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Abstract 
The Single Machine Scheduling (SMS) problem with Multiple Objective Function (MOF) is 

one of the most representative problems in the scheduling area. In this paper, we consider the 

SMS problem with linear earliness and quadratic tardiness costs, and no machine idle time. The 

chosen method is based on memetic algorithm and genetic algorithm. 

For this purpose, Genetic Algorithms (GA) are a population-based Meta heuristics. They 

have been successfully applied to many optimization problems. A Memetic Algorithm (MA) is 

an extension of the traditional genetic algorithm. And we introduce two types of crossover. The 

methods were tested and various experimental results show that MA performs better than the GA 

for big jobs but GA was better with small jobs. 

 المستخلص
انجذونت. في  وطاقِ في  انمسائم انىمىرجيتأكثش  مع دانت متعذدة الأهذاف واحذة مه( SMSجذونت انماكىتِ انىحيذةِ )مسأنت 

 عهى فتشةَ تىلفوجىدنجذونت انماكىتِ انىحيذةِ بانتبكيشِ انخطيِّ وكهفِ انتأخشِ مه انذسجت انثاويتِ، ولا مسأنت، وعَتبشُ انبحثهزي 

 ماكىتِ. إنّ انطشيمتَ انمُختاَسَةَ مستىذة عهى خىاسصميتِ ميميتيك وخىاسصميت وساثيت.

تحميكِ الأمثهيت  مسائما إنى انعذيذ مِهْ ىلذُّم وحه. مع لاعذة مجتمع متعذد انتىميب  (GA)نهزا انغشضِ، خىاسصمياث وساثيت

. ومُذّمُئثىاومِىْأوىاعِالاوتمالِ كزنك  نخىاسصميتِ انىساثيتِ انتمهيذيتِ. امتذاد( MAبىجاح. خىاسصميت ميميتيك )

 .انصغيشةِ عمال كَاوتْأفضهبَالأGAانكبيشةِنكهعمال نلأGAيؤُدّيأفضهمِهْ MAبأنّ تبيه  انطشلكَاوتْىتَائجَِتجشيبيتمَُجشّبتوَمُخْتهَفِتَ 

Keywords: scheduling, single machine, linear earliness, quadratic tardiness,memetic algorithm and 

genetic algorithm. 

 

1.Introduction 
In this paper, we consider a single machine scheduling problem with linearearliness and 

quadratic tardiness costs, and no machine idle time  ∑ (     
 ) 

   . Single machine scheduling 

environments actually occur in many practicaloperations (for a recent example in the chemical 

industry, see Wagner et al. (2002)). Moreover, the performance of many production systems is 

frequentlydetermined by the quality of the schedules for a single bottleneck machine.Single 

processor models are then most useful in practice for scheduling such amachine. Also, the analysis 

of single machine problems provides results andinsights that can often be applied to more complex 
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scheduling environments.Indeed, multiple processor environments can often be relaxed to a 

singlemachine problem, or a sequence of such problems. Furthermore, the solutionprocedures for 

some complex systems (e.g., job shops) often require solvingsubproblems with a single processor. 

Scheduling models with both earliness and tardiness costs are compatiblewith the just-in-time 

(JIT) production philosophy. The JIT approach focuseson producing goods only when they are 

needed, and therefore considers thatboth earliness and tardiness should be discouraged. 

Earliness/tardiness modelsare also compatible with the recent adoption of supply chain 

managementby many organizations. This approach seeks to improve the efficiency of thesupply 

chain, and to provide a better service to the end user, by integratingthe flow of materials from 

suppliers to customers. The adoption of supplychain management has caused organizations to view 

early deliveries, in additionto tardy deliveries, as undesirable. 

