
ific . 2010Journal of Kerbala University , Vol. 8 No.4 Scient 

 

 384 

 

Cryptanalysis of Stream Cipher System Using Particle Swarm 

Optimization Algorithm 
 

Hussein Ali Mohammed Al_Sharifi 
M.Sc. in Mathematics /College of Education/Karbala University 

Email: hussein7712a@yahoo.com 

 

 مستخلص
حعًُ اَشبسة انى عبئهت جذٌذة يٍ  Particle Swarm Optimization  (PSO)أٌ ححقٍق أيثهٍت انسشة انجضٌئً

 .انخىاسصيٍبث انخً حسخخذو لاٌجبد حهىل يثبنٍت )أو أقشة انى انًثبنٍت( نهًسبئم انعذدٌت وانكًٍت

انخشفٍش. نقذ اسخخذيج انًخخببعبث انًىنذة يٍ عبئهت يهًت يٍ خىاسصيٍبث  Stream Cipherٌعخبش انخشفٍش الاَسٍببً 

فً َظى انخشفٍش وَظشٌت انًعهىيبث، حٍث حىجذ َظشٌبث كثٍشة بصذدهى. اٌ  Shift Register Sequencesانًسجم انضاحف 

 نُظى انخشفٍش الاَسٍببً انخً حعخًذ عهى انًسجم انضاحف نهب انذوس انكبٍش فً َظى انخشفٍش وخصىصب انعسكشٌت يُهب.

( عهى اَظًت انخشفٍش الاَسٍببً ببخخٍبس يسجم Cryptanalysisف هزا انبحث حُفٍز خىاسصيٍت ححهٍم انشفشة )هذ

صاحف خطً رو حغزٌت يشحذة، ببعخببسِ انىحذة الأسبسٍت انخً حذخم فً بُبء َظى انخشفٍش الاَسٍببً، يعخًذٌٍ عهى اَجبص 

دلاث انخطٍت لأي عذد يٍ انًخغٍشاث انخً حًثم يخشجبث انًسجم خىاسصيٍت أيثهٍت انسشة انجضٌئً يٍ خلال حم َظى انًعب

 انضاحف.

انخطبٍق فً هزا انبحث ٌخى فً يشحهخٍٍ، الأونى حخًثم ببُبء َظبو يعبدلاث خطٍت يٍ يخشجبث انًسجم انضاحف، 

 خذائً نهًسجم انضاحف.وانًشحهت انثبٍَت هً حم َظبو انًعبدلاث انخطٍت ويعشفت قٍى انًجبهٍم وانخً حًثم قٍى انًفخبح الاب
 

Abstract 
The meaning of the Particle Swarm Optimization (PSO) refers to a relatively new family of 

algorithms that may be used to find optimal (or near optimal) solutions to numerical and 

qualitative problems. 

Stream ciphers are an important class of encryption algorithms. Shift register sequences are 

used in both cryptography and coding theory. There is a wealth of theory about them; stream 

ciphers based on shift registers have been the workhorse of military cryptography since the 

beginnings of electronics. 

This paper aims to implement cryptanalysis attack algorithms on stream cipher systems using 

plaintext attack (or part from it), choosing one Linear Feedback Shift Register (LFSR), since its 

considered as a basic unit of stream cipher systems, in the performance of PSO by solving 

Linear Equations System (LES) for any number of variables of the output of LFSR. 

The application divided into two stages, first, constructing LES’s for the LFSR, and the 

second, is attacking the variables of LES’s which they are also the initial key values the of 

LFSR. 
 

Keywords: Particle Swarm Optimization, Cryptography, Stream Cipher Systems, Linear Feedback Shift 

Register, Linear Equations System.  
 

1. Introduction 

Cryptanalysis is the science and study of methods of breaking ciphers. It is a system 

identification problem, and the goal of Cryptography is to build systems that are hard to identify 

[1]. To attack a cryptographic system successfully the cryptanalysis is forced to be based on subtle 

approaches, such as knowledge of at least part of the text encrypted, knowledge of characteristic 

features of the language used,..., with some luck. The Cryptosystem are the systems which use the 

encryption and decryption processes. 

