Preparation and Characterization of some new Azo Compounds and evaluation of their biological activity تحضير وتشخيص بعض مركبات الآزو الجديدة وتقييم فعاليتها البايولوجية

هلال مسعود عبدالله * محمد عبد العباس حافظ * عماد عبد الوهاب عبد الله * قسم الكيمياء /كلية التربية ابن الهيثم/جامعة بغداد / العراق

Abstract

A new series of azo compounds (4_{a-e}) and (5_{a-e}) were prepared and their physical properties were recorded .The prepared compounds were characterized using Uv, FTIR, and H¹NMR spectra and their biological activity was investigated.

الخلاصة .

تم في هذه الدراسة تحضير وتشخيص بعض مركبات الازو الجديدة(4a-e) و(5a-e) وتثبيت خةاصها الفيزياوية زوتم تشخيص المركبات المحضرة بواسة مطيا فية الاشعة الفوق البنفسجية والتحت الحمراء ومطيا فية الرنين االنووي المغناطيسي للبروتون كما درست فعاليتها البايولوجية ضد بعض انواع البكتريا.

Keyword: Azo Compound; Biological Activity; Spectroscopy.

Introduction

Aromatic amines are good starting materials for synthesizing a large numbers of deferent useful organic compounds such as hetero cyclic compounds $^{(1)}$, Schiff bases $^{(2)}$, and azo compounds. $^{(3)}$

These compounds have been used in many important applications specially as antibiotics⁽⁴⁾ and industrial applications⁽⁵⁾. Also azo compounds derived from aromatic amines are very important raw materials in dyes ⁽⁶⁾ and medical applications⁽⁷⁾.

Aromatic amines are converted to enolates through a reaction with α,β – unsaturated acetoacetate ,while enamines are producing heterocompounds such as indoles and quinoline derivatives $^{(8\text{-}10)}$ by heating them in acidic media. When enolates react with urea ,thiourea ,hydrazine and hydroxyl amine in strong alkaline media the products are five and six heterocyclic compounds $^{(11,12)}$.

This paper covers the preparation of new azo-compounds from aromatic enamines derivatives and their biological activity was investigated.

Experimental

All the chemicals used from their sources (BDH. Co. and Fluka Co.) without any more purification. The prepared compounds were characterized with Uv., FT-IR., and H¹ NMR spectra, and their melting points were recorded uncorrected.

1- Preparation of Dimethyl (-3,3-{1,4-phenylene bis-(azanediyl)}dibut-2-enoate(1):-

1,4-Phenylenediamine(0.05mol, 5.4 gm.) was dissolved in dry benzene (50mL) ,and to this solution methyl acetoacetate (0.18mol, 15 mL)was added with few drops of glacial acetic acid .The reaction mixture was refluxed for 60 min. Then cooled and filtered and the solid product was collected and recrystelized with benzene (m.p.=182°C, yield; 90%).

2-Preparation of 6,6'-[1,4-phenylene bis(azanediyl) bis (6-methyl-2-amino-6H-1,3-oxazin-4-ol)]:-

Compound (1) (0.003mol, 1.52gm.) was dissolved in (20mL)of alcoholic sodium hydroxide (40%). To this mixture urea (0.01mol,0.6gm.) was added .The reaction mixture was stirred at (0-10 0 C) in ice bath for 2hrs.and then kept over night in refrigerator ,it was then filtered and the precipitate was dried to give compound (2),(mp=188-190 0 C,yield;77%).

3- Preparation of 6,6'-[1,4-phenylene bis(azanediyl) bis (6-methyl-2-amino-6H-1,3-thiazin-4-ol)](3):-

This compound was prepared by the same procedure in (2) despite using thiourea (0.01mol., 0.76gm) instead of urea to obtain compound (3) (mp=195-197°C, yield 71%).

$$H_2N$$
 H_2 + CH_3C - CH_2COOCH_3 $\frac{dry \ benzen}{H}^{\dagger}$
 H_3COOC - $C=C$ - N
 H_3C
 CH_3
 CH_3
 CH_3

4-Preparation of azo compounds (4a-e) and (5a-e):-

These compounds were prepared in two steps

A)-Diazonium salts:

Compound (2)or(3) (0.001mol) was dissolved in diluted hydrochloric acid (1:1), then cooled in ice bath(0-5°C). Sodium nitrite (0.001mol,0.070gm) was dissolved in small amount of distilled water and cooled in ice bath(0-5°C) then mixed slowly with acidic solution above the mixture was kept stirring at same temperature.

