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Abstract

Moment method has been used to solve the integro-differential equation' fir the electric field
(EFIE) for the electromagnetic scattering problem from conducting bodies.

Body under study is the spheroid, the validity of the numerical treatment is done by
approximate the body the special case of sphere (i.c. a=b) and the results are good in compression.

The effect of the major and minor radii on the current distribution and the radar cross-section
(RCS) pattern are studied. The effect of the major radius on the current distribution and RCS
pattem is significant, while the effect of the minor is less significant on the current distribution and
RCS pattern with smalle

shift in the minimum in RCS pattem
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Introduction

Exact solution for the problem of electromagnetic (EM) wave scattering by a perfectly
conducting objects is available for limited general shapes, such as elliptic, cylinders, spherical, and
spheroid objects. ] '

Unfortunately, some of these solutions are complicated in form and calculations, such as the
spheroid objects which are need matrix inverse ofthe same order used with matrix equation as a
numerical solution solved by the method of moments MoM "In the case of arbitrarily shaped
objects the analytical solution is not feasible, so, the approximate or numerical solution must be
introduced. The complexity of these numerical solutions depends on the properties of the
object under test, such as the objects of imperfectly conducting or good dielectric need an
impedance matrix of order two compared with the perfectly conducting objects. The most useful
numerical evaluation is that uses the Integral Equation (IE) formulation in the above cases. The
IE is the representation of the field vectors for both interior and exterior to the body, these IE
may

*be solved by many numerical methods depends on the parameters of the EM problems such
as the incident field, the size, and the complexity of geometry.

In this paper the scattering problem by a conducting bodies of revolution BOR using the
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electric field integral equation EFIE with the MoM as a numerical solution is formulated,
which is solved an IE by expanding the unknown surface current distribution in the series of
suitable basis functions. Then the IE can be reduced to a set of simultaneous linear equations,
whose solution gives the required surface current distribution.

Formulation of the Scattering Problem:

The EFIE for the electric current J induced on surface S on perfectly conducting body of
revolution as, shown in Fig.(2.1), by an incident

electric field E satistying the boundary condition that the tangential electric field must be vanish
at the surface, that is,
‘_ﬁxfj =}aXEHu‘ (I)

tan an

where # is the unit vector normal to the surface S, and ¢" is the scattered field due to Jon S. the
subscript "tan" denotes the tangential components on S, The scattered field that produced by this
equivalent current can be expressed in terms of the vector and scalar potentials as,

E‘(r)=—jwA(r') - VO (2)
The magnetic vector potential is written explicitly as,
A(r) == [TGPF.Pas (3)
4r +
Where
— kPP
G Py=22 (I ;_'F,' D @
is the Green's function, and for BOR
R=[P-P=\(o-p) +(-2) +2pp'cos(¢—¢) (5)

v/
4
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R is the distance from the source point representing by the positional vector ( F). to the field point
(¥ as shown in Fig.l. Furthermore, the scalar potential is expressible in the term of equivalent
electric charge distribution as,

1
© =— [oP)GEF) ©
4re ;
where 0(r') is the electric charge which related to the electric current by the continuity equation of.
otPy="2v, .70 7
Jo

Therefore, by combining egs.(l) through (7) the EFIE of €q.(Hean be written as,

—AxE! =hx [J’Zg j TGE, Pyds + Z"% j V- TGP, I?')dsl“ 8)
Eq.(8) ca be represent in term of operator equation as,

L) =E"| (9)

where L is the integro-deferential operator defined as

L(X) = j Jou j(r')%ds + % j VI (r') ‘;;: ds (10)

Moment Solution

The procedure of numerical solution is being with reduced the €q.(8) to the set of linear
equation in a matrix form, as we noted earlier the numerical method is MoM with Galerkin's
approach!l, The first step of MoM solution is replacing the perfecth/ conducting body by
equivalent electric surface currents using the equivalence principle . In the equivalence
principle, the scattered fields are due to the free space fields of the equivalent currents, Finding
these currents is the main task of MoM solution. The next step Ls to obtain a set of coupled IE
of the equivalent currents components as in €q.(8). The final step in this method is expanding the
equivalent surface current in term of finite set of N basis function and due to the rotational
symmetry of the body one can use the Fourior series to represent this function as,

JPy=X 1.0, Py, + 1202 P, (a0
where 7
T, (Py=TePy= o' £,(t)e" (12)

I, and I} are the unknown coefficients to be determined, the index n is associated with the

summation of Fourior mode, while the index j is associated with the summation of the basis
function, when BOR is subdivided into annular, rings, the unknown coefficients obtain by
enforcing N weighted (testing) average of the IE

wh =Y 1w Era, +10we Ea, (13)
Where
WP =m2F) = o (e e (14)
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According to the Galerkin's approach (W=J]"), W and ] are the

orthogonal vector to the S. Since the W ,, over 0 to Uon [ is orthogonal to the J,; for (n # m), all
inner products are zero except those for which Sn = m). This fact allowed each mode to be
treated completely independently of the other mode!?. The inner product defined as,

(5.0)= j§.§ds (15)

where S and Q are the tangential vectors to the S. the inner product define for the BOR
introduced double integral, as

