On Fuzzy Semi T_0 and T_1 Spaces on Fuzzy Topological Space on Fuzzy set حول شبه الفضاءات الضبابية T_0 و T_1 على الفضاء التبولوجي الضبابي وعلى مجموعة ضبابية

Assist.Prof. Dr.Munir Abdul khalik Alkhafaji Shamaa Abd Alhassan Alkanee Mustinsiryah University / The College of Education Department of Mathematics

<u>Abstract</u>

The aim of this paper to introduce fuzzy topological space on fuzzy set , fuzzy semi open set , some other class of fuzzy open sets and fuzzy semi T_0 , fuzzy

semi T_1 space when $(x \neq y)$, the relation between them and some theorems by using the notions of fuzzy quasi-coincident.

الخلاصة ان الهدف من هذه البحث هو دراسة الفضاء التبولوجي الضبابي وعلى مجموعة ضبابية المجموعة شبه المفتوحة وعلاقتها بفئه من المجاميع الاخرى ودراسة بديهيات الفصل مننوعشبه T₀وشبه T₁والعلاقة فيما بينها وطرح بعض النظريات.

Introduction

The concept of fuzzy set was introduced by Zadeh in his classical paper [1] in1965 ,The fuzzy topological space was introduced by Chang [2] in 1968, Azad [3] has introduced the concepts of fuzzy semi open, fuzzy semi closed.

The fuzzy separation axioms was defined by Sinha [4] , The fuzzy quasi coincident concept which introduced in 1980 by Pu and Lu [5] .

A fuzzy set \tilde{A} in a universe set X is characterization by a membership(characteristic) function $\mu_{\tilde{A}}$:

 $X \rightarrow I$, which an assoicates with each point x in X a real number in closed intervle I = [0, 1]. The collection of all fuzzy subset in X will be denote by I^X [6].

Throughout this paper by $(\tilde{A}, \tilde{\tau})$ we mean the fuzzy topological space (FTS. for short), when we write \tilde{B}, \tilde{C} we mean a fuzzy subsets of \tilde{A} and B(x), C(x)

the membership function for this sets. This paper application by using program is called **Delphi** program.

<u>1 -Fuzzy Topological Space on Fuzzy Set</u>

Definition (1-1)[6]

The fuzzy subset \tilde{A} of X with a collection of fuzzy subsets of \tilde{A} which denote by $\tilde{\tau}$ is said to be a Fuzzy Topological space on

Fuzzy set if satisfied the following conditions :-

- 1. \tilde{A} , $\tilde{\phi} \in \tilde{\tau}$
- 2. if \tilde{B} and $\tilde{C} \in \tilde{\tau} \Rightarrow \tilde{B} \cap \tilde{C} \in \tilde{\tau}$
- 3. if $\tilde{B}_i \in \tilde{\tau}$, $\forall i \in I \Rightarrow \cup \tilde{B}_i \in \tilde{\tau}$

<u>Remark (1-2)[6]</u>

IF $\tilde{B} \in \tilde{\tau}$ then \tilde{B} is called $\tilde{\tau}$ - fuzzy open set, The complement of \tilde{B} is called $\tilde{\tau}$ -fuzzy closed set and defined by

 $B^{c}(x) = A(x) - B(x), \forall x \in X.$

Remark (1-3)[6)

Let x_r be a fuzzy point and \tilde{A} be a fuzzy set then we have :- $x_r \in \tilde{A}$ if $r \leq A(x)$, and $x_r \in \tilde{A}$ if r < A(x).

Remark (1-4)[6]

Let $\tilde{A} \in I^X$ then $p(\tilde{A}) = \{\tilde{B} : \tilde{B} \in I^X \text{ and } \tilde{B} \subseteq \tilde{A}\}$.

Definition (1-5)[6]

The interior and the closure of any fuzzy subset \tilde{G} of (\tilde{A}, τ) is defined by :int $(\tilde{G}) = \bigcup \{ \tilde{B} : \tilde{B} \in \tilde{\tau} : B(x) \leq G(x) \}$, $\forall x \in X$.

cl $(\tilde{G}) = \bigcap \{ \tilde{F} : \tilde{F}^c \in \tilde{\tau}, G(x) \leq F(x) \}, \forall x \in X.$

Definition (1-6)[7]

A fuzzy set x_r in a fuzzy set \tilde{A} is called a fuzzy point if $x(x_0) = r$, if $x = x_q$, and $x(x_0) = 0$, if $x \neq x_q$, $0 \le r \le 1$, such that

x and r are the support and the value of the fuzzy point respectively **Proposition (1-7) [7]**

