On Essential fuzzy submodule and Uniform Fuzzy Module

Asst. Prof. Hussein H. Abbas DEPARTMENT OF MATHMATICS, COLLAGE OF EDUCATION OF GIRLS, UNIVERSITY OF KUFA E-mail: Msc_hussein@yahoo.com Shukor NeamahMobred COLLAGE OF PHYSICAL PLANNING, UNIVERSITY OF KUFA E-mail: sh_aeashi2012@yahoo.com

<u>Abstract</u>

In this paper, we study the concept of uniform fuzzy module and essential fuzzy submodule. Also we give some of characteristics about it such as the intersection of two essential fuzzy submodule s is essential fuzzy submodule , the inverse and image of essential fuzzy submodule is an essential fuzzy submodule also the intersection of two uniform fuzzy module and the image and inverse image of uniform fuzzy module.

Introduction

The concept of fuzzy sets was introduced by Zadeh in 1965 [1]. It was first applied to the theory of groups by Rosenfeld in 1971 [2]. Since then, many authors introduced fuzzy subring and fuzzy ideals [3],[4]The concept of fuzzy module was introduced by Negoita and Relescu in 1975 [3]. Since then several authors have studied fuzzy modules. The concept of essential fuzzy submodule was introduced by Hadi 2000[11]. In this paper, we study the concept of uniform fuzzy module essential fuzzy submoduleand give some of characteristics about it.

Key words Fuzzy set, fuzzy module, fuzzy submodule, essential fuzzy submodule, uniform fuzzy module.

module.

1 SOME BASIC CONCEPTS

In this section, we shall give the concept of fuzzy set with some basic definitions and properties

about it which are used in the next sections.

Definition 1.1 [1]:

Let S be a non-empty set and I be the closed interval [0, 1] of the real line (real numbers). A fuzzy set A in S (a fuzzy subset of S) is a function from S into I.

Note that [2]

Let $x_t \colon S \to [0,\,1]$ be a fuzzy subset of $\,\,S,$ where $x \in S$, $t \in [0,\,1]$

 $\label{eq:constraint} \mbox{defined by:} \ \ x_t(y) = \begin{cases} t & \mbox{if } y = x \\ 0 & \mbox{if } y \neq x \end{cases} \ , \ \mbox{for all } y \in S.$

 \boldsymbol{x}_t is called a fuzzy singleton or a fuzzy point in \boldsymbol{S} .

If x=0 and t=1 then: $0_1(y) = \begin{cases} 1 & \text{if } y = 0 \\ 0 & \text{if } y \neq 0 \end{cases}$, for all y \in S is called the fuzzy zero singleton.

Definition 1.2 [5]:

Let A and B be two fuzzy sets in S, then:

1- A=B if and only if A (x) = B (x), for all $x \in S$.

2- A \subseteq B if and only if A (x) \leq B (x), for all x \in S .If A is a subset of B and there exists x \in S such that A (x) < B (x), then A is called a proper fuzzy subset of B and written A \subset B.

Definition 1.3[5]:Let A and B be two fuzzy subsets of S, then:

(1) $(A \cap B)(x) = \min \{A(x), B(x)\}, \text{ for all } x \in S.$

(2) $(A \cup B)(x) = \max \{A(x), B(x)\}, \text{ for all } x \in S.$

 $A \cap B$ and $A \cup B$ are fuzzy subsets of S,

Definition 1.4[1]:

Let f be a mapping from a set M into a set N, let A be a fuzzy subset of M and B be a fuzzy subset of N.

The image of A denoted by f (A) is the fuzzy set in N defined by:

$$f(A)(y) = \begin{cases} \sup\{A(z) \mid z \in f^{-1}(y)\} \text{ if } f^{-1}(y) \neq \phi, \text{ for all } y \in N, \\ 0 \text{ otherwise} \end{cases} \text{ where } f^{-1}(y) = \{ x \in M, f(x) = y \}.$$

And the inverse image of B, denoted by $f^{-1}(B)$ is the fuzzy set in M defined by:

 $f^{-1}(B)(x) = B(f(x)), \text{ for all } x \in M.$

Definition 1.5 [7]:

Let f be a function from a set M into a set N. A fuzzy subset A of M is called f-invariant if A (x) = A (y) whenever f (x) = f (y), where x, y \in M.

