On the Symmetric Inverse Semigroup
 حول شبه الزمرة التناظرية العكسية

Neeran Tahir Al-Khafaji sajda Kadhum Mohammed
Lecturer
Asst.Prof
Alaa Saleh Abed
Asst.Lecturer
Dep.of Math. , College Of Education for Girls, Al-Kufa University

Abstract

: In this paper we obtain a formula for the order of the I_{n} semigroup (The symmetric Inverse Semigroup) and a formula to find the number of idempotent elements in it also we prove that this number always even.

> الخلاصة:

تتاولنا في هذا البحث شبه الزمرة التناظرية العكسية حيث اوجدنا صيغة لحساب عدد العناصر فيها ثم اوجدنا صيغة لحساب عدد التّناصر التنساوية القوففيها كما اثثتنا ان هذا العدد دائما عدد زوجي.

1. Introduction:

Let $\mathrm{X}_{\mathrm{n}}=\{1,2, \ldots, n\}$ then a partial transformation $\alpha: \operatorname{Dom} \alpha \subseteq X_{n} \rightarrow \operatorname{Im} \alpha \subseteq X_{n}$ is said to be a full or total transformation if $\operatorname{Dom} \alpha=\mathrm{X}_{\mathrm{n}}$, otherwise it is called strictly partial .Three fundamental semigroups of transformations under the usual composite that have been extensively studied are : T_{n} the full transformation semigroup (or the symmetric semigroup); I_{n}, the semigroup of partial one-one mappings (or the Symmetric inverse semigroup); and P_{n} the semigroup of partial transformations(or the Partial symmetric semigroup), [1],[2] .
In a semigroup S, an element a in S is called idempotent if $a^{2}=a$,[3],[4].
Definition1.1: Let S be a non empty set and * the associative binary operation on it then $\left(\mathrm{S},{ }^{*}\right)$ is called semigroup ,[3],[4].
Definition1.2: Let T_{n} be the set of all partial transformation $\alpha: \mathrm{X}_{n}=\{1, \ldots, \mathrm{n}\} \rightarrow \mathrm{X}_{n}=\{1, \ldots, \mathrm{n}\}$ and \circ the usual composite then $\left(\mathrm{T}_{\mathrm{n}}, \circ\right.$) is called the full transformation semigroup (or the symmetric Semigroup),[1],[2].
Definition1.3: Let I_{n} be the set of all partial one-one transformation $\alpha: \operatorname{Dom} \alpha \subseteq \mathrm{X}_{\mathrm{n}} \rightarrow \operatorname{Im} \alpha \subseteq \mathrm{X}_{\mathrm{n}}$ and \circ the usual composite then $\left(\mathrm{I}_{\mathrm{n}}, \circ\right)$ is called the semigroup of partial one-one mappings (or the symmetric inverse semigroup),[1].[2].
Definition1.4:Consider $\mathrm{X}_{\mathrm{n}}=\{1,2, \ldots, \mathrm{n}\}$ and let $\alpha \in \mathrm{I}_{\mathrm{n}}$,the height of α is $|\operatorname{Im} \alpha|,[1],[2]$.
Definition 1.5: The order of a semigroup S is the number of its element if S is finite, otherwise S is of infinite order .[3] .
Remark: Let $\alpha \in I_{n}$ we will use $\alpha(x)=-$ if $\mathrm{x} \notin \operatorname{Dom} \alpha$ and $\alpha\left(x_{1}\right)=\alpha\left(x_{2}\right)=\ldots=\alpha\left(\mathrm{x}_{\mathrm{n}}\right)=-$ to denote the zero element of the semigroup I_{n} if $|\operatorname{Dom} \alpha|=0$.

