The Number of Idempotent Elements in Symmetric Semigroup $\mathbf{T}_{\mathbf{n}}$
 عد العناصر المتساوية القوى في شبه الزمرة التناظرية

Asst.Prof . Mohammed Serdar I. Asst.Prof sajda Kadhum Mohammed
Technology University
Dep.of Math.
College Of Education for Girls
Al-Kufa University

Abstract: Semigroup . solved by using the partitions of an N -set ; we have found that :
 $$
U_{n}=\sum_{b_{1}+2 b_{2}+\ldots+n b_{n}=n} P\left(b_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \Pi \text { parts }
$$

The main purpose of this paper to find the number of the idempotent elements in sym $\boldsymbol{T}_{\boldsymbol{n}}$
The problem of finding the number of idempotent elements in the symmetric semigroup is

Such that $P\left(b_{1}, \ldots, b_{n}\right)$ is the number of partition for a given partition and by parts we mean the parts for the given partition. Some other results concerning U_{n} have been established.

$$
\begin{aligned}
& \text { الخلاصة : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مشكلة ايجاد عدد العناصر المتساوية القوى في شبه الزمرة التناظرية تم حلها بأستحدام التجزئة على الهجموعة التي تحوي n } \\
& \text { من العناصر حيث وجدنا ان } \\
& U_{n}=\sum_{b_{1}+2 b_{2}+\ldots+n b_{n}=n} P\left(b_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \Pi \text { parts }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اجزاء التجزئة المعطاة . ثم بر هنا بعض النتائج الأخرى المتعلقة بـ } \\
& \text { تم بعد ذلك تقديم طرق أخرى لحل المشكلة أعلاه وبأستخدام العلاقة المرتدة ودالة التوليد }
\end{aligned}
$$

1.Introduction :

Let T_{n} be the semigroup of all mappings of the set $N=\{1, \ldots, n\}$ into itself under the operation of composition of mappings , inside this semigroup we have the group S_{n} of all one to one and onto mappings of the set N onto itself. We have in T_{n} idempotent elements that is mappings f with the property $f o f=f$, it is our aim in this work is to find the number of idempotent elements in T_{n} for $n \in N$.
Let U_{n} be the number of idempotent elements in T_{n}. It is shown that:

$$
U_{n}=\sum_{b_{1}+2 b_{2}+\ldots+n b_{n}=n} P\left(b_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \Pi \text { parts }
$$

Then we prove that if n is even number then U_{n} is odd number and if n is odd number then U_{n} is even number.

2.Defintions and Notations:

Definition 2.1 [1],[2] :
Let X be a finite set and T_{X} be a set of all mapping from X into X, then T_{X} with binary operation the composition of mapping form a semigroup called the Symmetric Semigroup denoted by T_{X}. If $|X|=n$, then we can identify X with the set $\{1, \ldots, n\}$ and write T_{n}.

Journal of KerbalaUniversity, Vol. 11 No. 1 Scientific . 2013

Definition 2.2 [1],[2],[3] :
Let $\left(S,{ }^{*}\right)$ be a semigroup and let $y \in S$, then we say that y is an idempotent element in S if $y * y=y$.
Definition 2.3 [4],[5],[6] :
Partition of a set is decomposition of the set into cells such that every element of the set exactly in one of the cells.

The number of Partitions of the integer n into exactly m classes is denoted by P_{n}^{m}. Hence the total number of Partitions of n into m or fewer parts: $\quad P_{n}^{1}+\ldots+P_{n}^{m}$.
If $m=n$, this number is denoted by $P(n)$, the number of all Partitions of the integer n.