Proposition 1.6[7]

If f is a function defined on a set M, A_1 and A_2 are two fuzzy subsets of M, B_1 and B_2 are two fuzzy subsets of f (M). Then:-

1. $A_1 \subseteq f^{-1}(f(A_1)).$

2. $A_1 = f^{-1} (f(A_1))$, whenever A_1 is f-invariant.

3. $f(f^{-1}(B_1)) = B_1$.

- 4. If $A_1 \subseteq A_2$, then $f(A_1) \subseteq f(A_2)$.
- 5. If $B_1 \subseteq B_2$, then $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.

Proposition 1.7[4]:

Let f be a function from a set M into a set N. If B_1 and B_2 are fuzzy subsets of N,thenf⁻¹ ($B_1 \cap B_2$) = $f^{-1}(B_1) \cap f^{-1}(B_2)$.

Definition 1.8[8], [9]:

Let A be a fuzzy subset of S, for all $t \in [0, 1]$, the set $A_t = \{x \in S, A(x) \ge t\}$ is called a level subset of A.

Note that, A_t is a subset of S in the ordinary sense.

Definition 1.9[8],[6]

Let M be an R-module. A fuzzy subset X of M is called fuzzy module of an R-module M if:

1. $X(x-y) \ge \min \{ X(x), X(y) \}$, for all $x, y \in M$.

- **2.** $X(rx) \ge X(x)$, for all $x \in M$ and $r \in R$.
- **3.** X(0) = 1.

Definition 1.10[9],[8]

Let A and B be two fuzzy modules of an R-module M . B is called a fuzzy submodule of A, if $B \subseteq A$.

Definition (1.11) [10]

Let A_1 and A_2 be two fuzzy modules of R-modules M_1 and M_2 respectively. $f : A_1 \rightarrow A_2$ is

called*a fuzzy homomorphism* if $f: M_1 \rightarrow M_2$ is R-homomorphism and $A_2(f(x)) = A_1(x)$, for each $x \in M_1$.

Proposition 1.12[10]

Let A_1 and A_2 be two fuzzy modules of R-modules M_1 and M_2 respectively. Let $f: A_1 \rightarrow A_2$ be a fuzzy homomorphism.

If N_1 and N_2 are two fuzzy submodules of A_1 and A_2 respectively, then :

- 1. $f(N_1)$ is a fuzzy submodule of A_2 .
- 2. $f^{-1}(N_2)$ is a fuzzy submodule of A₁.
- 3. $f(N \cap N_1) = f(N) \cap f(N_1)$ is a fuzzy submodule of A_2 , N is a fuzzy submodule of A_1 .

Proposition 1.13[9]

Let A be a fuzzy module of an R-module M. Let $\{N\alpha : \alpha \in \Lambda\}$ be a family of fuzzy submodules of A, then :-

1-
$$\left(\bigcap_{\alpha \in \Lambda} N_{\alpha}\right)$$
 is a fuzzy submodule of A.
2- If {N α : $\alpha \in \Lambda$ } is a chain, then $\left(\prod_{\alpha \in \Lambda} A_{\alpha}\right)$ is a fuzzy submodule

If
$$\{N\alpha : \alpha \in \Lambda\}$$
 is a chain, then $\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)$ is a fuzzy submodule of A.

Proposition 1.14[9]:

Let A be a fuzzy set of an R-module M. Then the level subset A_t , $t \in [0, 1]$ is a submodule of M if and only if A is a fuzzy submodule of X where X is a fuzzy module of an R-module M.

Definition 1.15[9]:

If A is a fuzzy module of an R-module M, then the submodule A_t of M is called the level submodule of M where $t \in [0, 1]$.

Definition 1.16[11]

Let A be a fuzzy module of an R-module M and let N be a fuzzy submodule of A then N is called an essential fuzzy submodule of A if $N \cap U=0_1$ implies to $U=0_1$ for all fuzzy submodule U of A.

Proposition 1.17[11]

Let A be a fuzzy module of an R-module M . A fuzzy submodule N of A is an essential fuzzy submodule of A if and only if N_t is an essential submodule of M for all $N_t \neq \{0\}$ where $t \in (0,1]$.

Definition 1.18[11]

Let A be a fuzzy module of an R-module M then A is called **a uniform fuzzy module** if each non-zero fuzzy submodule of A is an essential fuzzy submodule of A.

For example a fuzzy module A of an R-module Z_{14} that definied by A(x)=1 for all $x \in Z_{14}$.

(2) ,(7) and Z_{14} represented all non-zero submodule of Z_{14} .

Every fuzzy submodule N of A must $N_t = (2)$ or (7) or Z_{14} .