B- The appropriate Naphthol or phenol derivative (0.002mol.), was dissolved in sodium hydroxide solution (20 mL,10%) stirred at (0-5°C) ;solution (A)was then added slowly to that solution with stirring at (0-5°C). The reaction mixture was then left stirring till it reached room temperature, filtered, the solid product was collected. Physical properties of compounds (4a-e) and(5a-e) are listed in table-1-.

Where R=4-Nitro Phenol, 1- Naphtol, 2- Naphtol,4-Amino phenol,phenol

Schem -1-

Table -1-: Contains the physical properties of compounds (4a-e)and(5a-e).

No.	Chemical formula	$M.P^0C$	color	yield
4 _a	$C_{28}H_{18}O_{10}N_8$	245	Gray	84%
$4_{\rm b}$	$C_{35}H_{18}O_6N_6$	304	Deep green	92%
4 _c	$C_{35}H_{18}O_6N_6$	297	Deep green	90%
$4_{\rm d}$	$C_{28}H_{22}O_6N_8$	252	Brown	80%
4 _e	$C_{28}H_{18}O_6N_6$	267	Deep Gray	87%
5 _a	$C_{28}H_{18}O_8N_8S_2$	250	Gray	72%
5 _b	$C_{35}H_{18}O_4N_6 S_2$	320	Deep Green	80%
5 _c	$C_{35}H_{18}O_4N_6 S_2$	335	Deep Red	85%
5 _d	$C_{28}H_{22}O_4N_8 S_2$	270	Brown	90%
5 _e	$C_{28}H_{18}O_4N_6S_2$	240	Deep Gray	88%

Results and Discussion

Compound (1) was prepared by the condensation of 1,4-penylendiamine with methyl aceto acetate in (1:2) mol ratio .This compound was characterized with its melting point ,FT-IR spectra and H¹ NMR spectra. Table -2-contians the FT-IR spectral data of compound (1)which confirmed its suggested structure , while the H¹NMR spectra showed singlet peaks as follows ; (δ = 1.97 ppm)for(δ H¹) protons of methyl groups on β -C-atom (δ =3.67 ppm)for (δ H¹) ester –methyl group protons; (δ = 4.69 ppm) for α C-atom (2H¹) protons , (4H¹) aromatic protons at(δ = 7.69 ppm) and (δ = 10.30 ppm) for (2H¹) protons on nitrogen atoms.

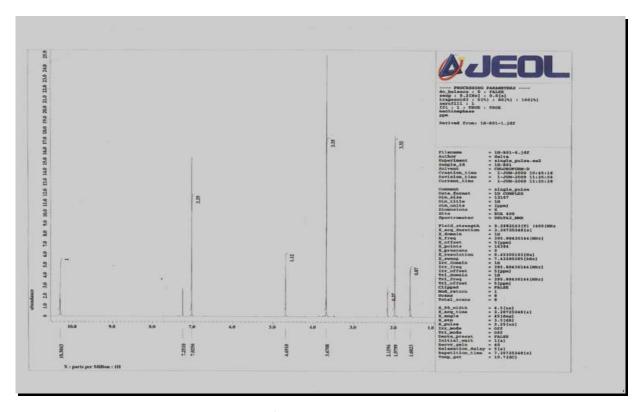


Figure-1: H¹ NMR spectra of compound -1-

Compound (2) was prepared by the reaction of compound (1) with urea in strong alkaline media at low temperature and it was characterized with its melting point and, FT-IR (Table-2-) and H¹ NMR spectra (Figure-2-);

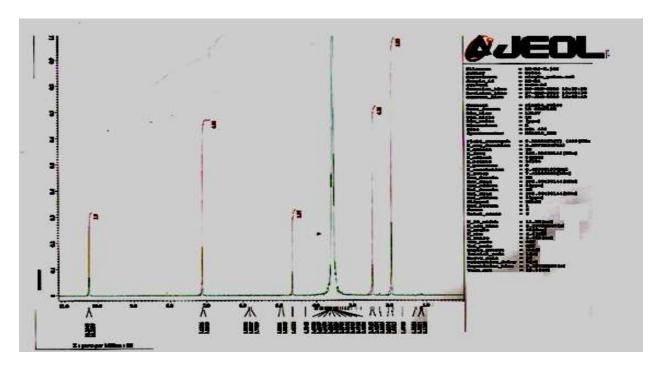


Figure-2- H¹ NMR spectra of compound-2-

Two new azo compounds series (4a-e)&(5a-e) were prepared and characterized with their melting points VU, and FT-IR spectra (Table-2-) and (Table-3-) contained their data .The spectral data confirmed the sugested structural fomulas of the prepared compounds.(Figures 3-6)showing the FT-IR spectra of some of prepared compounds .