One of the important new learning methods is a Particle Swarm Optimization (PSO), which is 

simple in concept, has few parameters to adjust and easy to implement. PSO has found applications 
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in a lot of areas. In general, all the application areas that the other evolutionary techniques are good 

at are good application areas for PSO [2]. 

In 1995, Kennedy J. and Eberhart R. [3], introduced a concept for the optimization of nonlinear 

functions using particle swarm methodology. The evolution of several paradigms outlined, and an 

implementation of one of the paradigms had been discussed. 

In 1999, Eberhart R.C. and Hu X. [4], arranged a new method for the analysis of human tremor 

using PSO which is used to evolve a NN that distinguishes between normal subject and those with 

tremor. 

In 2004, Shi Y. [2], surveyed the research and development of PSO in five categories: 

algorithms, topology, parameters, hybrid PSO algorithms, and applications. There are certainly 

other research works on PSO which are not included due to the space limitation. 

In this work, a LES of LFSR (which is considered as a basic unit of stream cipher systems) is 

constructed then solve it using the genetic algorithm. 
  

2. Modern Cryptosystems 
There are essentially two different types of cryptographic systems (cryptosystems), these 

cryptosystems are: public key and secret key cryptosystems [5]. First let us redefined some 

important notations: 

 P is the Plaintext message and C is the Ciphertext message. 

 Key space K: a set of strings (keys) over some alphabet, which includes the encryption key ek 

and the decryption key dk. 

 The Encryption process (algorithm) E: Eek(P) = C. 

 The Decryption process (algorithm) D: Ddk(C) = P. 

 The algorithms E and D must have the property that: Ddk(C)=Ddk(Eek(P)) = P.  

The public key cryptosystem also called asymmetric cryptosystems. In a public key (non-

secret key) cryptosystem, the encryption key ek and decryption key dk are different, that is ek≠dk. 
The secret Key Cryptosystem also called symmetric cryptosystems. In a conventional secret-key 

cryptosystem, the same key (ek=dk=kK), called secret key, used in both encryption and 

decryption; we are interest in this type of cryptosystems. The stream cipher systems one of the 

important types of the secret key cryptosystems [6]. 
 

3. Stream Cipher systems 
In stream ciphers, the message units are bits, and the key is usual produced by a random bit 

generator (see figure (1)). The plaintext is encrypted on a bit-by-bit basis. 

 
The key is fed into random bit generator to create a long sequence of binary signals. This “key-

stream” k is then mixed with plaintext m, usually by a bit wise XOR (Exclusive-OR modulo 2 

addition) to produce the ciphertext stream, using the same random bit generator and seed. 

 

Plaintext 

P 

Pseudorandom 

 Bit Generator 
Pseudorandom 

 Bit Generator 

Key source (secret key) 

+ 
Plaintext 

P 
+ 

Ciphertext 

C 

Encryption Decryption 

Figure (1) Stream cipher system. 
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Linear Feedback Shift Register (LFSR) systems are used widely in stream cipher systems 

field. A LFSR System consists of two main basic units. First, is a LFSR function and initial state 

values. The second one is, the Combining Function (CF), which is a boolean function. Most of all 

stream cipher systems are depend on these two basic units. Most practical stream-cipher designs 

center around LFSR. In the early days of electronics, they were very easy to build. A shift register is 

nothing more than an array of bit memories and the feedback sequence is just a series of XOR 

gates. A LFSR-based stream cipher can give a lot of security with only a few logic gates [7]. 
 

4. Particle Swarm Optimization (PSO) 
PSO was originally developed by a social-psychologist J. Kennedy and an electrical engineer R. 

Eberhart in 1995 and emerged from earlier experiments with algorithms that modeled the “flocking 

behavior” seen in many species of birds. Where birds are attracted to a roosting area in simulations 

they would begin by flying around with no particular destination and in spontaneously formed 

flocks until one of the birds flew over the roosting area [8]. PSO has been an increasingly hot topic 

in the area of computational intelligence. It is yet another optimization algorithm that falls under the 

soft computing umbrella that covers genetic and evolutionary computing algorithms as well [9]. 
 

4.1  Fitness Criterion  
One of these stopping criterions is the fitness value. Since the PSO algorithm is chosen to be a 

supervised learning algorithm, then there are observed values of (ti) and desired output values of 

(fi). These two values have to be compared,  if they are closed to each other then the fitness is good, 

else the algorithm must continue its calculations until this condition is satisfied or the specified 

number of iterations is finished. 

