Journal of Kerbala University, Vol. 8 No. 2 Scientific . 2010

$\mathrm{M}_{\tau^{-}}$TIME AND TIME PROJECTION

Mohammed H. Saloomi

Abstract

. In this paper we discuss new random time which is called M_{τ}-time with some of its properties.In addition, we find the time projection associated with $\mathrm{M}_{\tau^{-}}$time. Finally we compute the supremum of increasing family $\left\{M_{\tau}^{t}: \mathrm{t} \in[0, \infty]\right\}$ into two cases, the first case when $\vee q_{t}=I$, while the second case when $\vee q_{t}=q \neq \mathrm{I}$. الزمني المرفق بهذا الزمن واخيرا سوف نحسب ادنى حد اعلى للعائلّة $\}$ الـلـ $. ~ \vee q_{t}=q \neq \mathrm{I}$ بينما الثانية في حالة $\vee q_{t}=1$

INTRODUCTION

In this paper we develop some of the concepts in [1], [2] and [5] within the non - commutative context. It was shown in [7] that one can define the general random time τ as a map from a subset $[0, \mathrm{t}] \subseteq[0,+\infty]$ into proj A, such that $\tau(\mathrm{t})=\mathrm{q}_{\mathrm{t}}, \tau(0)=\mathrm{q}_{0}=0$ and $\tau(\mathrm{s})$ is projection in A_{s} where $\mathrm{s} \in(0, \mathrm{t})$.

In [7] it was shown that for each general random time $\tau=\left(\mathrm{q}_{\mathrm{t}}\right)$ the orthogonal projection M_{τ}^{t} is called time projection associated with general random time, also we prove when $t=0, t=\infty$ this implies $M_{\tau(\theta)}^{t}=0, \mathrm{M}_{\tau}$ respectively. Therefore we can define new time that is M_{τ}-time as following: An increasing family of projections $\hat{\tau}=\left(M_{\tau}^{t}\right)$ is called $M_{\tau^{-}}$time such that $\hat{\tau}(0)=0, \hat{\tau}=(\infty)=M_{\tau}$ and $\hat{\tau}(\mathrm{t})=M_{\tau}^{t}$ for each $\mathrm{t} \in(0, \infty)$.

This paper divided into two sections:
The first section contains a brief review of notation non - commutative stochastic base, definitions of (random time, q-time, general random time) and time projection associated by general random time with some of its properties. The second section contains the definition of $\mathrm{M}_{\tau^{-}}$time with some of its properties. Also we compute the supremum of increasing family of projections $\left\{\mathrm{M}_{\tau}: \mathrm{t} \in[0, \infty]\right\}$ in two cases, the first case when τ is a random time while the second case when τ is q -time.

1. Notions And Preliminaries

Let $B(H)$ be bounded linear operater on complex Hilbert space H, and let $A \subset B(H)$ be a von Neumann algebra. For each non - negative real t, let A_{t} be von Neumann sub algebra of von Neumann algebra A. A non-commutative stochastic base which is a basic object of our considerations consists of the following elements: A von Neumann algebra $A \subset B(H)$ acting on Hilbert space H, a filtration $\left\{A_{t}: 0 \leq t \leq+\infty\right\}$ which is an increasing ($s \leq t$ implies $A_{s} \subseteq A_{t}$) family of von Neumann sub algebra of A such that:

$$
A=A_{\infty}=\left(\underset{t \geq 0}{\cup} A_{t}\right)^{\prime \prime} \text { and } A_{s}=\bigcap_{t \geq s} A_{t} \text { (right continuous) }
$$

Journal of Kerbala University, Vol. 8 No. 2 Scientific . 2010

Also there is unite vector Ω belong to Hilbert space H and separating for A.Now if we denote the closure $A_{t} \Omega$ in Hilbert space H by H_{t}, we get that H_{t} is a closed subspace of H and hence H_{t} is a Hilbert space itself. Moreover for each $t \in R^{+}$, let P_{t} denote the orthogonal projection from H onto H_{t}. The family $\left\{\mathrm{P}_{\mathrm{t}}: 0 \leq \mathrm{t} \leq+\infty\right\}$ of orthogonal projection is an increasing and lies in the commutant of A_{t}.

Now we introduce the following definitions:

Definition (1.1) [7]

A random time τ, is a map $\tau:[0, \infty] \rightarrow$ proj A such that $\tau(0)=q_{0}=0, \tau(\infty)=q_{\infty}=\mathrm{I}$ and $\tau(\mathrm{t})$ is projection in A_{t}, and $\tau(\mathrm{s}) \leq \tau(\mathrm{t})$, whenever $\mathrm{s} \leq \mathrm{t}$.

Definition (1.2) [7]

By q - time we mean a map $\tau:[0, \infty] \rightarrow$ proj A such that $\tau(0)=\mathrm{q}_{0}=0, \tau(\infty)=\mathrm{q}$ and $\tau(\mathrm{t})$ is projection in A_{t}, and $\tau(\mathrm{s}) \leq \tau(\mathrm{t})$, where $\mathrm{s} \leq \mathrm{t}$.