[t [als' = ]dtljpdt]dl'sz'dt' (16)
K & 1} 0 0 0

After testing each side of eq.(8).one obtains the gencralized "network tvpe” maltrix
equation,

7. 15.1=1.] -y
where [V,] and[l,] are the excitation and unknown coefficients matrix (voltage matrix) given by
v, 1=w,. £ L we, B (18-a)

[2,1={lz;, Hrz f (18-b)
and [T ,,] is the impedance matrix of the body, defined as
[T ] _ {:THH Tn!qa :l (19)
a T:‘ T"W
and the T sub-matrices given by explicit form"!
N 2r N 2x
), = far [pdt [ar | p'dt'{ipa)(Wn‘,' I8+ ! wowe fv.ss )}G(P}") (20)
09 0 0 JOWE

with (J and O are the combinations of t- and O- directed, n again the mode number, and

1 0 . 1 0 .
Vi J=——(p'J d)+——(p'J% i1 ) . : 21
R p, at, (,0 ny l) p, 6(0' (p nj» m) ( )
V-W=—1-£(an’,.ﬁ, )+—l-i(pW,ff.ﬁ‘,,) (22)
p ot p op

For the complete evaluation of the T elements, one must introduce the tangential unit vectors of
the BOR shown in Fig.l), as

U, =sinvcos@ X +sinvsing y+cosv 2

. .. . (23)
u,=-singx+cospy
for the field point, and for the source point we have,
u,'=sinv'cos@'x +sinv'sin @' y +cosv'z
| % @y (24)

T, .
u,'=-sing'x+cosg'p
Since, #,0r #," is always normal to the z-axis, but #,is at angle v with the z-axis, being

positive if @, point away from the z-axis and negative if #, toward it. The “-integral in the
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q.(20) may be eliminate by a so-called Green's function defined as!"!,

- kR,
o~ R

de (25)

(7}

g, =4 J‘cos ne

where R" is given by eq.(5) with (O = 0)

The remaining integral in eq.(20) for t and t s approximated by
introducing the triangle function for both current expansion function and
testing function as follows

PN =Ft-1) (26)
T is the triangle function given by
1-| for |r[(1 i
()= (27)
{ for )1

The triangle function expansion converges satisfactory and provides accurate solution.
For this reason triangle function are used here to represent the current expansion and testing
functions,

Substituting Egs.(21) to (26) into Eq.(20) to obtain the explicit form of Z sub-matrices of eq.(19)

According to the calculation that used by Mautz and Harrington ! to reduces Eq.(25) to the so-
called pulse Green's function with some mathematical manipulation we get.

( ,,) L& . . G, +G, 1 .
L), =Z Zja),uTPTq Sinv, sy, ————==+cosv, cosv, G, +—T1,1T.G,
Pl gel 2 jwe
[ < : . Gn+ _Gn— n !
(o), =3 > -our, T, siny, Se "6 T'T,G,
p=l g=l Jwep , (28)
4 G, -G n -
T ) = oul T, siny —ml_“n-l TG
('7 )U ; qz=l: ’u rq q 2 jfl)é'pq pPoq=n

4

2
=), =3 iTqu[ja)ﬂ Gy G i, J

p=1 q=1 .]a)gpppq
Also the above Green's functions may be solved numerically using Gauss quadraure!>-®!

Evaluation of Deriving Vector:

To evaluate the deriving vector and the far-scattered fields for conducting BOR as
the procedure of measurement matrix or linear measurement formulated by J. R. Mautz and R.
F. Harrigton is utilized in this evaluation. A linear measurement is defined as a number which
depends linearity on the source. Examples of linear measurements are components of the field
at a point, voltage along a given conductor, and current crossing a given surface ), It should be
noted here, the excitation matrix is matrix result from the induced currents on body surface, while
the measurement matrix is the matrix result from the far-scattered fields produced by
induced currents. There are tow examples of linear

measurements arel -

(I) a component of the current at some point on S,

(2) a component of the field \Eor H) at some point in space.
Starting from the definition of the linear measurernent
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AR

From the reciprocity theorem one can find the radiation field E at a distance r
from the origin due to the current J on S.

E'f = —i'u exp(— jk{,!‘)jE J(r)ds (29)

where #, is the unit vector specifying the polarization of the incident wave, consider

Er =4, exp(—jkﬁ)

(30}
is an arbitrary plane wave of superposition of the two orthogonal components, say E and
E . where k = kky is wave number unit veetor in

. . L . ~ P . .
the direction of propagation and ) s the vector pointing from origin, as in Fig.(2).
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Fig.2): Wie Scattrefn s At EI €T

Substituting eq.(30) into eq.(29) and utilizing from eq. (11} for ny mode, we get,

E'd f’ exp(= k"R, I, ]

(1)
where [I] is the coefficients of the expansion function, and

[R =1 1z: ]

(32)

Now, for the O-polarized plane wave (i.e., 2, = 4,) we get
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for the T -polarized plane wave (i.c., 4, = 1, ) One can get, for example,!”