The corrections are selected to minimize the residual error between ti and fi output. The Mean 

Squared Error (MSE) is one solution for the comparison process: 

MSE = 


n

1in

1
(ti - fi)

2
        … (1) 

Where n is the number of the compared categories. 
 

4.2 PSO Algorithm  
The PSO algorithm depends in its implementation in the following two relations: 

vid = w * vid + c1 * r1* (pid -xid) + c2 * r2 * (pgd -xid)   …(2a) 

xid = xid + vid        …(2b) 

where c1 and c2 are positive constants, r1 and  r2  are random function in the range [0,1],  

xi=(xi1,xi2,…,xid) represents the i
th

 particle; pi=(pi1,pi2,…,pid) represents the best previous position 

(the position giving the best fitness value) of the i
th

 particle; the symbol g represents the index of the 

best particle among all the particles in the population,  v=(vi1,vi2,…,vid) represents the rate of the 

position change (velocity) for particle i [2]. 

The original procedure for implementing PSO is as follows:   

      1. Initialize a population of particles with random positions and velocities on d-dimensions in the 

problem space. 

      2. PSO operation includes: 

a. For each particle, evaluate the desired optimization fitness function in d variables. 

b. Compare particle's fitness evaluation with its pbest. If current value is better than pbest, then set 

pbest equal to the current value, and pi equals to the current location xi. 

c. Identify the particle in the neighborhood with the best success so far, and assign it index to the 

variable g. 

d. Change the velocity and position of the particle according to equation (2a) and (2b). 

     3. Loop to step (2) until a criterion is met. 
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Like the other evolutionary algorithms, a PSO algorithm is a population based on search 

algorithm with random initialization, and there is an interaction among population members. Unlike 

the other evolutionary algorithms, in PSO, each particle flies through the solution space, and has the 

ability to remember its previous best position, survives from generation to another. The flow chart 

of PSO algorithm is shown in figure (2) [10]. 

 
4.3 The Parameters of PSO [11],[12] 

A number of factors will affect the performance of the PSO. These factors are called PSO 

parameters, these parameters are: 

1. Number of particles in the swarm affects the run-time significantly, thus a balance between 

variety (more particles) and speed (less particles) must be sought. 

2. Maximum velocity (vmax) parameter. This parameter limits the maximum jump that a particle 

can make in one step.  

3. The role of the inertia weight w, in equation (2a), is considered critical for the PSO’s 

convergence behavior. The inertia weight is employed to control the impact of the previous 

history of velocities on the current one. 

4. The parameters c1 and c2, in equation (2a), are not critical for PSO’s convergence. However, 

proper fine-tuning may result in faster convergence and alleviation of local minima, c1 than a 

social parameter c2 but with c1 + c2 = 4.  

5. The parameters r1 and r2 are used to maintain the diversity of the population, and they are 

uniformly distributed in the range [0,1]. 

 

5. Particle Swarm Optimization Implementation 
PSO is an extremely simple concept, and can be implemented without complex data structure. 

No complex or costly mathematical functions are used, and it doesn’t require a great amount of 

Evaluate the fitness of each particle 

fitness<pid 
Renew pid 

and position 

Yes 

pid <pgd 

No 

Renew pgd 

vid = w *vid + c1*r1*(pid -xid)+c2 * r2* (pgd -xid) 

 

xid = xid + vid 

criterion end? 
No 

Yes 

Initialize the particle population 

End 

Start 

 

Yes 

No 

Figure (2) Flowchart of PSO Algorithm [10]. 
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memory [13]. The facts of PSO has fast convergence, only a small number of control parameters, 

very simple computations, good performance, and the lack of derivative computations made it an 

attractive option for solving the problems. 

In this paper, the Binary PSO (BPSO) was implemented in optimization applications. From the 

optimization application the solving linear equations system problem is chosen.  

