M_{τ} - TIME AND TIME PROJECTION

Mohammed H. Saloomi

Abstract.

In this paper we discuss new random time which is called M_{τ} -time with some of its properties. In addition, we find the time projection associated with M_{τ} -time. Finally we compute the supremum of increasing family $\{M_{\tau}^t: t \in [0,\infty]\}$ into two cases, the first case when $\vee q_t = I$, while the second case when $\vee q_t = q \neq I$.

لمستخلص

في هذا البحث نناقش زمن عشوائي جديد يدعى الزمن من النمط - M_{τ}^{t} مع بعض خواصه كذالك سوف نجد المسقط الزمني المرفق بهذا الزمن واخيرا سوف نحسب ادنى حد اعلى للعائلة $\{0,\infty\}$ وذالك في حالتين الاولى عندما $M_{\tau}: t\in [0,\infty]$ بينما الثانية في حالة $q_{\tau}=q\neq 1$.

INTRODUCTION

In this paper we develop some of the concepts in [1], [2] and [5] within the non - commutative context. It was shown in [7] that one can define the general random time τ as a map from a subset $[0,t] \subseteq [0,+\infty]$ into proj A, such that $\tau(t) = q_t$, $\tau(0) = q_0 = 0$ and $\tau(s)$ is projection in A_s where $s \in (0,t)$.

In [7] it was shown that for each general random time τ =(q_t) the orthogonal projection M_{τ}^{t} is called time projection associated with general random time, also we prove when t = o, $t = \infty$ this implies $M_{\tau(\theta)}^{t} = 0$, M_{τ} respectively. Therefore we can define new time that is M_{τ} -time as following:

An increasing family of projections $\hat{\tau} = (M_{\tau}^t)$ is called M_{τ} - time such that $\hat{\tau}$ (o)=0, $\hat{\tau} = (\infty) = M_{\tau}$ and $\hat{\tau}$ (t)= M_{τ}^t for each $t \in (0, \infty)$.

This paper divided into two sections:

The first section contains a brief review of notation non - commutative stochastic base, definitions of (random time, q-time, general random time) and time projection associated by general random time with some of its properties. The second section contains the definition of M_{τ} - time with some of its properties. Also we compute the supremum of increasing family of projections $\{M_{\tau}:t\in[0,\infty]\}$ in two cases, the first case when τ is a random time while the second case when τ is q-time.

1. Notions And Preliminaries

Let B (H) be bounded linear operater on complex Hilbert space H, and let $A \subset B(H)$ be a von Neumann algebra. For each non – negative real t, let A_t be von Neumann sub algebra of von Neumann algebra A. A non-commutative stochastic base which is a basic object of our considerations consists of the following elements: A von Neumann algebra $A \subset B(H)$ acting on Hilbert space H, a filtration $\{A_t \colon 0 \le t \le +\infty\}$ which is an increasing ($s \le t$ implies $A_s \subseteq A_t$) family of von Neumann sub algebra of A such that:

$$A = A_{\infty} = (\bigcup_{t \geq 0} A_t)^{''} \text{and } A_s = \bigcap_{t \geq s} A_t \text{ (right continuous)}$$

Also there is unite vector Ω belong to Hilbert space H and separating for A.Now if we denote the closure $A_t\Omega$ in Hilbert space H by H_t , we get that H_t is a closed subspace of H and hence H_t is a Hilbert space itself. Moreover for each $t \in R^+$, let P_t denote the orthogonal projection from H onto H_t . The family $\{P_t: 0 \le t \le +\infty\}$ of orthogonal projection is an increasing and lies in the commutant of A_t .

Now we introduce the following definitions:

Definition (1.1) [7]

A random time τ , is a map $\tau:[0, \infty] \to \text{proj } A$ such that $\tau(0) = q_0 = 0$, $\tau(\infty) = q_\infty = I$ and $\tau(t)$ is projection in A_t , and $\tau(s) \le \tau(t)$, whenever $s \le t$.