Example 2.1:

The partition of
2
3
are
2,11
3,21,111

$$
\begin{gathered}
\text { whence } \\
\mathrm{P}_{2}{ }^{1}=1=\mathrm{P}_{2}{ }^{2}, \\
\mathrm{P}_{3}{ }^{1}=\mathrm{P}_{3}{ }^{2}=\mathrm{P}_{3}{ }^{3}=1,
\end{gathered}
$$

Thus, $\mathrm{P}(2)=2, \mathrm{P}(3)=3$.
If $\partial=\left(\partial_{1}, \ldots, \partial_{\mathrm{P}}\right)$ is a partition of n, ∂ may also can be written as $1^{r_{1}} 2^{r_{2}} \ldots n^{r_{n}}$.
Where r_{i} is the number of parts equal to i in ∂, i varying in $\{1,2, \ldots\}$.For example , all the following denote the same partition of 17:
$4+3+3+2+2+2+1,4332221$ (condensed as $43^{2} 2^{3} 1$;
in the other relation, it is ($12^{3} 3^{2} 4$), and we say that ∂ is a partition of type $1^{r_{1}} 2^{r_{2}} \ldots n^{r_{n}}$.
Theorem 2.1 [7]:
The number of mapping $f: N \rightarrow R$ is :

$$
|\operatorname{Map}(N, R)|=r^{n}, \text { such that }|N|=n,|\mathrm{R}|=r .
$$

Proposition 2.1 [3]:

Denote $\operatorname{Per}\left(b_{1}, \ldots, b_{n}\right)$ the number of permutation of an n-set N of type $1^{b_{1}} \ldots n^{b_{n}}$ and by $P\left(b_{1}, \ldots, b_{n}\right)$ the number of Partitions of N of type $1^{b_{1}} \ldots n^{b_{n}}$. Then
i) $\operatorname{Per}\left(b_{1}, \ldots, b_{n}\right)=\left\{\begin{array}{l}\frac{n!}{b_{1}!\ldots b_{n}!2^{b_{2}} \ldots n^{b_{n}}} \\ 0\end{array}\right.$ if $n=\sum_{i=1}^{n} i b_{i}$ otherwis
ii) $P\left(b_{1}, \ldots, b_{n}\right)=\left\{\begin{array}{c}\frac{n!}{b_{1}!\ldots b_{n}!(2!)^{b_{2}} \ldots(n!)^{b_{n}}} \\ 0\end{array}\right.$
if $n=\sum_{i=1}^{n} i b_{i}$.
otherwise

3.The Main result

The subset S_{n} of T_{n} consisting of all one to one and onto mappings form a subsemigroup and infact it is a group of all permutations of n letters laying inside T_{n} which is called Symmetric group. Now inside T_{n} we have idempotent elements for example T_{3} :
The set of all mapping is $\left\{f_{1}, f_{2}, \ldots, f_{27}\right\}$ where:
$f_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1\end{array}\right), f_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 2\end{array}\right), f_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 3 & 3\end{array}\right), f_{4}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 3\end{array}\right), f_{5}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 3\end{array}\right)$,
$f_{6}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 1\end{array}\right), f_{7}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 2\end{array}\right), f_{8}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 3 & 2\end{array}\right), f_{9}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 3 & 1\end{array}\right), f_{10}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 1\end{array}\right)$,
$f_{11}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right), f_{12}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 1\end{array}\right), f_{13}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 1\end{array}\right), f_{14}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2\end{array}\right), f_{15}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 2\end{array}\right)$,
$f_{16}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 3\end{array}\right), f_{17}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 3\end{array}\right), f_{18}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 2\end{array}\right), f_{19}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 2\end{array}\right), f_{20}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 3\end{array}\right)$,
$f_{21}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 3\end{array}\right), f_{22}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right), f_{23}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right), f_{24}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right), f_{25}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$,
$f_{26}=\left(\begin{array}{ll}1 & 2\end{array} 3\right), f_{27}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$.
The idempotent elements for T_{3} are :
$f_{22}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right), f_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1\end{array}\right), f_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 2\end{array}\right), f_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 3 & 3\end{array}\right), f_{5}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 3\end{array}\right)$,
$f_{12}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 1\end{array}\right), f_{16}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 3\end{array}\right), f_{18}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 2\end{array}\right), f_{20}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 3\end{array}\right), f_{4}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 3\end{array}\right)$
In this section we are interested finding the number of the idempotent elements in the T_{n} semigroup ,a few example show that :

N	Number of idempotent
1	1
2	3
3	10
4	41
5	196
6	1057
\cdot	\cdot
\cdot	\cdot
.	.