 

6. Constructing a Linear Equations System 
Let’s assume that the tested LFSR is maximum LFSR (m-LFSR), then its period is P=2

r
-1, 

where r is LFSR length. Let SRr be a single LFSR with length r, let A0=(a-1,a-2,…,a-r) be the initial 

value vector of SRr, s.t. a-j, 1jr, be the component j of the vector A0, in another word, a-j is the 

initial bit of stage j of SRr, let C0
T
=(c1,…,cr) be the feedback vector, cj{0,1}, if cj=1 that means the 

stage j is connected else its not. Let S=  1m

0ii
s




 be the sequence (or S=(s0,s1,…,sm-1) read “S vector”) 

with length m generated from SRr. The generation of S depending on the following equation:  

si =ai =




r

1j

jji ca  i=0,1,…      …(3) 

Equation (3) represents the linear recurrence relation [14]. 
 

The objective is finding A0, when r, C0 and S are known. Let M be a rr matrix, which is describes 

the initial phase of SRr: 

M=(C0|I rr-1), where M
0
=I. 

Let A1 represents the new initial of SRr after one shift, s.t. 

A1=A0M=(a-1,a-2,…,a-r) 
























r

1j

jj

r

2

1

ca(

00c

00c

01c









,a-1,…,a1-r). 

In general, 

Ai=Ai-1M, i=0,1,2,…       …(4) 

Equation (4) can be considered as a recurrence relation, so we have: 

Ai=Ai-1M=Ai-2M
2
=…=A0M

i
      …(5) 

The matrix M
i
 represents the i phase of SRr, equations (4) and (5) can be considered as a Markov 

Process s.t., A0, is the initial probability distribution, Ai represents probability distribution and M be 

the transition matrix [15]. 

notice that: 

M
2
=[C1C0|Irr-2] and so on until get M

i
=[Ci-1…C0|Irr-i], where 1i<r. 

When CP=C0 then M
P+1

=M. 

Now let’s calculate Ci s.t. 

Ci=MCi-1, i=1,2,…        …(4) 

Equation (1) can be rewritten as: 

A0Ci=si , i=0,1,..,r-1        …(5)   

if i=0 then A0C0=s0 is the 1
st
 equation of the LES, 

if i=1 then A0C1=s1 is the 2
nd

 equation of the LES, and  

if i=r-1 then A0Cr-1=sr-1 is the r
th

 equation of the LES. 

In general: 
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A0Ψ=S        …(6) 

Ψ represents the matrix of all Ci vectors s.t. 

Ψ = (C0C1…Cr-1)        …(7) 

The LES can be formulated as: 

A = [Ψ
T
|S

T
]         …(8) 

A represents the extended (augmented) matrix of the LES. 
 

Example (1) 

Let the SR4 has C0
T
=(0,0,1,1) and S=(1,0,0,1), by using equation (4), we get: 

C1=MC0=































































0

1

1

0

1

1

0

0

0001

1001

0100

0010

, in the same way, C2=





















0

0

1

1

,C3=





















1

1

0

1

 

From equation (6) we have: 

A0





















1001

1011

0110

1100

=(1,0,0,1), this system can be written as equations: 

            a-3+a-4= 1 

      a-2+a-3      = 0 

a-1+a-2            = 0 

a-1+      a-3+a-4= 1 

Then the LES after using formula (8) is: 

A=



















11101

00011

00110

11100

       …(9) 

 

7. Use PSO to Solve LES 
The PSO will be used to solve LES’s of LFSR with length r, m=r equations are needed to solve 

the LES. 

 

7.1 Coding Scheme 
A LES is decoded by binary representation. As an example, the equation a2+a5=1 of LFSR with 

length 5 decoded by the equation string (01001-1), where the absolute value (right side) of the 

equation is the real key of the LFSR. These equations are constant for fixed LFSR’s length and 

connection function. As this representation indicates, the size of the equations space is 2
m

-1 

(ignoring the zero string). By increasing the number of bits that are used for representing one 

continuous variable the accuracy of the representation can be increased. 
 

7.2 Initial Swarm 
For the initialization process we can initialize the swarm by a random sample of combinations of 

0 and 1 with m-string length represents the probable initial values LFSR’s. The creation of the 

swarm must submit to what we called non-zero initial condition. The Initial Swarm Algorithm 

shown in figure (3). 
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Figure (3) Initial Population Algorithm 
 

7.3 Evaluation Function (Fitness Function) 
This function is used to determine the “best” representation. The process of the evaluation 

function selection is as follows: 

1. From swarm, a particle k, k=1,…,m initial string of length m bits, so we get the string 

Xk=(Xk1,Xk2,…,Xkm). 