Since each of (2),(7) and Z_{14} are essential submodule of Z_{14}

Therefore N is an essential fuzzy submodule of A.

2 THE MAIN RESELT

This section is devoted to study the concept of uniform fuzzy module and some important properties which are connected with concept of essential fuzzy submodule .

Proposition 2.1

Let A be a fuzzy module of an R-module M if N_1 and N_2 are two fuzzy essential submodules of A then $N_1 \cap N_2$ is an essential fuzzy module of A.

Proof

 $N_1 \cap N_2$ is fuzzy submodule of A (By proposition (1.13)).

Suppose that U is a fuzzy submodule of A and $(N_1 \cap N_2) \cap U=0_1$.

 \implies N₁ \cap (N₂ \cap U)=0₁ (Since the intersection satisfies associative law).

 \Rightarrow (N₂∩U)=0₁ (Since N₁ is fuzzy essential submodule of A).

 \Rightarrow U=0₁ (Since N₂ is fuzzy essential submodule of A).

Thus $N_1 \cap N_2$ is an essential fuzzy module of A \blacksquare

Proposition 2.2

Let f be an epimorphisem from a fuzzy module A_1 into a fuzzy module A_2 and A_1 is an f-invariant . If N is an essential fuzzy submodule of A_1 then f(N) is an essential fuzzy submodule of A_2 .

Proof

To prove f(N) is an essential fuzzy submodule of A_2 .

f(N) is a fuzzy submodule of A_2 (By proposition (1.12)).

Now, Suppose that U is a fuzzy submodule of A_2 such that $f(N) \cap U=0_1$

Therefore, $f^{-1}(f(N) \cap U) = f^{-1}(0_1)$.

 $\Longrightarrow f^{-1}(f(N)) \cap f^{-1}(U) = 0_1 \qquad (By \text{ proposition } (1.7)).$

 \Rightarrow N∩f⁻¹(U)=0₁ (Since f⁻¹(f(N))=N by proposition (1.6)).

 \Rightarrow f⁻¹(U)=0₁(Since N is an essential fuzzy submodule and f⁻¹(U) is fuzzy submodule of A by proposition (1.6)).

 $f(f^{-1}(U))=f(0_1) \Longrightarrow U=0_1$ (By proposition (1.6)).

Then f(N) is an essential fuzzy submodule of A_2

Proposition 2.3

Let f is an epimorphism from a fuzzy module A_1 into a fuzzy module A_2 . If N is an essential fuzzy submodule of A_2 then $f^{-1}(N)$ is an essential fuzzy submodule of A_1 whenever A_1 is f-invariant **Proof**

To prove $f^{-1}(N)$ is an essential fuzzy submodule of A_1 .

 $f^{-1}(N)$ is a fuzzy submodule of A_1 (By proposition(1.12)).

Now, Suppose U is a fuzzy submodule of A such that $f^{-1}(N) \cap U=0_1$

$$\implies f(f^{-1}(N) \cap U) = f(0_1)$$

 $\implies f(f^{-1}(N)) \cap f(U) = f(0_1) \quad (By \text{ proposition } (1.7)).$

 \implies N \cap f(U) = 0₁ (Since f (f⁻¹ (N))=N by proposition (1.6) and f is an epimorphism).

 \implies f(U) =0₁ (Since N is an essential fuzzy submodule of A).

$$\implies$$
 f⁻¹(f(U)) = f⁻¹(0₁)

 \implies U=0₁ (Since f⁻¹(f(U))=U by proposition (1.6) and f is an epimorphism).

Then $f^{-1}(N)$ is an essential fuzzy submodule of A_1

Proposition 2.4

Let A be a fuzzy module of an R-module M and let N_1 and N_2 be two fuzzy submodules of A such that N_1 is a fuzzy submodule of N_2 then N_1 is an essential fuzzy submodule of A if and only if N_1 is an essential fuzzy submodule of N_2 and N_2 is an essential fuzzy submodule of A.

Proof

To prove N_2 is an essential fuzzy submodule of A suppose U be a fuzzy submodule of A such that $N_2 \cap U = 0_1$

- $\implies N_1 \cap U = 0_1 \qquad (\text{Since } N_1 \subseteq N_2).$
- \implies U=0₁ (Since N₁ is an essential fuzzy submodule of A).

 \Rightarrow N₂ is an essential fuzzy submodule of A .