Definition (1.2) [7]

By q – time we mean a map $\tau:[0, \infty] \to \text{proj } A$ such that $\tau(0) = q_0 = 0$, $\tau(\infty) = q$ and $\tau(t)$ is projection in A_t , and $\tau(s) \le \tau(t)$, where $s \le t$.

Note that in more general case we introduce the following definition:

Definition (1.3)[8]

A general random time on interval [0, t] we mean a map $\tau : [0, t] \to \text{proj.}$ A such that $\tau(0) = q_0 = 0$, $\tau(t) = q_t$ and $\tau(s)$ is projection in A_s , where $s \in (0,t)$.

Let now $\tau = (q_t)$ be general random time for each partition $\theta = \{0 = t_0 < t_1 < ... < t_n = t\}$, of interval [0,t], we define an operator $M_{\tau(\theta)}^t$ on H by the formula

$$M_{\tau(\theta)}^{t} = \sum_{i=1}^{n} (q_{t_i} - q_{t_{i-1}}) P_{t_i} = \sum_{i=1}^{n} \Delta q_{t_i} P_{t_i}$$
.

Its turns out that $M_{\tau(\theta)}^t$ is projection, moreover, $M_{\tau(\theta)}^t$ decreases as θ refines. Thus there exist a unique orthogonal projection say M_{τ}^t which is called time projection defined as

$$M_{\tau}^{t} = \lim M_{\tau(\theta)}^{t} = \Lambda M_{\tau(\theta)}^{t}$$
.

The following propositions give some basic properties of linear operator $M_{\tau(\theta)}^t$.

Proposition (1.4)[8]

Let $\tau = (q_t)$ be a general random time .Then

- 1. $M_{\tau(\theta)}^{t}$ is an orthogonal projection.
- 2. For $\eta, \theta \in \theta$ which is a partition of [0,t] with η finer than θ , then $M_{\tau(\theta)}^t \ge M_{\tau(\eta)}^t$.

Proposition (1.5)[8]

- 1. Let $\tau = (q_t)$ be general random time with $s \le t$, then $M_{\tau}^s = q_s M_{\tau}^t$.
- 2. Let $\tau = (q_t)$ be general random time then $M_{\tau}^s = q_s M_{\tau}$ when $t = \infty$, then

$$M_{\tau}^t = q_t M_{\tau}$$
 for all s, $t \in [0, \infty]$.

2.M_T-TIME

We begin this section by defined the following concepts.

Definition (2.1)

An increasing family of projections $\overset{\wedge}{\tau} = (M_{\tau}^{t})$ is called M_{τ} -time such that $\overset{\wedge}{\tau}(0)=0$, $\overset{\wedge}{\tau}(\infty) = M_{\tau}$ and $\overset{\wedge}{\tau}(t)=M_{\tau}^{t}$ is projection in A_{t} .

Definition (2.2)

Let θ denote the set of all partitions of interval $[0,\infty]$. Then for each partitions θ in θ , say $\theta=\{0=t_0< t_1<\ldots< t_n=+\infty\}$, we define an operator $M_{\tau(\theta)}$ on H as

$$\mathbf{M} \stackrel{\wedge}{\tau}_{(\theta)} = \sum_{i=1}^{n} (M_{\tau}^{t_i} - M_{\tau}^{t_{i-1}})_{p_{t_i}}$$

Proposition (2.3)

Let $\overset{\wedge}{\tau} = (M_{\tau}^{t})$ be M_{τ} -time. Then

- 1. $M_{\tau(\theta)}^{\hat{\tau}}$ is bounded linear operator.
- 2. $M_{\tau(\theta)}^{\hat{}}$ is self-adjoint projection on H for any θ in θ .