2. The string bit Xkj product with corresponding equation string bit Yij, where 1≤j≤m s.t. the 

equation string is Yi=(Yi1,Yi2,…,Yim) and calculate the observed value: 

Oki=Xk1*Yi1Xk2*Yi2…Xkm*Yim=


m

1j

ijkj Y*X   …(10) 

3. Compare the observed value Oki with key value Ki which represents the known output value of 

the cryptosystem, by using mean absolute error (MAE) s.t. 

MAEk = 



m

1i

iki KO
m

1
      …(11) 

4. The Fitness value is 

Fitnessk = 1-MAEk = 1- 



m

1i

iki KO
m

1
     …(12) 

where 

m : The size of the particle string or equation string.  

Xkj: is the initial value j in String Xk. 

Yij: is the equation variable j in the string Yi. 

Oki: is the observed value i of string Xk calculated from equation (10). 

Ki: is the key bit (actual value) i. 

When the measured (observed) value Oki matches the key bit Ki, for all 1≤i≤m, then the summation 

terms MAEk in equation (11) evaluate to 0 so the fitness value is 1. The fact that a fitness value of 0 

is never achieved does not affect the algorithm since high fitness values are more important than 

low fitness values. As a result, the search process is always moving towards fitness values closer to 

or equal 1. The steps of the Fitness Algorithm are shown in figure (4): 

 

Initial Swarm Algorithm 

INPUT : 1.READ NumParts; {Number of Particles} 

    2.READ m;         {size of Particle} 

PROCESS : 3.FOR i := 1 TO NumParts DO 

         BEGIN 
           a. FOR j = 1 TO m DO sj := RANDOM(2); 

                                 b.  Parti := (s1,s2,…,sm); 

         END; 
OUTPUT : 4.Swarm. 

END. 
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Figure (4) Fitness algorithm 

7.4 PSO Parameters  
The following parameters are been used: swarm size =10, c1[0.5,2], c2=c1, vmax=2, vmin=-vmax, 

w[0.4,0.9], r1,r2[0,1] and 100 or 200 generations. 
 
8. Experimental Results 

Two stopping criterions are be used to stop the PSO cryptanalysis system, first criterion, two 

hundred generations are enough to reach this level of fitness. The second, when the fitness value 

reaches (1.0), so no need to reach the high number of generation. The algorithm was fast enough 

that this took less than a minute on P4 PC. Let’s use 11 stages-LFSR, which has 1+x
2
+x

11
 as 

characteristic primitive polynomial. The initial key value is: 10000000001. Table (1) shows the 11-

stage equations of LES for single LFSR with binary representation. 

 

Table (1) The 11-Stage Equations of LES for Single LFSR. 

I Equation Binary representation 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

a2+a11=1 
a1+a10=1 
a2+a9+a11=1 
a1+a8+a10=1 
a2+a7+a9+a11=1 
a1+a6+a8+a10=1 
a2+a5+a7+a9+a11=1 
a1+a4+a6+a8+a10=1 
a2+a3+a5+a7+a9+a11=1 
a1+a2+a4+a6+a8+a10=1 
a1+a2+a3+a5+a7+a9+a11=0 

01000000001 1 
10000000010 1 
01000000101 1 
10000001010 1 
01000010101 1 
10000101010 1 
01001010101 1 
10010101010 1 
01101010101 1 
11010101010 1 
11101010101 0 

For this example, only 10 initial keys were in the gene pool. The system began by 
generating 10 random initial key as shown: 
Key  1: 00111000011Fitness: 0.64 
Key  2: 10001011111Fitness: 0.55 
Key  3: 11111101111Fitness: 0.55 
Key  4: 10100111101Fitness: 0.64 
Key  5: 00000001110Fitness: 0.45 
Key  6: 00111110101Fitness: 0.36 
Key  7: 01110110110Fitness: 0.55 
Key  8: 11110100110Fitness: 0.45 
Key  9: 11000111110Fitness: 0.73 
Key 10: 11011101110Fitness: 0.55 

The average fitness is 0.55. The best of these keys (key9) has a fitness value: 0.73. 