$\frac{1}{2}$

Let \tilde{B} and \tilde{C} are fuzzy subsets on \tilde{A} then :-

1. $\tilde{B} \subseteq \tilde{C} \Leftrightarrow B(x) \leq C(x)$, $\forall x \in X$ 2. $\tilde{B} = \tilde{C} \Leftrightarrow B(x) = C(x)$, $\forall x \in X$ 3. $\tilde{F} = \tilde{B} \cap \tilde{C} \Leftrightarrow F(x) = \min\{B(x), C(x)\}$, $\forall x \in X$ 4. $\tilde{G} = \tilde{B} \cup \tilde{C} \Leftrightarrow G(x) = \max \{B(x), C(x)\}$, $\forall x \in X$ 5. $\tilde{B} = \tilde{C}^c \Leftrightarrow B(x) = A(x) - C(x), \forall x \in X.$ 2 - Fuzzy Semi Open Set Definition (2-1) Let $(\tilde{A}, \tilde{\tau})$ be FTS., $\tilde{B} \subseteq \tilde{A}, \tilde{B}$ is said to be :-• **fuzzysemiopenset**[**8**]:- if $B(x) \leq cl(int(B(x)))$, $\forall_{\mathbf{v}} \in_{\mathbf{X}}$ • **fyzzysemiclosedset**[**8**]:- if int(cl(B(x))) $\leq B(x)$, ∀_x∈_x Definition (2-2) Let $(\tilde{A}, \tilde{\tau})$ be FTS., $\tilde{B} \subseteq \tilde{A}, \tilde{B}$ is said to be:-• fuzzy α - openset[9]: if $B(x) \leq int(cl(int(B(x))))$ $\forall x \in X$. • **fuzzy** α - **closedset**[**9**]: if cl(int(cl(B(x)))) $\leq B(x)$, $\forall_{\mathbf{x}} \in \mathbf{x}$ • **fuzzysemipreopenset**[**6**] (f- β open set):- if $B(x) \leq \operatorname{cl(int(cl(B(x))))} \forall x \in X.$ • fuzzysemipreclosedset[6](f - β closed):- if

 $\operatorname{int}(\operatorname{cl}(\operatorname{int}(B(x)))) \leq B(x) \forall x \in X.$

- fuzzyregularopenset[10](f r open):-if B(x) = int(cl(B(x)))
 ∀_x∈_X.
 fuzzy regularclosedset[10](f r closed) :- if B(x) = cl(int(B(x)))
 ∀_x∈_X.
- $\mathbf{fuzzy} \mathbf{Hset}[\mathbf{11}]$:- if $\operatorname{int}(\operatorname{cl}(B(x))) \leq \operatorname{cl}(\operatorname{int}(B(x)))$
- $\forall_{x} \in_{X}$
- fuzzypresemiopenset[12]:- if $B(x) \leq \operatorname{sint}(\operatorname{cl}(B(x)))$ $\forall_{x} \in_{X}$.
- **fuzzypresemiclosedset**[**12**] :- if scl(int(B(x))) $\leq B(x)$ $\forall_x \in_{X}$.

<u>Remark (2-3)[6,8,9,10,11,12,]</u>

The complement of fuzzy open (fuzzy semi open set , fuzzy α - open , fuzzy β - open , f - r - open , fuzzy - H - open , fuzzy presemi open) is a fuzzy closed (fuzzy semi closed , fuzzy α - closed , fuzzy β - closed , f - r - closed ,fuzzy - H - closed, fuzzy presemi closed) respectively.

Remark (2-4)

The family of all fuzzy open (fuzzy semi open set , fuzzy α - open , fuzzy β - open,fuzzy -r- open,fuzzy H -open , fuzzy presemi open) set in FTS. is denote by FO(\tilde{A}) (FSO(\tilde{A}) , F α O(\tilde{A}) , F β O(\tilde{A}) , FRO(\tilde{A}) , FHO(\tilde{A}) , FPSO(\tilde{A})) respectively. and FC (FSC ,F α C, F β C, FRC , FHC, FPSC). for the complement respectively.

Defintion (2-5) [7]

Let $(\tilde{A}, \tilde{\tau})$ be FTS., $\tilde{B} \subseteq \tilde{A}$, The fuzzy semi interior \tilde{B} and the semi closure \tilde{B} is defined by :-

 $\operatorname{sint}(\widetilde{\mathbf{B}}) = \bigcup \{ \widetilde{G}_i : \widetilde{G}_i \in \operatorname{FSO}(\widetilde{A}, \widetilde{\tau}) , G_i(x) \leq B(x) \}, \ \forall x \in X.$ $\operatorname{scl}(\widetilde{\mathbf{B}}) = \bigcap \{ \widetilde{F}_i : \widetilde{F}_i^c \in \operatorname{FSO}(\widetilde{A}, \widetilde{\tau}) , B(x) \leq F_i(x) \}, \ \forall x \in X.$

Defintion (2-6) [6]

A fuzzy set \tilde{B} in fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is called **fuzzysemineighbourhood** of a fuzzy point x_r in \tilde{A} if there exists a **fuzzysemiopenset** \tilde{G} in \tilde{A} such that $x_r \in \tilde{G}$ and $\tilde{G} \subseteq \tilde{B}$.