Proof 1. we have $M_{\tau(\theta)}^{\hat{\tau}} = \sum_{i=1}^{n} (M_{\tau}^{t_i} - M_{\tau}^{t_{i-1}})_{p_{t_i}}$. It is clear that $M_{\tau(\theta)}^{\hat{\tau}}$ equal to finite sum of bounded

linear operators, therefore M $_{\tau}^{^{\wedge}}$ (0) is bounded linear operator \blacksquare

2. we must prove that $M_{\tau(\theta)}^{\circ}$. $M_{\tau(\theta)}^{\circ} = M_{\tau(\theta)}^{\circ}$

$$\begin{split} \mathbf{M}_{\tau}^{\hat{}}_{(\theta)}. \ \mathbf{M}_{\tau}^{\hat{}}_{(\theta)} &= \sum_{i=1}^{n} \left(\mathbf{M}_{\tau}^{i_{i}} - \mathbf{M}_{\tau}^{i_{i-1}} \right) p_{t_{i}}. \sum_{j=1}^{n} \left(\mathbf{M}_{\tau}^{t_{j}} - \mathbf{M}_{\tau}^{t_{j-1}} \right) p_{t_{j}} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta \mathbf{M}_{\tau}^{t} P_{t_{i}} \Delta \mathbf{M}_{\tau}^{t_{j}} P_{t_{j}} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} P_{t_{i}} \Delta \mathbf{M}_{\tau}^{t_{i}} \Delta \mathbf{M}_{\tau}^{t_{j}} P_{t_{j}} \quad [\text{since } \mathbf{M}_{\tau}^{t_{i}} \in \mathcal{A}_{t_{i}}, P_{t_{i}} \in \mathcal{A}_{t_{i}}']. \end{split}$$

There are two cases:

The first one if $i \neq j$ this implies $\Delta M_{\tau_i}^{t_i} \Delta M_{\tau_i}^{t_j} = 0$

The second case if i = j this implies $\Delta M_{\tau}^{t_i} \Delta M_{\tau}^{t_j} = \Delta M_{\tau}^{t_i} = \Delta M_{\tau}^{t_j}$ and $P_{t_i} P_{t_j} = P_{t_i}$

$$\mathbf{M}_{\tau(\theta)}^{\hat{}}.\ \mathbf{M}_{\tau(\theta)}^{\hat{}} = \sum_{i=1}^{n} (\mathbf{M}_{\tau^{i}}^{t_{i}} - \mathbf{M}_{\tau^{i-1}}^{t_{i-1}}) p_{t_{i}} = \mathbf{M}_{\tau(\theta)}^{\hat{}}.$$

Hence $M_{\tau(\theta)}^{\hat{}}$ is projection.

Now to prove $\stackrel{\wedge}{\tau}_{(\theta)}$ is a self a djoint, we must prove $\stackrel{\wedge}{\tau}_{(\theta)} = \stackrel{\wedge}{M_{\tau(\theta)}} = \stackrel{\wedge}{M_{\tau(\theta)}}$

$$\begin{split} \mathbf{M}^{*} \overset{\wedge}{\tau}_{(\theta)} &= \left(\sum_{i=1}^{n} \left(M_{\tau^{i}}^{t_{i}} - M_{\tau^{i-1}}^{t_{i-1}}\right)_{P_{t_{i}}}\right)^{*} = \sum_{i=1}^{n} P_{t_{i}}^{*} \left(M_{\tau^{i}}^{t_{i}} - M_{\tau^{i-1}}^{t_{i-1}}\right) \\ &= \sum_{i=1}^{n} p_{t_{i}} \left(M_{\tau^{i}}^{t_{i}} - M_{\tau^{i-1}}^{t_{i-1}}\right) = \sum_{i=1}^{n} \left(p_{t_{i}} M_{\tau^{i}}^{t_{i}} - p_{t_{i}} M_{\tau^{i-1}}^{t_{i-1}}\right) \\ &= \sum_{i=1}^{n} \left(M_{\tau^{i}}^{t_{i}} p_{t_{i}}^{-} - M_{\tau^{i-1}}^{t_{i-1}} p_{t_{i}}\right) \quad [\text{since } M_{\tau^{i}}^{t_{i}}, M_{\tau^{i-1}}^{t_{i-1}} \in \mathcal{A}_{t_{i}}^{t_{i}}, P_{t_{i}} \in \mathcal{A}_{t_{i}}^{t_{i}}]. \\ &= \sum_{i=1}^{n} \left(M_{\tau^{i}}^{t_{i}} - M_{\tau^{i-1}}^{t_{i-1}}\right)_{P_{t_{i}}} = \mathbf{M} \overset{\wedge}{\tau}_{(\theta)}. \end{split}$$