Linear earliness and quadratic tardiness costs are considered in this paper.On the one hand, 

early completions of jobs result in unnecessary inventory.The costs of maintaining and managing 

this inventory tend to be proportionalto the quantity held in stock, and therefore a linear penalty is 

used forearly jobs. On the other hand, late deliveries can result in lost sales and lossof goodwill, as 

well as disruptions in stages further down the supply chain. Inthis paper, a quadratic penalty is 

considered for the tardy jobs. A quadratictardiness penalty is appropriate in practice. Indeed, the 

tardiness is an importantattribute of service quality. Also, a customer’s dissatisfaction tendsto 

increase quadratically with the tardiness, as proposed in the loss function of Taguchi (1986). 

Moreover, a quadratic tardiness penalty can in some situations be preferable to the more usual linear 

tardiness or maximum tardiness functions, as discussed in Sun et al. (1999). 

We assume that machine idle time is not allowed. This assumption isappropriate for many 

production settings. Indeed, when the capacity of themachine is limited when compared with the 

demand, the machine must bekept running in order to meet the customers’ orders. Also, the 

assumptionof no idle time is justified when the machine has high operating costs, andwhen starting 

a new production run involves large setup costs or times. Somespecific examples of production 

settings where the no idle time assumption is appropriate have been given by Korman (1994) and 

Landis (1993). 

This problem has been previously considered by Valente (to appear, 2006). Valente (to appear) 

proposed a lower bounding procedure based on arelaxation of the job completion times, as well as a 

branch-and-bound procedure.In Valente (2006), several dispatching heuristics are presented, 

andtheir performance is analysed on a wide range of instance types. The correspondingproblem 

with inserted idle time has been considered by Schaller (2004). He presented a timetabling 

procedure to optimally insert idle time ina given sequence, as well as a branch-and-bound procedure 

and simple andefficient heuristics. 

The single machine problem with linear earliness and tardiness penalties∑ (     )
 
    has also 

been previously considered by Garey et al. (1988),Kim and Yano (1994) and Schaller (2007). Garey 

et al. (1988) showed thatthe problem is NP-hard, and proposed a timetabling procedure. 

Severalproperties of optimal solutions were presented by Kim and Yano (1994), andused to develop 

optimal and heuristic algorithms. Schaller (2007) developsa new lower bound and a new dominance 

condition, and also shows how tostrengthen the lower bounds proposed by Kim and Yano 

(1994).Mohammed (to appear, 2012) add due-dates for the problem and introduced six types for 

crossovers three of them new. 

The minimization of the quadratic lateness ∑   
  

   , where the latenessof    is defined as 

        , has also been previously considered. Guptaand Sen (1983) proposed both a branch-

and-bound algorithm and a heuristic rule for the problem with no idle time. Su and Chang (1998) 

and Schaller (2002) considered inserted idle time, and proposed timetabling proceduresand heuristic 

algorithms. Sen et al. (1995) presented a branch-and-boundprocedure for the weighted 

problem∑     
  

    where idle time is allowedonly prior to the start of the first job. Baker and 

Scudder (1990) andHoogeveen (2005) provide excellent surveys of scheduling problems with 
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earlinessand tardiness penalties. Kanet and Sridharan (2000) give a review ofscheduling models 

with inserted idle time that complements our focus on aproblem with no machine idle time. 

In this paper, we present several genetic algorithms, and analyse their performance on a wide 

range of instances. The proposed genetic approach uses a random numbers. The various versions of 

the genetic approach differ on the generation of the initial population, as well as on the use of local 

search. The genetic algorithms are compared with the best existing heuristic, as well as with optimal 

solutions for some instance size. 

The remainder of this paper is organized as follows. In section 2, wedescribe our scheduling 

problem.In section 3, we describe theproposed memetic algorithm and geneticalgorithm approach, 

and presentthe several versions that were considered. Thecomputational results are reported in 

section 4. Finally, some concluding remarks are given in section 5. 