To prove N_1 is an essential fuzzy submodule of N_2 , suppose that U is a fuzzy submodule of N_2 such that $N_1 \cap U = 0_1$

Since $U \subseteq N_2 \subseteq A \Longrightarrow U$ is a fuzzy submodule of A.

 \Rightarrow U=0₁ (Since N₁ is an essential fuzzy submodule of A).

Thus N_1 is an essential fuzzy submodule of N_2 .

Conversely;

To prove that N_1 is an essential fuzzy submodule of A, let U be a fuzzy submodule of A such that $N_1 \cap U = 0_1$

The fuzzy submodule $N_2 \cap U$ is a fuzzy submodule of U and also of N_2 therefore,

 $N_1 \cap (N_2 \cap U) = 0_1 \qquad (Since N_2 \cap U \subseteq U).$

 $N_2 \cap U = 0_1$ (Since N_1 is an essential fuzzy submodule of N_2).

 $U=0_1$ (Since N₂ is an essential fuzzy submodule of A).

Therefore N_1 is an essential fuzzy submodule of A \blacksquare

Proposition 2.5

Let A be a uniform fuzzy module of an R-module M and N be a fuzzy submodule of A , then N is a uniform fuzzy module of M .

Proof

Suppose that U is a fuzzy submodule of $\,N$.

Then U is a fuzzy submodule of A $(Since U \subseteq N \subseteq A)$.

 \Rightarrow U is an essential fuzzy submodule of A (Since A is a uniform fuzzy module).

Consequently; U is an essential fuzzy submodule of N (By proposition (2.4)).

Therefore N is a uniform fuzzy module

Proposition 2.6

Let A_1 be a uniform fuzzy module and A_2 be a fuzzy module of an R-module M, then $A_1 \cap A_2$ is a uniform fuzzy module of M.

Proof

Let N be a fuzzy submodule of $A_1 \cap A_2$.

Then N is a fuzzy submodule of A_1 .

Therefore; N is an essential fuzzy submodule of A1

(Since A_1 is a uniform fuzzy module).

Consequently; N is an essential fuzzy submodule of $A_1 \cap A_2$

Thus $A_1 \cap A_2$ is a uniform fuzzy module

Corollary 2.7

If A_1 and A_2 are two uniform fuzzy modules of an R-module M, then $A_1 \cap A_2$ is a uniform fuzzy module .

Proof

Since every a uniform fuzzy module is a fuzzy module,

Then by proposition (2.6) the proof is completed \blacksquare

Now, we give a generalization of Corollary (2.4) by the following:

Corollary 2.8

Let $\{A_{\alpha}: \alpha \in \Lambda\}$ be a family of uniform fuzzy module of an R-module M .Then

 $\bigcap A_{\alpha}$ is a uniform fuzzy module.

Proof

Since $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is a fuzzy submodule of A_{α} for all $\alpha \in \Lambda$ (By Proposition (1.13)).

Then; $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is a uniform fuzzy module (By proposition (2.5))

Proposition 2.9

Let N be an essential fuzzy submodule of a fuzzy module A of an R-module M , If N is a uniform fuzzy module of an R-module M then A is a uniform module of an R-module M $\,$.

Proof

Let U be a fuzzy submodule of A, to prove that U is an essential fuzzy submodule. We have $U \cap N$ is a fuzzy submodule of N (By proposition (1.13)).

So, $U \cap N$ is an essential fuzzy submodule of N (Since N is a uniform fuzzy module).

 $U \cap N$ is an essential fuzzy submodule of A (By proposition (2.4)).

U is an essential fuzzy submodule of N (By proposition (2.4)).

Thus U is an essential fuzzy submodule of A (By proposition (2.4)).

Therefore, A is a uniform fuzzy module

Corollary 2.10

Let A be a fuzzy module of an R-module M such that N_1 and N_2 are two essential fuzzy submodules of A, then N_1 and N_2 are fuzzy uniform modules of A if and only if $N_1 \cap N_2$ is a fuzzy uniform module of A.

Proof

Let N_1 and N_2 be two fuzzy uniform modules of an R-module M.

Then $N_1 \cap N_2$ is a fuzzy submodule of N_1 and N_2 (By proposition (1.13)).

So, $N_1 {\cap} N_2$ is a fuzzy uniform module (By proposition (2.5)) $% {(2.5)}$.

Conversely;Let $N_1 \cap N_2$ be a fuzzy uniform module of A.

Since $N_1 \cap N_2$ is an essential fuzzy submodule of N_1 and N_2 (By proposition (2.1)).