Hence M $\stackrel{\wedge}{\tau}_{(\theta)}$ is a self adjoint

Corollary 2.4.

Let $\overset{\wedge}{\tau} = (M_{\tau}^{t})$ be M_{τ} -time. Then $M_{\tau(\theta)}^{\hat{\tau}} = M_{\tau}$ for all $\theta \in \theta$ and $M_{\tau}^{\hat{\tau}} = M_{\tau}$.

<u>Proof</u>: let $\theta = \{0 = t_0 < t_1 < \dots < t_n = +\infty\}$ be a partition for $[0, +\infty]$.

We know that
$$M_{\tau(\theta)}^{\hat{}} = \sum_{i=1}^{n} (M_{\tau^{i}}^{t_{i}} - M_{\tau^{i-1}}^{t_{i-1}})_{P_{t_{i}}}$$

But
$$M_{\tau}^{t_i} = q_{t_i} M_{\tau}$$
 and $M_{\tau}^{t_{i-1}} = q_{t_{i-1}} M_{\tau}$ proposition (1.5)

Thus
$$M_{\tau(\theta)}^{\hat{}} = \sum_{i=1}^{n} (q_{t_{i}} M_{\tau} - q_{t_{i-1}} M_{\tau}) p_{t_{i}}$$

$$= \sum_{i=1}^{n} (q_{t_{i}} - q_{t_{i-1}}) M_{\tau} p_{t_{i}}$$

$$= \sum_{i=1}^{n} \Delta_{q_{t_{i}}} p_{t_{i}} M_{\tau} \quad \text{[since } M_{\tau} p_{t_{i}} = p_{t_{i}} M_{\tau} \text{]}$$

$$= M_{\tau(\theta)} M_{\tau}$$

$$M_{\tau(\theta)}^{\hat{}} = M_{\tau} \dots (1)$$

By taking limit to both sides to relation (1), we obtain that

$$M_{\tau}^{\hat{}} = M_{\tau} \blacksquare$$

Remark (2.5)

Let $\sigma = (q_t)$ be q-time and let $\tau = (q_t)$ be random time. Then

$$M_{\sigma(\theta)} = M_{\tau(\theta)} - (I - q)$$
 and $M_{\sigma} = M_{\tau} - (I - q)$.

 $\underline{\textbf{Proof}}:$ let $~\theta ~= \{~0 = t_0 < t_1 < \ldots < t_n = ~+\infty~\}$ be a partition for $[0, +\infty]~$ we define

$$\begin{split} \mathbf{M}_{\mathfrak{S}(\theta)} &= \sum_{i=1}^{n} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} \\ &= \sum_{i=1}^{n-1} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} + (q - q_{t_{n-1}}) P_{t_{n}} \\ &= \sum_{i=1}^{n-1} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} + (\mathbf{I} - q_{t_{n-1}}) P_{t_{n}} - (\mathbf{I} - \mathbf{q}) \end{split}$$

$$M_{\sigma(\theta)} = M_{\tau(\theta)}$$
-(I- q)

By taking limit to both sides for previous relation, we obtain that

$$M_{\sigma} = M_{\tau} - (I - q) \blacksquare$$

Proposition (2.6)

Let $\hat{\tau} = (M_{\tau}^{t})$ be M_{τ} - time, where $t \in [0, +\infty]$. Then $\sup M_{\tau}^{t} = M_{\tau}$ where $\sup q_{t} = I$, and $\sup M_{\tau}^{t} = M_{\sigma}$, where $\sup q_{t} = q$, and $q \neq I$.

