{1} \tau_{2} b \tau$-dense-in-itself set then $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})$ is $\tau_{1} \tau_{2} b \tau$ -dense-in-itself.
Proof :By theorem (let A be a subset of a topological space bitopological spaces ($\mathrm{X}, \tau_{1}, \tau_{2}$)then $\left.\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})=\mathrm{A} \cup \tau_{1} \tau_{2} b \tau-\mathrm{D}(\mathrm{A})[2],[3]\right)$ since A is $\tau_{1} \tau_{2} b \tau$-dense - in -itself that is (every point of A is $\tau_{1} \tau_{2} b \tau$ - limit point of A$)$ then $\mathrm{A} \cup \tau_{1} \tau_{2} b \tau-\mathrm{D}(\mathrm{A})=\mathrm{A}$ hence $\tau_{1} \tau_{2} b \tau-\mathrm{cl}(\mathrm{A})=\mathrm{A}$ then $\tau_{1} \tau_{2} b \tau$-cl(A) is $\tau_{1} \tau_{2} b \tau$-dense-in-itself $■$
Theorem (2-10): The union of any family of $\tau_{1} \tau_{2} b \tau$--dense-in-itself sets is $\tau_{1} \tau_{2} b \tau$--dense -in-itself.
Proof : let $\left\{\mathrm{A}_{\mathrm{i}}\right\}, \mathrm{i} \in \mathrm{I}$, be a family of $\tau_{1} \tau_{2} b \tau$--dense-in-itself sets. so $\mathrm{A}_{\mathrm{i}} \subseteq \tau_{1} \tau_{2} b \tau-\mathrm{D}\left(\mathrm{A}_{\mathrm{i}}\right) \forall \mathrm{i} \in \mathrm{I}$, Let $p \in \cup A_{i}$ then $p \in A_{i}$.for some $i \in I$. Hence for each $\tau_{1} \tau_{2} b \tau$--pen set U with $p \in U, A_{i} \cap(U-$ $\{p\}) \neq \emptyset$. Thus $\left(\cup \mathrm{A}_{\mathrm{i}}\right) \cap(\mathrm{U}-\{\mathrm{p}\}) \neq \emptyset$, hence $\mathrm{p} \in\left(\tau_{1} \tau_{2} b \tau-\mathrm{D}\left(\mathrm{UA}_{\mathrm{i}}\right)\right)$ therefore $\cup \mathrm{A}_{\mathrm{i}} \subseteq\left(\tau_{1} \tau_{2} b \tau\right.$ $\left.\mathrm{D}\left(\cup \mathrm{A}_{\mathrm{i}}\right)\right)$; hence $\cup \mathrm{A}_{\mathrm{i}}$ is $\tau_{1} \tau_{2} b \tau$--denes-in-itsef $■$

References:

[1] D. Andrijevic, "On b-open sets", Mat. Vesnik, Vol. 48, 1996, 59-64.
[2]G. B. Navalagi"Definition Bank In General Topology", Topology Atlas Survey Articles Section URL: http:at.yorku.ca/t/a/i/c/32htm ,2000.
[3]Jeli's, M., " T_{i}-pairwise continuous Functions and Bitopological Separation Axioms" , Mat. Vesnik 41, 3(1989), 155-159.
[4] J. N. Sharma and A.R. Vasishtha ," topology", meerut ,1976.
[5] Kelly, J. C. "Bitopological spaces", proc. London Math. Soc 13 (1963), 71-89.
[6] Maximilian Ganster, Markus Steiner, "On b τ-closed sets", Applied General Topology, Vol. 8, No. 2, (2007), 243-247.
[7]O. Ravi and 2M. LellisThivagar "A Bitopological (1,2)* Semi-generalised Continuous Maps"Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 79-88
[8] O. Ravi and M. L. Thivagar, On Stronger forms of (1, 2)* quotient mappings in bitopologicalspaces, Internat. J. Math. Game Theory and Algebra, to appear.