<u> Theorem (2-7)</u>

Every fuzzy open set is a fuzzy semi open set. proof :-Trivial.

<u>Remark (2-8)</u>

The converse of theorem(2 - 7) is not true in general as shown in the following example.

Example (2 - 9) Let $X = \{a, b, c\}, (\tilde{A}, \tilde{\tau})$ be FTS. on \tilde{A} s.t.

$$\begin{split} \tilde{A} &= \{ (a,0.7), (b,0.7), (c,0.7) \} \\ \tilde{B} &= \{ (a,0.1), (b,0.2), (c,0.3) \} \\ \tilde{D} &= \{ (a,0.2), (b,0.3), (c,0.4) \} \\ \tilde{G} &= \{ (a,0.5), (b,0.1), (c,0.3) \} \\ \tilde{F} &= \{ (a,0.5), (b,0.5), (c,0.4) \} \\ \tilde{\tau} &= \{ \widetilde{\ , \tilde{B} , \tilde{A} \}. \end{split}$$

 \widetilde{D} is a fuzzy semi open set in FTS. , but not fuzzy open set.

<u> Theorem (2-10)</u>

Every fuzzy regular open set is a fuzzy semi open set. proof:- Let $(\tilde{A}, \tilde{\tau})$ be a FTS. $\tilde{B} \subseteq \tilde{A}$ and $\tilde{B} \in FRO(\tilde{A})$, Since every fuzzy regular open set is a fuzzy open set , Hence \tilde{B} is a fuzzy semi open set.

<u>Remark (2-11)</u>

The converse of theorem (2 - 10) is not true in general as shown in the following example.

Example (2-12)

The set \widetilde{D} in the example (2 - 9) is a fuzzy semi open set but is not fuzzy regular open set.

<u> Theorem (2-13)</u>

Every fuzzy α - open set is a fuzzy semi open set. proof:- Trivial.

Remark (2-14)

The converse of theorem (2 - 13) is not true in general as shown by the following example.

Example (2-15)

The set \widetilde{D} in the example (2 - 9) is a fuzzy semi open set but is not fuzzy α -open set.

Theorem (2-16)

Every fuzzy semi open set is a fuzzy β - open set. proof:- Trivial.

Remark (2-17)

The converse of theorem (2 - 16) is not true in general as shown in the following example.

Example (2-18)

The fuzzy set \tilde{G} in the example (2 - 9) is a fuzzy β - open set but not fuzzy semi open set.

<u>Theorem (2-19)</u>

Every fuzzy semi open set is a fuzzy H -set. proof:- since \tilde{B} is a fuzzy semi open then $B(x) \leq cl(int(B(x)))$

 $\forall x \in X \Rightarrow \operatorname{cl}(B(x)) \leq \operatorname{cl}(\operatorname{int}(B(x)))$

but $int(cl(B(x))) \leq cl(B(x))$

 $\Rightarrow \operatorname{int}(\operatorname{cl}(B(x))) \leq \operatorname{cl}(B(x)) \leq \operatorname{cl}(\operatorname{int}(B(x)))$

 $\forall x \in X$, Hence \tilde{B} is a fuzzy - H - open set.

Remark (2-20)

The converse of theorem (2 -19) is not true in general as shown in the following example.

Example (2-21)

The fuzzy set \tilde{F} in the example(2 - 9) is a fuzzy - H- open set but not fuzzy semi open set .

<u>Theorem (2-22)</u>

Every fuzzy semi open set is a fuzzy presemi open set. proof:- Trivial.

Remark (2-23)

The converse of the above theorem is not true in general as shown in the following example.

Example (2-24)

The fuzzy set \tilde{G} in the example (2 - 9) is a fuzzy presemi open set but is not fuzzy semi open set.

Remark (2-25)

The following diagram explain the relation between fuzzy semi open set and a class of fuzzy open set by figuer - 1 -

Figuer -1-

<u>3 -Fuzzy Semi T₀ – Space</u>

Defintiopn (3-1) [12]

A fuzzy set \tilde{B} in FTS . $(\tilde{A}, \tilde{\tau})$ is said to be quasi coincident (q-coincident. for short) with a fuzzy set \tilde{C} denoted by $\tilde{B} \neq \tilde{C}$, if there exists $x \in X$ s.t B(x) + C(x) > A(x), and denoted by $\tilde{B} \neq \tilde{C}$ if the fuzzy sets are not q-coincident, $\forall x \in X$.