<u>Proof</u>: (1) If sup $q_t=I$, we have

$$\sup \boldsymbol{M}_{\tau}^{t} = \bigvee_{t \geq 0} \boldsymbol{M}_{\tau}^{t}$$

$$\begin{split} &= \vee q_t \; M_\tau \quad [\text{since } M_\tau^t = q_t \; M_\tau] \\ &= (\vee q_t) \; M_\tau = I \; M_\tau \quad [\text{since } \vee q_t = I \;] \\ &= M_\tau \; . \end{split}$$

Thus sup $M_{\tau}^{t} = M_{\tau}$.

(2) If sup $q_t=q$, we have

$$\sup M_{\tau}^{t} = \bigvee_{t \ge 0} M_{\tau}^{t}$$

$$= \bigvee q_{t} M_{\tau}$$

$$= (\bigvee q_{t}) M_{\tau} \text{ but } \sup q_{t} = q, \text{ therefore } \sup M_{\tau}^{t} = q M_{\tau}.....(1)$$

Now we compute $q M_{\tau}$ as following:

Let
$$\theta = \{0 = t_0 < t_1 < \dots < t_n = +\infty \}$$
 be partition for $[0, +\infty]$, then

$$q M_{\tau} = q \sum_{i=1}^{n} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}}$$

$$q M_{\tau} = q \sum_{i=1}^{n-1} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} + q (I - q_{t_{n-1}}) P_{\infty}$$

$$= \sum_{i=1}^{n-1} (q_{t_{i}} - q_{t_{i-1}}) P_{t_{i}} + (q - q_{t_{n-1}}) \quad \text{[since } P_{\infty} = I \text{]}$$

$$= \sum_{i=1}^{n} \Delta q_{t_{i}} P_{t_{i}} = M_{\sigma}(\theta) \quad \text{[by remark (2.5)]}$$

Thus q $M_{\tau} = M_{\sigma(\theta)}$(2)

By the relations (1) and (2) we get that $\bigvee_{t \ge 0} M_{\tau}^{t} = M_{\sigma}$.

Therefore, from (1) and (2) we can say that

$$\operatorname{Sup} M_{\tau}^{t} = \bigvee_{t \ge 0} M_{\tau}^{t} = \begin{cases} M_{\tau} & \text{if } \sup q_{t} = 1 \\ M_{\sigma} = M_{\tau} - (I - q) & \text{if } \sup q_{t} \ne 1 \end{cases} \blacksquare$$

REFERENCES

- [1] Barnet, C.Streater, R.F, Wilde, I.F., Quantum stochastic integrals under standing hypothesis, J. Math. Anal. Appl. 127(1987),181-192.
- [2] Barnet, C. Thakrar, B., Time projection in Von Neumann algebra, J. Operator Theory. 18(1987),19-31.
- [3] Barnet, C. Thakrar, B., Anon commutative random stopping theorem, J.Funct.Anal.88(1990),(250-342).
- [4] Barnet, C.and Voliotis,S., Stopping and integration in aproduct structure, J. Operator Theory. 34(1995)145-175.
- [5] Barnet, C. Wilde, I. F., Random time and time projection, Proc.Amer. Math.Soc.110(1990),425-440.
- [6] Barnet, C. Wilde, I.F., quantum stopping times and Doob Meyer Decompositions, J. Operator Theory. 35(1996)85-106
- [7] Naji, S.,P- Time and time projections in Von Neumann algebras, Ph.M. Baghdad University, (2008).
- [8] Sloomi, M, H., Time algebras and time projections, Ph.M. Baghdad University, (2008).