The biological activities of the prepared compounds are listed in Table-4-. The azo compounds showing defferent inhibition effects to severals types of bacteria.

Table -2- : Data of UV	spectra	of compounds $4_{a-e} \& 5_{a-e}$
------------------------	---------	-----------------------------------

Compound No.	ℷ _{max}			
4a	442			
4b	520			
4c	605			
4d	500			
4e	498			
5a	588			
5b	480			
5c	520			
5d	560			
5e	572			

Table-3-: The FT-IR data for compounds1,2,34a-eand5a-e

N	N-H	О-Н	С-Н	C-O-C	C-S-	Ar(C=C	C=	N=N	Others
0.	Cm ⁻¹	Cm ⁻¹	Cm ⁻¹	Cm ⁻¹	C) G :-1	N	Cm ⁻¹	Cm ⁻¹
					Cm ⁻¹	Cm ⁻¹	Cm ⁻		
1	2255	22.40	2070	1150		1510			
1	3255	3340	2970	1158		1512- 1600			
2	3271	3360	2993	1161		1512-	1662		
2	3271	3300	2773	1101		1600	1002		
3	3271	3430	2985	1261	1257	1521-	1657		
						1600			
4a	3329	3429	2966	1262		1519-	1627	1496	1327 NO ₂
						1597			
4b	3282	3410	2984	1267		1508-	1612	1477	1320(bendi
						1589			ng OH) naphthalic
4c	3255	3382	2916	1263		1504-	1657	1480	840(bendin
						1593			g OH)
									phenolic
4d	3210	3410	2854	1273		1513-	1638	1469	2588 NH ₂
4e	3286	3417	2924	1269		1600 1504-	1616	1488	833(bendin
46	3280	3417	292 4	1209		1504-	1010	1400	g OH)
									phenolic
5a	3244	3447	2920		1288	1528-	1622	1490	NO ₂
						1602			
5b	3266	3415	2968		1276	1530-	1613	1477	1319(bendi
						1600			ng OH)
5c	3244	3416	2960		1271	1522-	1620	1467	naphthalic 1311((bend
	3211	3110	2,00		1271	1998	1020	1107	ing OH)
									naphthalic
5d	3255	3400	2934		1273	1513-	1598	1486	2500 NH ₂
						1589			
5e	3320	3437	2868		1270	1519-	1616	1477	820(bendin
						1600			g OH) phenolic
				l]		phenone

Table-4-: Biological activity of the prepared compounds

Compound Number	St.aureus	E.coli	Sal. Typhi
1	+	+	<u>+</u>
2	+	_	+
3	<u>+</u>	+	_
$4_{\rm a}$	<u>+</u>	+	<u>+</u>
4b	+	+	+
$4_{\rm d}$	+	<u>+</u>	_
$4_{\rm e}$	++	<u>+</u>	_
5 _a	+	+	+
5 _b	<u>+</u>	+	+
5 _c	+	<u>+</u>	_
5 _d	+	+	<u>+</u>
5 _e	++	<u>+</u>	_

Note: (-)= No-inhibition ,7-10mm ,(+)11-20mm,(++)=more than 20mm

References

- 1- G.M.Kamel, PhD. Thesis. Baghdad University (2011).
- 2- Jarrahpaur, A.A Matamcdifar.M.pakshirK, Hadi N.and Zarei, M. Molecules 9 815 (2004).
- 3- Khalid, M.D and Mohammad .A. E.; N. J. of Chem. 7(2002).
- 4- Maradiya H.and. patel, V, S, Serb, J. Chem.. Soc 67,.(1), 7,25.(2000).
- 5- Khosrow Zamani, khalil Faghihi, Makks. Mehranjani –Polish Journal of pharmacology, 55,1111-1117,(2003) .
- 6- Mekovei ,G.L.ushakov, V.G. Babin, v,k. and Tolmacher A.A. Zhruss .Ed, 54 (5), 505(1988)Russ.
- 7-Faltermeir ,R.B.s studies in conservation 44(1988)121.
- 8-Khosrow Zammani, Khalil Faghihi, Makks Mehranjani, Polish Journal of Pharmacology ,55,1111-1117(2003).
- 9- AL-Soudy.A.Mosoudi NA, Baz-chem Soc, 14(5)790(2003).
- 10- Gernman, H. Salmi T-Arrela, P.M. Warna, jEranen K. Tirronon, E. and Pehkonen, A, Am. Chem. Soc (2003)
- 11-H.M.Ahmad,MSc.Thesis University of Baghdad,(2006).
- 12- Rajk. Basal, "*Heterocyclic chemistry*" 4th. Edition, new age international (p) Hd. Publ: shers(2007) new Delhi,