Defintion (3-2) [12]

The fuzzy pint x_r is q-coincident with a fuzzy set \tilde{B} if r + B(x) > A(x), and denoted by $x_r \bar{q} \tilde{B}$ if is not q-coincident. And as a results for the definition, for any fuzzy sets in FTS. we have that if $\tilde{B} \neq \tilde{C}$ and $B(x) \leq D(x)$, $C(x) \leq F(x)$, $\forall x \in X \Rightarrow \tilde{D} \neq \tilde{F}$. In the other hand if $\tilde{B} \bar{q} \tilde{C}$, $D(x) \leq B(x)$, $F(x) \leq C(x) \Rightarrow \tilde{D} \bar{q} \tilde{F}$.

Lemma (3-3) [13]

For any two fuzzy open sets \tilde{B} , \tilde{C} in FTS $(\tilde{A}, \tilde{\tau})$:-

- If $\tilde{B} \neq \tilde{C} \Rightarrow cl(\tilde{B}) \neq \tilde{C}$, and so $cl(\tilde{B}) \neq CL(\tilde{C})$.
- If $\tilde{B}\bar{q}\tilde{C} \Rightarrow \tilde{B}\bar{q}$ cl (\tilde{C}) and cl(\tilde{B}) $\bar{q}\tilde{C}$.
- $B(x) \leq C(x) \Leftrightarrow \tilde{B} \bar{q} \tilde{C}^c$.

• $\tilde{B}\bar{q}\tilde{C} \Leftrightarrow B(x) \leq C^{c}(x).$

```
Proposition ( 3-4 ) [14]
```

Let \tilde{B} , \tilde{C} is a fuzzy subsets in FTS. $(\tilde{A}, \tilde{\tau})$ then :-

- $B(x) \leq C(x)$, $\forall x \in X \Leftrightarrow x_r \neq \tilde{C}$, for each $x_r \neq \tilde{B}$.
- $\tilde{B} \bar{q} \tilde{B}^c$, for any fuzzy set.
- if $\tilde{B} \cap \tilde{C} = \tilde{\phi} \Rightarrow \tilde{B} \bar{q} \tilde{C}$.
- $x_r \bar{q} \tilde{B} \Leftrightarrow r \leq B^c(x).$

Defintion (3-5)

A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is said to be :-

1. **FuzzyT**₀ (**FT**₀) **space**[**15**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exists $\tilde{B} \in FO(\tilde{A})$ such that either $x_r \in \tilde{B}$, $y_t \bar{q}\tilde{B}$, or $y_t \in \tilde{B}$, $x_r \bar{q}\tilde{B}$.

2. **FuzzysemiT**₀(**FST**₀)**space**[**8**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exists $\tilde{B} \in FSO(\tilde{A})$ such that either

 $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$, or $y_t \in \tilde{B}$, $x_r \bar{q} \tilde{B}$.

3. **Fuzzy** α -**T**₀(**F** α **T**₀)**space**[**9**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exists $\tilde{B} \in F\alpha O(\tilde{A})$, such that either

$x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$, or $y_t \in \tilde{B}$, $x_r \bar{q} \tilde{B}$.

4. FuzzysemipreT₀($F\beta$ T₀)space[6] if for every pair of distinct fuzzy

points x_r , y_t in \tilde{A} , there exists $\tilde{B} \in F\beta O(\tilde{A})$ such that either $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$, or $y_t \in \tilde{B}$, $x_r \bar{q} \tilde{B}$.

5. **FuzzyalmostT**₀(**FAT**₀)**space**[**10**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} , there exists $\tilde{B} \in \text{FRO}(\tilde{A})$ such that either

 $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$ or $y_t \in \tilde{B} x_r \bar{q} \tilde{B}$.

6. **Fuzzy** – **HT**₀(**FHT**₀)**space** if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exists $\tilde{B} \in \text{FHO}(\tilde{A})$ such that either $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$ or $y_t \in \tilde{B}$, $x_r \bar{q} \tilde{B}$.

7. **FuzzypresemiT**₀(**FPST**₀)**space**[12] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exists $\tilde{B} \in \text{FPSO}(\tilde{A})$ such that

 $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$ or $y_t \in \tilde{B}$, $x_r \bar{q} \tilde{B}$.

Theorem (3-6)

Every **FT₀space** is **FST₀space**. proof:-By using theorem (2 - 7).

<u>Remark (3-7)</u>

The converse of theorem(3 - 6) is not true in general as shown in the following example.

<u>Example (3-8)</u>

The example(2 - 9) is a FST_0 space but is not FT_0 space.

<u> Theorem (3-9)</u>

Every FST_0 space is $F\beta T_0$ space.

Proof :- By using theorem(2 - 16).

Remark (3-10)

The converse of theorem (3 - 9) is not true in general as shown in the following example.