After 31 generation, the pool begins to converge at a high rate of speed: 

Fitness Algorithm 

INPUT : 1. READ X vector; {Initial string with size m from swarm} 

    2. READ Y vector; {Equation string from data base file} 

    3. READ K vector ;{ Actual key=absolute value of LES} 

PROCESS : 4. FOR i = 1 TO m DO 

4.1 Oi:=


m

1j

jj Y*X ; {XOR sum, Oi is observed key} 

4.2 Difi := |Oi-Ki|; 

    5. MAE:= 


m

1i

iDif
m

1
;{ MAE is the Mean Absolute Error} 

    6. Fitness := 1-MAE; 

OUTPUT : 7. Fitness value; 

END. 
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Key  1: 10001010001Fitness: 0.82 
Key  2: 10010100001Fitness: 0.91 
Key  3: 10010000001Fitness: 0.73 
Key  4: 10010000001Fitness: 0.82 
Key  5: 00101110001Fitness: 0.64 
Key  6: 10100100010Fitness: 0.45 
Key  7: 10100100011Fitness: 0.64 
Key  8: 10100100001Fitness: 0.55 
Key  9: 10110100001Fitness: 0.73 
Key 10: 10010100101Fitness: 0.45 

Average fitness has risen to 0.70 with the best key (key2) coming in at 0.91. 
By generation 50, the gene pool looks like: 
Key  1: 10000000001Fitness: 1.00 
Key  2: 10101000001Fitness: 0.82 
Key  3: 10010100001Fitness: 0.91 
Key  4: 10100000001Fitness: 0.82 
Key  5: 10101100001Fitness: 0.64 
Key  6: 10011010001Fitness: 0.73 
Key  7: 10000010010Fitness: 0.36 
Key  8: 10100010001Fitness: 0.82 
Key  9: 10000100001Fitness: 0.73 
Key 10: 10111001001Fitness: 0.73 

The average fitness is at 0.75. key1 turns out to have the highest fitness and on examination is 

the exact key. In table (2) we provide the generation number for which noted improvement in the 

evaluation function, together with the value of the function. 

 
Table (2) Results of 50 Generations for Single LFSR. 

Gen. Fitness Average key Best Initial Key 

0 

17 

31 

50 

0.73 

0.82 

0.91 

1.00 

0.55 

0.60 

0.70 

0.75 

9 

2 

2 

1 

11000111110 

10010001001 

10010100001 

10000000001 

The best initial key after (11) generations was (and equal to the real initial key): 

1 0 0 0 0 0 0 0 0 0 1 

9. Design of PSO Cryptanalysis System 
The PSO cryptanalysis system can be view as two main parts, first, is the LES constructing which 

described LES constructing algorithm which is shown in Figure(5) 

 

 

Figure (5) LES Constructing Algorithm 

LES Constructing Algorithm 
INPUT :  1. READ C0

T
 vector, A0; { initial value of LFSR }   

   2. M := (C0|Irr-1); 

   3. READ A0 vector; { Initial values of LFSR} 

PROCESS      : 4. FOR i := 0 TO m-1 DO 

           4.1 Ci := MCi-1; 

           4.2  si := A0Ci; 

5. S := (s0, s1,…,sm-1); 

  6. Ψ:= (C0, C1,…, Cm-1); 

  7. A := [Ψ
 T

,S
T
]; 

OUTPUT       : 8. Augmented matrix A;{store in a file} 

END.   
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The second part is the PSO cryptanalysis part, which illustrated in PSO cryptanalysis algorithm, 

shown in figure (6): 

 

   
Figure (6) PSO Cryptanalysis Algorithm 

 

10. Conclusions 
This research concludes the following aspects: 

1. Although the proposed system is employed for small shift register length (r≤11), it was provide 

the base of building PSO cryptanalysis system valid for long shift register attacking. 

2. As a logical mathematical situation, if the proposed system gives a fitness value less than 1.0, 

this mean, no results obtained so we must run the system a gain, since the LES must has unique 

solution for fixed absolute values, no another solution gives fitness equal 1.0. 

3. Percentages reported are based on number of tests and different numbers of the tests must be 

always used, and that what will done in this research. 
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