4.
(R;e )/ :W,me—ﬁmzejk.,,cosa {cos(),,sn o (XY =S, (x)+2jsin0, cosvp/, (\).
, <

(35)
Where J,(x) = J,(kp,sin6,).

In general, (R ) and (R“”“’) are even in n, while (R,’,‘” )U and (R,’,”‘9 ) are odd in n.

it

The excitation matrix [V,] differ from the measurement matrix [Ry] by the sign of n. For plane
wave excitation with axially incident plane wave only n==+1 modes are excited, and

af _ ap

(Vn )j - (R—n )j

(36)

where (O, and O represent t0, [, t0 and OO

The mode symmetry can also be used to calculate the deriving vector and the far-scattered field
components. The solution of eq.(12) is obtained from

[,]=Ir.1v.]
@37

where [Y,] is the admittance matrix, its sub-matrices are obtained by inverting the entire Z matrix
not the corresponding sub-matrices, given by

Yy re
e
(38)
Finally, the far-scattered field components E;, and E ., are given in the form

E,| —j MRS RSN
[ Z]:ﬂe—fkarzlilez RW’}{[“’}
E(a 472’7.0 J=1 By I n
(39)
Radar Cross Section:

Radar cross section RCS defined as the width (area in three-dimensional problems) for which
the incident wave carries sufficient gower to produce by omnidirectional radiation, the same scattered
power density in a given direction'™, The other definition is the fraction area property of the target like
an antenna, which is often regarded as having an effective area (A.) used to extract energy from a
passing radio wave. The product of incident power density and an effective area can represent the
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available power at terminal of a receiving antenna. In the same way, the power scattered by the
target can be expressed as the product of an effective area and an incident power density. Generally.
this factitious area is called the scattering cross section”.,

The RCS are effected by many parameters, such as:

1- The frequency of operation.

2- The polarization of the transmitting antenna.

3- The polarization of the receiving antenna.

4- The orientation of the object relative to the antenna (the aspect).
5- The material of which object is made and the object shape.
Formally the RCS defined as

2

L
Et

o =47 R*

(40)

wggzlle E'is the scattered field of the two components related by the scattering matrix of Body according
o

Ey] e [R? RYVE]
H r [Ré}" R::-”}[EJ
(41)

Substituting eq. (41) into eq. (40), we get

o =4r |S”"]2

(42)

So
o afye oyt [ pu

AR 150,y AN 161 @)
4z r Slre v |ve

where pand q represent 00, 00, 0 and O] 7
For example 0™Y denote that the RCS measured in the O-polarized receiver with T =0 plane,
* while 077 represent the plane of O =0/2 and RCS measured by O-polarized receiver. For the axially
incident plane only n = #1 modes are excited, therefore the RCS components in the horizontal
polarization (HP) and the vertical polarization (VP) are given by
oc¥ = 167r|S,"”|2 cos’ @,
(44)
for (HP) withl =0and n=l,
" =162|S7| sin’ g,
(45)
for (VP) with U = (0/2 and n=l

Numerical Results
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A computer program has been written to compute the previous relations to find the current
distribution and radar cross section from the conducting BOR.

A conducting spheroid of major axis of 0.2X and minor axis of 0.2X has been studied to cheek
the validity of formulation discussed in the previous sections and compared with that of the
special case of sphere. Fig.(3) shows the general body of revolution in this study. RCS of BOR
is shown in Fig 4.
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Fig.4: Radar cross-section of spheroid compared with the conducting sphere.

As shmg]n in Fig.4 a good agreement of our result with that of the special case of sphere of
a=020"

N e e



Jornal of Kerbala University , Vol. 3 No.3 Scientific » September 2007

0.05
o609 a=0. fO)

0.04 - zassa q=0.20)

srirtetet a=0.30)

0.03 | 46690 a=0.40)

fhfiehh n=0.50A e .
-~ 0.02 /’6\ % PR
*1.3 . ,. M \1_‘. [

. 0.01

1

A

R -0.00 4
-0.01
~0.02
~0.03
-0.04

-0.05 ! i 1 i 1 1 l ! 1
0.0 0.1 0.2 0.3 04 0.t5 g.6 0.7 0.8 0.9 1.0

Fig.5: t-directed current distribution on BOR body as a function of major
axis (a) (Real part).
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Fig.6: t-directed current distribution on BOR body as a function of major
axis (a) (Imaginary part).
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Fig.7: Radar cross-section of spheroid as a function of a major axis (a).
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Fig.8: t-directed current distribution on BOR body as a function of minor
axis (b) (Real part).
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Radar Cross Section:

1- Current distribution:

The effect of the major axis of the spheroid is shown in Fig. 5 and Fig.6 from these
figures we show the oscillating occur in real and imaginary part oft-directed current when body
major axis is become large. While in the other hand if the minor axis is become large the
amplitude increased while the oscillations dose not occur as shown in Fig.8. ‘

2- Radar Cross Section:

Figure (7) and (9) shows the radar cross section pattern in 00-directed (i.e. E-plan). The
amplitude is increased rabidly with the oscillation occur when the value of the major axis
increased, when the minor axis increased the amplitude increased without oscillation occur in
the RCS pattern with shift in the minimum,
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