Then by proposition (2.9) the proof is completed \blacksquare

Proposition 2.11

Let N_1 and N_2 be two fuzzy submodules of a fuzzy module A of an R-module M such that $N_1 \subseteq N_2$ or $N_2 \subseteq N_1$ then N_1 and N_2 are uniform fuzzy module if and only if $N_1 \cup N_2$ is a uniform fuzzy module of an R-module M.

Proof

To prove the case where $N_1 \subseteq N_2$

Let $N_1 \mbox{ and } N_2$ be a uniform fuzzy module ,we have

 $N_1 \cup N_2 = N_2$ (Since $N_1 \subseteq N_2$).

Then $\ N_1 \cup N_2$ is a uniform fuzzy module .

Similarly if $N_2 \subseteq N_1$.

Conversely;

Let $\,N_1 {\cup} N_2$ be a uniform fuzzy module of an R-module M .

Since N_1 and N_2 are fuzzy submodules of $N_1 \cup N_2\;$.

Then by proposition (2.5) the proof is completed \blacksquare

Proposition 2.12

Let A_1 and A_2 be two fuzzy modules of an R-module M_1 and M_2 respectively if $f:A_1 \rightarrow A_2$ is a fuzzy epimorphism and A_1 is a uniform fuzzy module, then A_2 is a uniform fuzzy module .

Proof

Let U be a fuzzy submodule of A_2 , to prove U is an essential fuzzy submodule of A_2 .

We have $f^{-1}(U)$ is a fuzzy submodule of A_1 (By proposition (1.12).

But A_1 is a Uniform fuzzy module.

Then f $^{-1}(U)$ is an essential fuzzy submodule of A₁.

Now,f (f⁻¹(U))=U is an essential fuzzy submodule of A_2 (By proposition (1.6) and proposition (2.2)). Therefore A_2 is a uniform fuzzy module

Proposition 2.13

Let A_1 and A_2 be two fuzzy modules of an R-module M_1 , M_2 respectively. If f: $A_1 \rightarrow A_2$ is a fuzzyepimomorphism , A_1 is an f-invariant and A_2 is a uniform fuzzy module, then A_1 is a uniform fuzzy module .

Proof

Let U be a fuzzy submodule of A_1 . To prove U is an essential fuzzy submodule of A_1 .

We have f(U) is a fuzzy submodule of A_2 (By proposition (1.12).

But A₂ is a Uniform fuzzy module.

Then f(U) is an essential fuzzy submodule of A_2 .

Now $f^{-1}(f(U))=U$ is an essential fuzzy submodule of A_1 (By proposition (1.6) and proposition (2.3)).

Therefore A_1 is a Uniform fuzzy module

References

- [1] Zadeh L. A., "Fuzzy Sets, Information and control", Vol. 8, PP. 338-353, (1965).
- [2] Rosenfeld .A., "Fuzzy groups," J. Math. Anal. Appl., vol. 35, pp. 512-517, 1971
- [3] Kumar R., "Fuzzy Cosets and Some Fuzzy Radicals", Fuzzy Sets and Systems, Vol. 46, PP. 261-265, (1992).
- [4] Hamil. M. A, "F-regular fuzzy module", M.Sc. Thesis, University of Baghdad, (2002).
- [5] Zahedi M. M., "A characterization of L-Fuzzy Prime Ideals", Fuzzy Sets and Systems, Vol. 44, 147-160, (1991).
- [6] Zahedi M. M., "On L-Fuzzy Residual Quotient Modules and P. Primary Submodules", Fuzzy Sets and Systems, Vol. 51, PP. 33-344, (1992).
- [7] Kumar R., "Fuzzy Semiprimary Ideals of Rings", Fuzzy Sets and Systems, Vol. 42, PP. 263-272, (1991).
- [8]Mashinchi M. and Zahedi M. M.," On L-Fuzzy Primary Submodules ", Fuzzy Sets and Systems, Vol. 49, PP. 231-236, (1992).
- [9] Martinez L., "Fuzzy Modules Over Fuzzy Rings in Connection with Fuzzy Ideal of Ring", J. Fuzzy Math. Vol. 4, PP. 843-857, (1996).
- [10] Zahedi M. M., "Some Results on L- Fuzzy Modules", Fuzzy Sets and Systems, Vol. 55, PP. 355-363, (1993).
- [11]Hadi I.M," on some special fuzzy ideal of a fuzzy ring " Accepted in I. Soc. OfPhy. And Math., (2000) .