For example let us take T_{4} we can make partition for it as follows :
1111, 211, 22, 13, 4;
211 connecting two elements $\{1,2,3,4\}=$ partitioning the set $\{1,2,3,4\}$ into cell contining two elements and two cells each containg one element= number of partition of 4 of type $1^{2} 2^{1}$.

Remark: Let $f \in T_{n}$, now to be f an idempotent element in T_{n} we have either $\mathrm{f}(\mathrm{i})=\mathrm{i}$ for some $i \in N$ or if $\mathrm{f}(\mathrm{i})=\mathrm{j}$,then we must have $\mathrm{f}(\mathrm{j})=\mathrm{j}$, since otherwise if $\mathrm{f}(\mathrm{j})=\mathrm{k}$, where $k \neq j$ then $(\mathrm{fof})(\mathrm{i})=\mathrm{f}(\mathrm{f}(\mathrm{i}))=\mathrm{f}(\mathrm{j})=\mathrm{k} \neq \mathrm{f}(\mathrm{i})$ whence $\mathrm{f}^{2} \neq \mathrm{f}$, so the set N can be partitioned into subsets either singleton subsets $\{i\}$ if $f(i)=i$ or to subsets S_{k} consisting k elements in the other cases.
For example in T_{3}

$$
\begin{aligned}
& \mathrm{f}_{22}=\{\{1\},\{2\},\{3\}\}, \mathrm{f}_{1}=\{1,2,3\}, \mathrm{f}_{2}=\{1,2,3\}, \mathrm{f}_{4}=\{1,2,3\}, \mathrm{f}_{5}=\{\{1,2\},\{3\}\}, \\
& \left.\mathrm{f}_{12}=\{\{1,3\},\{2\}\}, \mathrm{f}_{16}=\{\{1,3\},\{2\}\}, \mathrm{f}_{18}=\{2,3\},\{1\}\right\}, \mathrm{f}_{20}=\{\{2,3\},\{1\}\}, \mathrm{f}_{4}=\{\{1,2\},\{3\}\}
\end{aligned}
$$

Journal of KerbalaUniversity, Vol. 11 No. 1 Scientific . 2013

consider the three partitions of 3 which are:
$1+1+1=1^{3}$
$1+2=12$
$3=3$
So we have the number of idempotent elements in T_{3} equal to

$$
\begin{aligned}
& \frac{3!}{3!} \times 1+\frac{3!}{12!} \times 1 \times 2+\frac{3!}{3!} \times 3 \\
& =1+6+3=10
\end{aligned}
$$

Theorem 3.1: The number of idempotent elements in T_{n} semigroup is

$$
U_{n}=\sum_{b_{1}+2 b_{2}+\ldots+n b_{n}=n} P\left(b_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \Pi \text { parts }
$$

Proof: The idempotent elements in T_{n} are mappings sending the elements of the partitioned subsets $S_{1}, S_{2}, \ldots, S_{k}$ into one of the elements in the subset S_{i} such that S_{k} is a subset of the partition contains k elements, so we have for each partition of n of type $1^{b_{1}} \ldots n^{b_{n}}$ idempotent elements as many as the number of $\left|S_{1}\right| \ldots\left|S_{k}\right|$ which implies that as many as the product of the parts of the partition and since by proposition 2.1. the number of partition of type $1^{b_{1}} \ldots n^{b_{n}}$ is $p\left(b_{1, \ldots}, b_{n}\right)$, therefore :

$$
U_{n}=\sum_{b_{1}+2 b_{2}+\ldots+n b_{n}=n} P\left(b_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \Pi \text { parts }
$$

4. Another Way to Find The Number of Idempotent Elements of Symmetric Semigroup. Definition 4.1 [8] :

For a sequence of number ($a_{0}, \ldots, a_{n}, \ldots$) an equation relating a number a_{n} to some of its predecessors in the sequence, for any n, is called a recurrence relation .