 

2. Minimizing Total Linear Earliness and Quadratic Tardiness Costs 
Our scheduling problem can describe as follows, for a survey see Baker and Scudder (1990): 

A set of   jobs             are available for processing at time zero and each job   requires 

processing during an uninterrupted period of given length   , and ideally should be completed at its 

due-date   . Given a scheduling          , then for each job   we calculate the completion time 

   ∑   
 
    such that no two jobs overlap in their execution, the earliness and tardiness of job 

  are defined by       {       } and       {       }; correspondingly, a job is called 

early if it is completed before its due-date and tardy if it is completed after its due-date. If a job is 

completed exactly at its due-date, then it is called just-in-time. If schedule s is given then the quality 

of s is measured by the objective function       ∑ (     
 ) 

   . 

To state our scheduling problem more precisely, we are given a set of   jobs are numbered 

       . The objective is to find a processing order of jobs    which minimizes the multiple 

objective functions (MOF) defined by: 
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   Where S is the set of all feasible solution,   is a schedule in . The objective      can be 

written as: 
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Since the third term 0 when      
      

 we can unhand it and put its values in any first or 

second terms because both terms took zero when      
      

.This means that the cost of 

scheduling job     is  (    ), given by: 
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3.   Memetic and Genetic Algorithms 
GAs got recognition in the mid 70´s after John Holland's book entitled 'Adaptation in Natural 

and Artificial Systems' was published. Since then, due to its simplicity and efficiency, GAs became 

widespread, and in the 80´s, a new class of 'knowledge-augmented GAs', sometimes called 'hybrid 

GAs', started to appear in the literature. Recognizing important differences and similarities with 

other population-based approaches, some of them were categorized as memetic algorithms (MAs) 

in 1989 [10]. 

3.1   Population Structure 

A population structure approach based on a ternary tree was chosen. In contrast with a non-

structured population it divides the individuals in clusters and restricts crossover possibilities. 

 

 

 

 

 

 

 

 

 

Figure 1. Population structure 

 

The structure consists of several clusters and each cluster consists of a leader and three 

supporter solutions. The leader is chosen as the best individual of the cluster. The number of 

individuals in the population is defined by the number of nodes in the ternary tree, i.e., it is 

necessary 13 individuals to make a ternary tree with 3 levels, 40 individuals to 4 levels and so on.  

3.2   Representation 

For the SMS problem the representation we have chosen is quite intuitive, with a solution being 

represented as a chromosome with the alleles assuming different integer values in the [1, n] interval, 

where n is the number of jobs. 

3.3   Crossover 

Two different crossover operators were implemented. The first is the well-known Order 

Crossover (OX) [10]. After choosing two parents, a fragment of the chromosome from one of them 

is randomly selected and copied into the offspring. In the second phase, the offspring's empty 

positions are sequentially filled according to the chromosome of the other parent.  

The second crossover calls homogeneous mixture crossover (HMX)was proposed by 

Mohammed [9], given by the mixture the two chromosomes from parents uniformly by make a set 

from genes M, he introduced the way for the mixture, first; the odd position from the first parent 

and the even position from the second parent. Then separate genes without repetition gene, since we 

read the set M from the left, if the gene j does not existing in the first child put it, otherwise we put 

gene j in the second child until final M. This way also gives a new two. 

3.4   Mutation 

In our implementation a traditional mutation strategy based on jobs swapping was 

implemented. According to it, two positions are randomly selected and the alleles in these positions 

swap their values. 

3.5   Fitness Function 

As in this problem the goal is to minimize the single machine scheduling problem with linear 

earliness and quadratic tardiness costs, the fitness function was chosen as randomly. 

3.6   Offspring Insertion in Population 

Once the leader and one supporter are selected, the recombination, mutation and local search 

take place and an offspring is generated. If the fitness of the offspring is better than the leader, the 

new individual takes its place. Otherwise it takes the place of the supporter that took part in the 
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recombination. If the new individual is already present in the population, it is not inserted. We 

adopted a policy of not allowing duplicated individuals to reduce loss of diversity. After all 

individuals were inserted, the population is restructured. The fitness of the leader of a group must be 

lower than the fitness of the leader of the group just above it. Following this policy, the higher 

subgroups will have leaders with better fitness than the lower groups and the best solution will be 

the leader of the root subgroup. The adjustment is made by comparing the leader of each subgroup 

with the leader of the subgroup just above. If the leader in the level below turns out to be better, 

they swap their places. 