Example (3-11)

Let $X = \{a, b\}$, $\tilde{A} = \{(a, 0.6), (b, 0.4)\}$, $\tilde{B} = \{(a, 0.2), (b, 0.1)\}$ $\tilde{\tau} = \{\phi, \tilde{B}, \tilde{A}\}, \tilde{C} = \{(a, 0.5), (b, 0.4)\}$ is a **F** β **O** but is not **FSO**, it is clear that, the FTS. $(\tilde{A}, \tilde{\tau})$ is **F** β **T**₀**space** but is not **FST**₀**space**.

<u>Theorem (3-12)</u>

Every $F\alpha T_0$ space is a FST_0 space. Proof:- By using theorem(2 - 13).

Remark (3-13)

The converse of theorem (3 - 12) is not true as shown in the following example.

<u>Example (3-14)</u>

Let $X = \{a, b\}$, $\tilde{A} = \{(a, 0.7), (b, 0.7)\}$, $\tilde{B} = \{(a, 0.3), (b, 0.1)\}$, $\tilde{\tau} = \{\phi, \tilde{B}, \tilde{A}\}, \tilde{C} = \{(a, 0.4), (b, 0.1)\}$ is a **FSO** but not **F\alphaO**, Then is **FST**₀ but not **F\alphaT**₀ space.

Theorem (3-15)

Every **FAT₀ space** is **FST₀ space**.

proof:-By using theorem(2 - 10).

Remark (3-16)

The converse of theorem (3 - 15) is not true in general as shown in the following example.

Example (3-17)

The space in the example(3 - 14) is a **FST₀ space** but is not **FAT₀ space**.

Theorem (3-18)

Every **F**S**T**₀**space** is a **FHT**₀**space**. Proof :-By using theorem(2 - 19).

Remark (3-19)

The converse of theorem (3 – 18) is not true as shown in the following example.

Example (3-20)

Let $X = \{a, b, c\}$, $\tilde{A} = \{(a,0.6), (b,0.6), (c,0.6)\}$, $\tilde{B} = \{(a,0.4), (b,0.4), (c,0.4)\}$, $\tilde{\tau} = \{\phi, \tilde{B}, \tilde{A}\}$. The set $\tilde{C} = \{(a,0.2), (b,0.2), (c,0.2)\}$ is a **FHO** set but not **FSO** then the space is **FHT₀ space**, but not **FST₀ space**.

<u>Theorem (3-21)</u>

Every **FST₀space** is a **FPST₀space**.

Proof:- By using theorem (2 - 22).

<u>Remark (3-22)</u>

The converse of theorem (3 - 21) is not true in general as shown in the following example.

<u>Example (3-23)</u>

The set $\tilde{F} = \{(a, 0.2)\}$ is a **FPSOset** in the example (3 - 11) but is not **FSOset**

hence the $\tilde{\tau}$ is $FPST_0space$ but not FST_0space .

<u>Remark (3-24)</u>

The following diagram explain the relation between FST_0space and a class of $FuzzyT_0$ spaces by figuer - 2 -

Figuer - 2 -

Theorem (3-25)

IF a fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is a **FST**₀ space then for every tow distinct fuzzy points x_r , $y_t \in \tilde{A}$ either $x_r \notin \text{scl}(y_t)$ or $y_t \notin \text{scl}(x_r)$.

proof:- Let(\tilde{A} , $\tilde{\tau}$) is a **FST**₀space and x_r , $y_t \in \tilde{A}$ ($x \neq y$) , then there exist

a fuzzy semi open set \tilde{B} s.t. $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$, or $y_t \in \tilde{B}$, $x_r \bar{q} \tilde{B}$. if

 $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$, by proposition (3 - 4) $t \leq B^c(y)$ and $x_r \notin \tilde{B}^c$

and B^c is fuzzy semi closed, therefor $x_r \notin \text{scl}(y_t)$.

is similarly if $y_t \in \tilde{B}$, $x_r \bar{q} \tilde{B}$.

Remark (3-26)

The converse of theorem (3 - 25) is not true in general as shown by the following example.

<u>Example (3-27)</u>

Let $X = \{a, b\}, \tilde{A} = \{(a, 0.5), (b, 0.4)\}$ $\tilde{B} = \{(a, 0.1), (b, 0.1)\}, \tilde{C} = \{(a, 0.4)\}, \tilde{D} = \{(b, 0.3)\},$ $\tilde{\tau} = \{\phi, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{B} \cap \tilde{C}, \tilde{B} \cup \tilde{C}, \tilde{B} \cap \tilde{D}, \tilde{B} \cup \tilde{D}, \tilde{C} \cup \tilde{D}\}.$

The condition of the theorem (3 - 25) satisfied but $(\tilde{A}, \tilde{\tau})$ is not **FST**₀space.