2. The Main Result

Example 2.1: I_{3} is the set of all mapping is $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{34}$,where
if $\operatorname{Dom} \alpha=\mathrm{x}_{3}$ and contains three elements

$$
\begin{aligned}
& \alpha_{1}(1)=1, \alpha_{1}(2)=2, \alpha_{1}(3)=3 \\
& \alpha_{2}(1)=1, \alpha_{2}(2)=3, \alpha_{2}(3)=2 \\
& \alpha_{3}(1)=3, \alpha_{3}(2)=1, \alpha_{3}(3)=2 \\
& \alpha_{4}(1)=2, \alpha_{4}(2)=1, \alpha_{4}(3)=3 \\
& \alpha_{5}(1)=3, \alpha_{5}(2)=2, \alpha_{5}(3)=1
\end{aligned}
$$

Journal of KerbalaUniversity, Vol. 11 No. 1 Scientific . 2013

$\alpha_{6}(1)=2, \alpha_{6}(2)=3, \alpha_{6}(3)=1$
if $\operatorname{Dom} \alpha \subset \mathrm{x}_{3}$ and contains two elements
$\alpha_{7}(1)=1, \alpha_{7}(2)=2$
$\alpha_{8}(1)=2, \alpha_{8}(2)=1$
$\alpha_{9}(1)=1, \alpha_{9}(2)=3$
$\alpha_{10}(1)=3, \alpha_{10}(2)=1$
$\alpha_{11}(1)=2, \alpha_{11}(2)=3$
$\alpha_{12}(1)=3, \alpha_{12}(2)=2$
$\alpha_{13}(1)=1, \alpha_{13}(3)=3$
$\alpha_{14}(1)=3, \alpha_{14}(3)=1$
$\alpha_{15}(1)=1, \alpha_{15}(3)=2$
$\alpha_{16}(1)=2, \alpha_{16}(3)=1$
$\alpha_{17}(1)=2, \alpha_{17}(3)=3$
$\alpha_{18}(1)=3, \alpha_{18}(3)=2$
$\alpha_{19}(2)=2, \alpha_{19}(3)=3$
$\alpha_{20}(2)=3, \alpha_{20}(3)=2$
$\alpha_{21}(2)=1, \alpha_{21}(3)=2$
$\alpha_{22}(2)=2, \alpha_{22}(3)=1$
$\alpha_{23}(2)=1, \alpha_{23}(3)=3$
$\alpha_{24}(2)=3, \alpha_{24}(3)=1$
if $\operatorname{Dom} \alpha \subset \mathrm{x}_{3}$ and contains one element
$\alpha_{25}(1)=1, \alpha_{26}(1)=2, \alpha_{27}(2)=1, \alpha_{28}(1)=3$, , $\alpha_{29}(2)=2$,
$\alpha_{30}(2)=3, \alpha_{31}(3)=1, \alpha_{32}(3)=2, \alpha_{33}(3)=3$ and $\alpha_{34}=$ the zero element.
because the work is easy with matrices more than mapping we can write the mapping above as matrices.for the mapping sending i to j we put one in ij -th position and zero's elsewhere for instance the matrices of the mappings above are:
$\alpha_{1}=\left[\begin{array}{ll}1 & 0\end{array} 0\right.$
$\alpha_{4}=\left[\begin{array}{ll}0 & 1\end{array} 0\right.$
$\alpha_{7}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{8}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad \alpha_{9}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
$\alpha_{10}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{11}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], \alpha_{12}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\alpha_{13}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \alpha_{14}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right], \alpha_{15}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
$\alpha_{16}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right], \alpha_{17}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \alpha_{18}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
$\alpha_{19}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \alpha_{20}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \alpha_{21}=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
$\alpha_{22}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], \quad \alpha_{23}=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \alpha_{24}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
$\alpha_{25}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{26}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{27}=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\alpha_{28}=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{29}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{30}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
$\alpha_{31}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right], \alpha_{32}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right], \alpha_{33}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \alpha_{34}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
The idempotent elements for I_{3} are
$\alpha_{1}=\left[\begin{array}{ll}1 & 0\end{array} 0\right.$
$\alpha_{19}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \alpha_{55}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{29}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], \alpha_{33}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \alpha_{34}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
This can be easily checked by multiplying each matrix above by itself , we get the same matrix.
In this paper we are interested in finding the order of the Symmetric inverse semigroup and the number of the idempotent elements in it .
propostion 2.1: The order of the Symmetric inverse semigroup is

$$
\left|I_{n}\right|=\sum_{0}^{n}\binom{n}{r}^{2} r!
$$

Proof: First, the elements of I_{n} are one -one elements of P_{n} since $I_{n} \subseteq P_{n}$ therefore $|\operatorname{Dom} \alpha|=|\operatorname{Im} \alpha| \forall \alpha \in \mathrm{I}_{\mathrm{n}}$,
For if,for example $|\operatorname{Dom} \alpha| .>|\operatorname{Im} \alpha|$, it would follow that $\alpha \notin I_{n}$ since it will be not one-one.
Second,we can choose the domain of α in $\binom{n}{r}$ ways,
where $\quad r=0, \ldots, n$ and to determine the number of elements of I_{r} for each choice of Dom α since $|\operatorname{Dom} \alpha|=|\operatorname{Im} \alpha|$ we note that there are r choices for the image of the first element in the Dom α, there r - 1 choices for the image of the second element in the Dom α, there $r-2$ choices for the image of the third element in the $\operatorname{Dom} \alpha$, etc,thus there is