Example 4.1:

The sequence $\left\{a_{n}\right\}=\{1,2,3,5,8, \ldots\}$ which is called Fibonacci sequence given by the boundary conditions $a_{1}=1, a_{2}=2$
and the recurrence relation $a_{n}=a_{n-1}+a_{n-2} \quad, n \geq 3$.
Solving this recurrence relation means obtaining a formula for the nth term a_{n} as a function of n.
By using recurrence relation we have the number of idempotent elements [8], given by :

$$
U_{m+1}=\sum_{j=0}^{m}\binom{m}{j}(\mathrm{j}+1) \mathrm{U}_{\mathrm{m}-\mathrm{j}} \text { with boundary condition : } U_{0}=1, U_{l}=1 .
$$

For example:

$$
\begin{aligned}
U_{3+1} & =U_{4}=\sum_{j=0}^{3}\binom{3}{j}(j+1) U_{3 \cdot j}=\binom{3}{0} \cdot 1 \cdot U_{3}+\binom{3}{1} \cdot 2 \cdot U_{2}+\binom{3}{2} \cdot 3 \cdot U_{1}+\binom{3}{3} \cdot 4 \cdot U_{0} \\
& =10+3 \cdot 2 \cdot 3+3 \cdot 3 \cdot 1+1 \cdot 4 \cdot 1 \\
& =41
\end{aligned}
$$

Definition 4.2 [8] :

Let $\left(a_{0}, \ldots, a_{r}, \ldots\right)$ be a sequence of numbers, the function $F(x)=a_{0} M_{0}(x)+\ldots+a_{r} M_{r}(x)+\ldots$; is called the ordinary generating function of the sequence $\left(a_{0}, \ldots, a_{r}, \ldots\right)$, where $a_{0} M_{0}(x), \ldots, a_{r} M_{r}(x) \ldots$ is a sequence of function of x that are used as indicators. If $M_{x}=x^{r}$, in this case for the sequence ($a_{0}, \ldots, a_{v}, \ldots$), we have

$$
F(x)=a_{0}+a_{1} x+\ldots+a_{r} x^{r}+\ldots
$$

By using generating functions we have the number of idempotent elements in[8]given by :

$$
\sum_{n=0}^{\infty} U_{n} \frac{Z^{n}}{n!}=\exp \left(Z e^{Z}\right)
$$

$\sum_{n=0}^{\infty} U_{n} \frac{Z^{n}}{n!}=U_{0}+U_{1} \frac{Z_{1}}{1!}+\mathrm{U} 2 \frac{\mathrm{Z}^{2}}{2!}+\mathrm{U}_{3} \frac{\mathrm{Z}^{3}}{3!} \cdot+\ldots$
$\exp \left(\mathrm{Ze}^{\mathrm{Z}}\right)=\left(1+\mathrm{Z}+\frac{\mathrm{Z}^{2}}{2!}+\frac{Z^{3}}{3!}+\ldots\right)\left(1+\mathrm{Z}^{2}+\frac{\mathrm{Z}^{4}}{2!}+\frac{\mathrm{Z}^{6}}{3!}+\ldots\right)\left(1+\frac{Z^{3}}{2!}+\frac{Z^{6}}{(2!)^{2} 3!}+\ldots\right)$
So
$\mathrm{U}_{1} \mathrm{Z}=\mathrm{Z}$ then $U_{l}=1$;
$U_{2} \frac{\mathrm{Z}^{2}}{2}=\left(1+\frac{1}{2!}\right) Z^{2}$ then $U_{2}=3$;
$\frac{1}{3!} U_{3} Z^{3}=\left(\frac{1}{2!}+1+\frac{1}{3!}\right) Z^{3}=\frac{10}{6} Z^{3}$ then $U_{3}=10$.
We will use the formula of U_{n} that is given by using recurrence relation to determined that U_{n} is even or odd.