<u> Theorem (3-28)</u>

If $(\tilde{A}, \tilde{\tau})$ be **FST**₀space then for every distinct fuzzy points x_r , y_t , there exists a fuzzy semi neighborhood \tilde{N} of x_r such that $y_t \bar{q} \tilde{N}$ or there exists fuzzy semi neighborhood \tilde{M} of y_t , such that $x_r \bar{q} \tilde{M}$. proof :- Trivial

Defintion (3-29)[6]

Let $\tilde{B} \in p(\tilde{A})$, Then \tilde{B} is said to be **maximalfuzzyset** in \tilde{A} if $B(x) \neq 0$, for some $x \in X$, Then B(x) = A(x).

Lemma (3-30) [6]

Let $(\tilde{A}, \tilde{\tau})$ be FTS. if \tilde{C} is fuzzy semi open set in \tilde{A} and \tilde{B} is

a **maximalfuzzyopenset** in \tilde{A} , Then $\tilde{C} \cap \tilde{B}$ is fuzzy semi open set in \tilde{B} .

<u> Theorem (3-31)</u>

Every fuzzy open subspace of $\mathbf{FST_0}$ space is $\mathbf{FST_0}$ space. proof :- Let $(\tilde{A}, \tilde{\tau})$ be $\mathbf{FST_0}$ space, \tilde{V} is fuzzy open set and $(\tilde{V}, \tilde{\sigma})$ is a fuzzy open subspace, for every x_r , $y_t \in \tilde{V}$ is a fuzzy points in \tilde{A} , if $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B} \Rightarrow x_r \in \tilde{B} \cap \tilde{V}$, $y_t \bar{q} \tilde{B} \cap \tilde{V}$, by lemma (3 - 30) the theorem is satisfied, is similarly if $y_t \in \tilde{B}$ and $x_r \bar{q} \tilde{B}$. \Rightarrow ($\tilde{V}, \tilde{\sigma}$) is $\mathbf{FST_0}$.

<u>4 -Fuzzy Semi T₁ Space</u>

Defintion (4-1)

A fuzzy topological space ($ilde{A}$, $ilde{ au}$) is said to be :-

- FuzzyT₁ (FT₁) space[14] if for every pair of distinct fuzzy points
- x_r , y_t in \tilde{A} , there exists \tilde{B} , $\tilde{C} \in FO(\tilde{A})$ such that $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$, and $y_t \in \tilde{C}$, $x_r \bar{q} \tilde{C}$.

• **FuzzysemiT**₁(**FST**₁)**space**[**8**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exists \tilde{B} , $\tilde{C} \in FSO(\tilde{A})$ such that $x_r \in \tilde{B}$, $y_t \bar{q}\tilde{B}$

and $y_t \in \tilde{C}, x_r \bar{q} \tilde{C}$.

• Fuzzyα- T₁(FαT₁)space[9] if for every pair of distinct fuzzy points

- x_r , y_t in \tilde{A} , there exists \tilde{B} , $\tilde{C} \in F\alpha O(\tilde{A})$ such that $x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$ and $y_t \in \tilde{C}$, $x_r \bar{q} \tilde{C}$.
- **FuzzysemipreT**₁(**F** β **T**₁)**space**[**6**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} , there exists \tilde{B} , $\tilde{C} \in F\beta O(\tilde{A})$ such that $x_r \in \tilde{B}$, $y_t \bar{q}\tilde{B}$ and $y_t \in \tilde{C}$, $x_r \bar{q}\tilde{C}$.

• **FuzzyalmostT**₁(**FAT**₁)**space**[**10**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} , there exists \tilde{B} , $\tilde{C} \in \text{FRO}(\tilde{A})$ such that $x_r \in \tilde{B}$, $y_t \bar{q}\tilde{B}$ and $y_t \in \tilde{C}$, $x_r \bar{q}\tilde{C}$.

• Fuzzy – HT_1 (FHT₁) space if for every pair of distinct fuzzy points

- x_r , y_t in \tilde{A} there exists \tilde{B} , $\tilde{C} \in FHO(\tilde{A})$ such that $x_r \in \tilde{B}$, $y_t \bar{q}\tilde{B}$ and $y_t \in \tilde{C}$, $x_r \bar{q}\tilde{C}$.
- **FuzzypresemiT**₁(**FPST**₁)**space**[**12**] if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exists \tilde{B} , $\tilde{C} \in \text{FPSO}(\tilde{A})$ such that $x_r \in \tilde{B}$, $y_t \bar{q}\tilde{B}$ and $y_t \in \tilde{C}$, $x_r \bar{q}\tilde{C}$.

Theorem (4-2)

Every **FT₁space** is **FST₁space**. proof:-By using theorem (2 - 6).