Journal of KerbalaUniversity, Vol. 11 No. 1 Scientific . 2013

$r(r-1)(r-2) \ldots 21=r!$ for each $r=0, \ldots, n$, so there are $\binom{n}{r} r!$ elements $\forall r=0, \ldots, n$.
Finally we can choose the image of α in $\binom{n}{r}$ ways since $|\operatorname{Dom} \alpha|=|\operatorname{Im} \alpha|$ in I_{n}, so there are $\binom{n}{r}\binom{n}{r} r!$ elements for each $r=0, \ldots, n$; so the order of I_{n} is given by $\sum_{0}^{n}\binom{n}{r}^{2} \mathrm{r}!$.

Theorem 2.1: The number of idempotent element in I_{n} semigroup is given by

$$
H_{n}=\sum_{r=0}^{n}\binom{n}{r} .
$$

Proof: The semigroup I_{n} contains all one-one mapping with
Dom $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \subseteq \mathrm{X}_{\mathrm{n}}$ and of height s, we can choose the domain of α in $\binom{n}{r}$ ways, we choose the elements of $\operatorname{Im} \alpha \subseteq\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ where $s=|\operatorname{Im} \alpha|, 0 \leq s=r$.
Let $\alpha \in I_{n}$, if $\alpha(i)=j$ and $j \notin \operatorname{Dom} \alpha$ then $\alpha(\alpha(\mathrm{i}))=\alpha(\mathrm{j})=-$, so $\alpha^{2} \neq \alpha$ so we must cancel each mapping with image have element different from the element in the
$\operatorname{Dom} \alpha$. Therefore we have the mapping such that $\operatorname{Im} \alpha=\operatorname{Dom} \alpha=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \subseteq \mathrm{X}_{\mathrm{n}}$, and α is one-one that is mean we deal with the Symmetric group (S_{r}) for each $r, r=0, \ldots, n$, where $S_{r} \subset I_{r} \forall r=0, \ldots, n$.
so the only one idempotent exist in I_{r} which is the identity element in S_{r}. Now since $r=0, \ldots, n$; and we can choose the Domain of α in $\binom{n}{r}$ ways so there exist $\binom{n}{r} \cdot 1 \quad$ idempotent elements $\forall r=0, \ldots, n$,i.e.; there exist

$$
\begin{aligned}
\binom{n}{1} & +\binom{n}{2}+\ldots+\binom{n}{n}=\sum_{r=0}^{n}\binom{n}{r} \text { idempotent element in } I_{n} \text { that is mean } \\
H_{n} & =\sum_{r=0}^{n}\binom{n}{r} .
\end{aligned}
$$

Corollary2.1: The number of idempotent in I_{n} is even.
Proof: since $H_{n}=\sum_{r=0}^{n}\binom{n}{r}$ and $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{\mathrm{n}}$,[5], so this number always even.

References

[1]. A.Laradji and A.Umar, "On The Number of Nilpotents in The Partial Symmetric Semigroup",King Fahad University of Petroleum and Minerals ,Technical Report Series,TR305,available at www.kfupm.edu.sa/math,2003
[2]. A. Laradji and A. Umar,' Combinatorial Results for Semigroups of Order - Preserving Partial Transformations", Journal of Algebra, available online at www.sciencedirect.com, Saudi Arabi , 2000.
[3]. C.L.Liu, "Introduction to Combinatorial Mathematics", Mc Graw- Hill Book Company,NewYourk,1968.
[4]. M.Petrich, "Introduction to Semigroups", A Bell and Howell Company, Columbus, 1973.
[5] .David M.Burton ,"Elementary Number Theory", WM.Brown Publishers Dubque,Iowa.