 

4. Computational Experience 
4.1 Test Problems 

The GA was tested by coding it in Matlab 7.9 and running on a Pentium IV at 2.2GHz, with 

Ram 2GB computer. 

The tested problem instances are generated as follows. For n = 10, 20, 30, 40, 50, 75, 100, 150, 

200, 500,1000 and 2000, coefficient  
 
 for              is generated by randomly selecting 

integers from interval [1,10]. It has been observed in the literature (e.g. [9]) that problem hardness is 

related to two parameters RDD and LF, called the relative range of due dates and the average 

lateness factor, respectively. In our experiment, 

RDD  =  0.2, 0.4, 0.6, 0.8, 1.0, 

LF     =  0.2, 0.4, 

are used. Corresponding to each of these 5 × 2 = 10 cases, one problem instance is generated by 

selecting integer due dates       , from interval 

[(1 – LF – RDD / 2) SP, (1 – LF + RDD / 2) SP],  

where    ∑       . Sizes n = 10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000 and 2000 are 

chosen. 

4.2 Computational Results 

In this section we will report on the results of our computational tests to show the effectiveness 

of our memetic algorithm (MA) and genetic algorithm (GA) methods. In table (1) we are going to 

compare between the results which obtain from the problem   ∑ (     
 ) 

   , it is clear from 

table (1) OX appear once one with GA inn = 30 and HMX giveagood solutions with MA and GA, 

since HMX with GA gives a good solutions with small and medium testing and HMX with MA has 

better with large testing. 

Table 1: Mean results for MA, GA 

 

 
Memetic algorithm Genetic algorithm 

n HMX OX HMX OX 

10 164.7 164.3 164.5 166.6 

20 1555.7 1591 1563.2 1566.4 

30 2422.4 2427.4 2438.8 2416.5 

40 5150.2 5282.2 5000.4 5191.6 

50 8566.6 8742.9 8345 8660.5 

75 29080.1 32243.4 27989.5 31116.9 

100 59234.3 66648.4 56851.5 76202.4 

150 235504.4 309623.4 243428.2 298422.7 

200 764238.9 960344.3 719559.4 1012660.7 

500 21108216.3 23834831.1 21630788.7 24637004 

1000 214185569 243520187.2 225787147.2 236321386.2 

2000 2115110240 2098478829 2137561277 2162864951 
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Table (2) shows that HMX with GA took best times for all iterations. And OX was worse with 

MA and GA 

 

Table 2: Mean times for MA, GA 

 

 
Memetic algorithm Genetic algorithm 

n HMX OX HMX OX 

10 0.073306 0.1220918 0.0517894 0.1200178 

20 0.1391599 0.185777 0.0863229 0.1794653 

30 0.2082309 0.2734277 0.1999993 0.246813 

40 0.2763997 0.3457631 0.2222919 0.3148616 

50 0.3521817 0.4225856 0.2921941 0.3825081 

75 0.5304999 0.6275855 0.437023 0.5583012 

100 0.7060245 0.7153075 0.6676753 0.7432684 

150 1.0560387 1.2661705 0.901375 1.1279571 

200 1.4711303 1.7469457 1.2856587 1.5666435 

500 5.1874992 5.5231803 4.1781054 5.1114735 

1000 15.59945 15.030867 12.592579 14.258588 

2000 48.695259 42.133792 39.575722 43.369643 

 

 

5. Conclusion 
 

In this paper, we considered the single machine scheduling problem with linear earliness and 

quadratic tardiness costs, and no machine idle time. Several heuristics based on the memetic 

algorithm and genetic algorithm approaches were presented. Results on GA and MA indicate the 

HMX as the best crossover operator. The OX crossover performed poorly, probably because of the 

quick loss of diversity in this crossover.And the HMX performed strongly because the approach 

mixture the chromosomes. 

The main conclusion to be drawn from our computation results is that (HMX) is effective 

method for our problem especially for the large problem instances. 
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