<u>Remark (4-3)</u>

The converse of theorem (4 - 2) is not true in general as shown in the following example.

<u>Example (4-4)</u>

Let $X = \{a, b\}$, $\tilde{A} = \{(a, 0.6), (b, 0.5)\}$, $\tilde{B} = \{(a, 0.6)\}$, $\tilde{C} = \{(a, 0.2)\}$

 $\widetilde{D}_1 = \left\{ (\mathsf{a}, 0.2), (\mathsf{b}, 0.2) \right\}, \ \widetilde{D}_2 = \left\{ (\mathsf{a}, 0.2), (\mathsf{b}, 0.3) \right\},$

 $\tilde{\tau} = \{\phi, \tilde{C}, \tilde{B}, \tilde{A}\}$ is a **FST₁space** but not **FT₁space**.

Theorem (4-5)

Every FST_1 space is $F\beta T_1$ space. Proof :- By using theorem (2 - 16).

Remark (4-6)

The converse of theorem (4 - 5) is not true in general as shown in the following example.

Example (4-7)

Let $X = \{a, b\}\tilde{A} = \{(a, 0.8), (b, 0.7)\}$, $\tilde{B} = \{(b, 0.7)\}$, $\tilde{C} = \{(b, 0.2)\}$, $\tilde{D} = \{(b, 0.1)\}$, $\tilde{\tau} = \{\phi, \tilde{D}, \tilde{C}, \tilde{B}, \tilde{A}\}$ is a **F** β **T**₁**space** but not **FST**₁**space**.

Theorem (4-8)

Every $F\alpha T_1$ space is a FST₁ space.

Proof:- By using theorem (2 - 13).

<u>Remark (4-9)</u>

The converse of theorem (4 - 8) is not true in general as shown in the following example.

Example (4-10)

The space $(\tilde{A}, \tilde{\tau})$ in the example (4 - 4) is a **FST₁space** but not **F** α **T₁space**.

Theorem (4-11)

Every **FAT₁space** is **FST₁space**.

Proof:- By using theorem (2 - 10).

<u>Remark (4-12)</u>

The converse of theorem (4 - 11) is not true in general as shown in the following example.

Example (4-13)

The space $(\tilde{A}, \tilde{\tau})$ in the example (4 - 4) is a **FST₁space** but not **FAT₁space**.

<u>Theorem (4-14)</u>

Every **FST₁space** is a **FHT₁space**.

proof:- By theorem (2 - 18).

<u>Remark (4-15)</u>

The converse of theorem (4 - 14) is not true in general as shown in the following example.

Example (4-16)

Let $X = \{a, b, c\}$, $\tilde{A} = \{(a,0.7), (b,0.7), (c,0.7)\}$, $\tilde{B}_1 = \{(a,0.1), (b,0.2), (c,0.3)\}$, $\tilde{B}_2 = \{(a,0), (b,0.1), (c,0.2)\}$, $\tilde{\tau} = \{\phi, \tilde{B}_2, \tilde{B}_1, \tilde{A}\}$. The fuzzy sets $\tilde{F}_1 = \{(a,0.5), (b,0.5), (c,0.5)\}$, $\tilde{F}_2 = \{(a,0.5), (b,0.4), (c,0.5)\}$ are fuzzy *H*-open but not F-semi open sets. $(\tilde{A}, \tilde{\tau})$ is **FHT₁space** but not **FST₁space**.

<u> Theorm (4-17)</u>

Every **FST₁space** is a **FPST₁space**. Proof:- By using theorem (2 - 22).

<u>Remark (4-18)</u>

The converse of theorem (4 - 17) is not true in general as shown in the

following example.

Example (4-19)

The fuzzy set $\tilde{F} = \{(b, 0.6)\}$ in the example(4 - 7) is **fuzzy** - **Hopenset** but not **fuzzysemiopenset**.

<u> Theorem (4-20)</u>

A fuzzy topological space (\tilde{A} , $\tilde{\tau}$) is a **FST₁space** if for every fuzzy point is fuzzy semi closed.

proof:- Let x_r , y_t are tow fuzzy points in \tilde{A} which are fuzzy semi closed $\Rightarrow (x_r)^c$, $(y_t)^c$ are fuzzy semi open sets and by proposition (3 - 4) $x_r \bar{q} (x_r)^c$ and $y_t \bar{q} (y_t)^c$. Hence the space (\tilde{A} , $\tilde{\tau}$) is a **FST₁space**.

Remark (4-21)

The converse of theorem (4 - 20) is not true in general as shown by the following example.