Proposition 4.1:

If n is even in T_{n} then the number of idempotent is odd and if n is odd then the number of idempotent is even.
Proof: since $\mathrm{U}_{\mathrm{n}}=U_{\mathrm{m}+1}=\sum_{\mathrm{j}=0}^{\mathrm{m}}\binom{\mathrm{m}}{\mathrm{j}}(\mathrm{j}+1) \mathrm{U}_{\mathrm{m}-\mathrm{j}}$ [8],
if $m+1=2$ then $U_{2}=3$ note that it is odd, if $m+1=3$ then $U_{3}=10$ is even, suppose that the statement of Proposition true for each positive integer less than $m+1$, we want to prove that it is true for $m+1$, note that in (1)each term contains one of $\mathrm{U}_{\mathrm{m}-\mathrm{j}}$ which is less than $\mathrm{U}_{\mathrm{m}+1}$ and so the statement is true.
Now, let $m+1$ is even, if j is even then $m-j$ is odd contrary, therfore if $\binom{m}{j}$ is even so $\binom{m}{j}(j+1) U_{m-j}$ is even and if it is odd then since $\binom{m}{r}=\binom{m}{m-r}, 1 \leq r \leq m,[5]$
we have $\binom{m}{j}$ twice, first product by $\mathrm{U}_{\mathrm{m}-\mathrm{j}}(j+1)$ and second by $\mathrm{U}_{\mathrm{j}}(\mathrm{m}-\mathrm{j}+1)$ which are both even except $\binom{m}{m-j} m U_{1}$ which is always odd, the sum of terms above is odd, add the terms contain $\binom{m}{j}$ even . Hence, $\mathrm{U}_{\mathrm{m}+1}$ is odd.
Let $m+1$ is odd, if j is even(odd)then $m-j$ is even (odd) therefore if $\binom{m}{j}$ is even so $\binom{m}{j}(j+1) U_{m-j}$ is even and if it is odd then by (2) we have $\binom{\mathrm{m}}{\mathrm{j}}$ twice, first product by $\mathrm{U}_{\mathrm{m}-\mathrm{j}}(j+1)$ and second by $U_{j}(m-j+1)$ which are both odd(even), the number of this terms is even by (2), so the sum of it will be even , add the terms $\binom{\mathrm{m}}{\mathrm{m} / 2}(\mathrm{~m} / 2+1) \mathrm{U}_{\mathrm{m} / 2}$ which is even where it is clear that $\binom{\mathrm{m}}{\mathrm{m} / 2}$ always even when m even and $m / 2$ positive integer .Hence, U_{m+1} is even.

Journal of KerbalaUniversity, Vol. 11 No. 1 Scientific . 2013

References:

[1]Burton, D.M. ,"Abstract Algebra",WM.C.Brown Publisher, U.S.A., 1988.
[2]Dubin ,J.R.," Modren Algebra",Wiely,New York, 2000.
[3]Lallement,G.,"Semigroup And Combintorial Applications",John Wiley And Sons,New York, 1968.
[4]Aigner ,M., "Combinatorial Theory " , Springer-Verlag, New York, 1979.
[5]Petrich, M. ,"Lectures in Semigroups",John Wiley and Sons, New york ,1977.
[6]Shoup,V.,"A Computational Introduction to Number Theory and Algebra " ,Cambridge University Press, internet address www. Cambridge. org.sa/9780521851541, 2005.
[7]Anderson,I.,"A First Course in Combinatorial Mathematics", Oxford University press,Britian, 1974.
[8]Harris ,B. ,Schoenfeld L., "The Number of Idempotent Elements in Symmetric Semigroups", Journal of Comnbinatorial Theory 3,P.122-135, 1967.
[9]Burton, D. M ,"Elementary Number Theory", WM.C.Brown Publishers Dubque,Iowa.
[10]Baker,A. ,"Algebra and Number Theory ",University of Glasgow, internet address http//www.maths.gla.ac.uk/~ajb,2003.