Example (4-22)

Let $X = \{a, b\}$, $\tilde{A} = \{(a,0.8), (b,0.5)\}$, $\tilde{B} = \{(a,0.8)\}$, $\tilde{C} = \{(b,0.5)\}$, $\tilde{\tau} = \{\phi, \tilde{A}, \tilde{B}, \tilde{C}\}$. Then the space $(\tilde{A}, \tilde{\tau})$ is a **FST₁space** but $\{(b,0.2)\}$ is not **fuzzysemiclosedset** in \tilde{A} .

<u>Remark (4-23)</u>

The following diagram explain the relation between FST_1space and a class of $FuzzyT_1$ spaces by figuer - 3 –

Figuer - 3 -

<u> Theorem (4-24)</u>

Every fuzzy open subspace(\tilde{B} , $\tilde{\sigma}$) of a **FST₁space** (\tilde{A} , $\tilde{\tau}$) is a **FST₁space**. Proof:- Trivial.

<u>Theorem (4-25)</u>

A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is a **FST₁space** if for each $x \in X$ has a maximal fuzzy semi open set in \tilde{A} .

proof:- Let x_r , y_t are distinct fuzzy points in \tilde{A} such that x_r , $y_t \in \tilde{A}$. Then by hypothesis, $\exists \tilde{B}$, \tilde{C} are fuzzy maximal fuzzy semi open for x and y respectively s.t. $r \leq B(x)$, $t \leq C(y)$, for x, y in X(respectively) $\Rightarrow x_r \in \tilde{B}$, $y_t \bar{q} \tilde{B}$ and $y_t \in \tilde{C}$, $x_r \bar{q} \tilde{C}$ then,

$(\tilde{A}, \tilde{\tau})$ is **FST₁space**.

<u>Theorem (2-26)</u>

Every **FST₁space** is a **FST₀space**.

Proof :- Trivial.

Remark (2-27)

The converse of theorem (4 - 26) is not true in general as shown in

The following example.

Example (4-28)

The space in the example (3 - 14) is FST_0space but not FST_1space .

References

- [1] Zadeh L. A. "Fuzzy sets", Inform.Control 8, 338-353 (1965).
- [2] Chang, C. L. "Fuzzy Topological Spaces", J. Math. Anal. Appl., Vol.24, pp.182-190, (1968).
- [3] K.K. Azad," On fuzzy semi-continuity, fuzzy almost cointinuity And fuzzy weakly continuity", J. Math.Anal.Appl.82,14-32 (1981).
- [4] Sinha, S. P., "*separation axioms in fuzzy topological spaces*", *fuzzy sets and system*,45:261-270(1992).
- [5] Pao-Ming, P. and Ying-Ming, L. "Fuzzy Topology .I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence", J. Math. Anal. Appl., Vol.76, pp.571-599, (1980).
- [6] Shadman R. Karem ,"On fuzzy β- separation axioms in fuzzyTopological Space on fuzzy sets", M.SC, Thesis, college of science, Koya university, (2008).
- [7] Jarallah Ajeel,Yusra , " On Fuzzy α Connected Space inFuzzy Topological Space on Fuzzy Se"t, M.Sc, Thesis, College of Education, Al- Mustinsiryah University, (2010).
- [8] F.S.Mahmoud, M.A.Fath Alla, and S.M.Abd Ellah, ." *Fuzzytopology on fuzzy set:fuzzy semi* continuity and fuzzysemiseparation axioms", Applied mathematics and computation(2003).
- [9] Safi Amin and Kilicman Adem ,"*On Lower Separation andRegularity Axioms in fuzzy topological spaces"*,HindawiPublishing Corporation (2011).
- [10] M.K.Singal and Niti Rajvanshi, *"Regulary open sets in fuzzy topological spaces*", Fuzzy set and system ,50:343-353(1992).
- [11] J. Musafa , Hadi and H. Kadhem, Hiyam. "On H-sets".
- http://csm.Kufauniv.com/staff /hhk / fiels / researchs / H-sets.pdf
- [12] Bai Shi-Zhong and Wang Wan-Liang ," *Fuzzy non-continuousmapping and pre-semi separation axioms*", Fuzzy set and system , 94:261-268 (1998).
- [13] Rize $\operatorname{Ert}\ddot{u}rk^1$, Senol $\operatorname{Dos}t^2$ and Selma $\ddot{O}zca\breve{g}^3$, "Generalizationsome fuzzy separation axioms to ditoplogical texture spaces", J. Nonlinear Sci. Appl.2, no.4, 234 242 (2009).
- [14] MIGUEL CALDAS and RATNESH SARAF, "On Fuzzy Weakly Semiopen FunctionS", Proyectiones, Vol. 21, No 1,pp.51-63, May (2002).
- [15] M. ALIMOHAMMADY , E. EKICI , S. JAFARI , M. ROOHI
- " Fuzzy Minimal Separation Axioms ", J. Nonlinear Sci. Appl. no.3, 157 163 (2010).