Note that in more general case we introduce the following definition:
Definition (1.3)[8]
A general random time on interval $[0, t]$ we mean a map $\tau:[0, t] \rightarrow$ proj. A such that $\tau(0)=$ $\mathrm{q}_{0}=0, \tau(\mathrm{t})=\mathrm{q}_{\mathrm{t}}$ and $\tau(\mathrm{s})$ is projection in A_{s}, where $\mathrm{s} \in(0, \mathrm{t})$.

Let now $\tau=\left(q_{t}\right)$ be general random time for each partition $\theta=\left\{0=\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{n}}=\mathrm{t}\right\}$, of interval [0,t], we define an operator $M_{\tau(\theta)}^{t}$ on H by the formula

$$
M_{\tau(\theta)}^{t}=\sum_{i=1}^{n}\left(q_{t_{i}}-q_{t_{i-1}}\right) P_{t_{i}}=\sum_{i=1}^{n} \Delta q_{t_{i}} P_{t_{i}} .
$$

Its turns out that $M_{\tau(\theta)}^{t}$ is projection, moreover, $M_{\tau(\theta)}^{t}$ decreases as θ refines. Thus there exist a unique orthogonal projection say M_{τ}^{t} which is called time projection defined as

$$
M_{\tau}^{t}=\lim M_{\tau(\theta)}^{t}=\Lambda_{\theta} M_{\tau(\theta)}^{t} .
$$

The following propositions give some basic properties of linear operator $M_{\tau(\theta)}^{t}$.

Proposition (1.4)[8]

Let $\tau=\left(q_{t}\right)$ be a general random time .Then

1. $M_{\tau(\theta)}^{t}$ is an orthogonal projection.
2. For $\eta, \theta \in \theta$ which is a partition of $[0, \mathrm{t}]$ with η finer than θ, then $M_{\tau(\theta)}^{t} \geq M_{\tau(\eta)}^{t}$.

Proposition (1.5)[8]

1. Let $\tau=\left(q_{t}\right)$ be general random time with $\mathrm{s} \leq \mathrm{t}$, then $M_{\tau}^{s}=q_{s} M_{\tau}^{t}$.
2. Let $\tau=\left(q_{t}\right)$ be general random time then $M_{\tau}^{s}=q_{s} M_{\tau}$ when $\mathrm{t}=\infty$, then $M_{\tau}^{t}=q_{t} M_{\tau}$ for all $\mathrm{s}, \mathrm{t} \in[0, \infty]$.

$$
\text { 2. } M_{\tau^{-}} \text {TIME }
$$

We begin this section by defined the following concepts.

Journal of Kerbala University , Vol. 8 No. 2 Scientific . 2010

Definition (2.1)
An increasing family of projections $\hat{\tau}=\left(M_{\tau}^{t}\right)$ is called M_{τ}-time such that $\hat{\tau}(0)=0, \hat{\tau}(\infty)=\mathrm{M}_{\tau}$ and $\hat{\tau}(\mathrm{t})=M_{\tau}^{t}$ is projection in A_{t}.

Definition (2.2)

Let θ denote the set of all partitions of interval $[0, \infty]$. Then for each partitions θ in θ, say $\theta=\{0$ $\left.=\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots \ldots<\mathrm{t}_{\mathrm{n}}=+\infty\right\}$, we define an operator $\mathrm{M}_{\tau} \hat{(\theta)}$ on H as

$$
\mathrm{M}_{\hat{\tau}}{ }_{(\theta)}=\sum_{i=1}^{n}\left(M_{\tau_{i}}^{t_{i}}-M_{\tau^{t-1}}^{t_{i}}\right) p_{t_{i}}
$$

Proposition (2.3)

Let $\hat{\tau}=\left(M_{\tau}^{t}\right)$ be M_{τ}-time. Then

1. $\mathbf{M}_{\hat{\tau}}^{(\theta)}$ is bounded linear operator.
2. $\mathbf{M}_{\tau}{ }_{(\theta)}$ is self-adjoint projection on \mathbf{H} for any θ in θ.

Proof 1. we have $\mathrm{M}_{\tau(\theta)}=\sum_{i=1}^{n}\left(M_{\tau_{i}}^{t_{i}} M_{\left.t^{t-1}\right)}^{t_{i}} p_{t_{i}}\right.$.It is clear that M_{τ} (θ) equal to finite sum of bounded linear operators, therefore $\mathrm{M}_{\tau}{ }_{(\theta)}$ is bounded linear operator
2. we must prove that $\mathrm{M}_{\tau_{(\theta)}}^{\wedge} \cdot \mathrm{M}_{\tau_{(\theta)}}^{\wedge}=\mathrm{M}_{\mathcal{\tau}_{(\theta)}}$

$$
\begin{aligned}
\mathbf{M}_{\tau(\theta)} \cdot \mathbf{M}_{\tau(\theta)} & =\sum_{i=1}^{n}\left(M_{\tau}^{t_{i}}-M_{\tau}^{t_{\tau}-1}\right) p_{t_{i}} \cdot \sum_{j=1}^{n}\left(M_{\tau_{j}}^{t_{j}}-M_{\tau_{j-1}}^{t_{j-1}}\right) p_{t_{j}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \Delta M_{\tau}^{t} P_{t_{i}} \Delta M_{\tau_{j}}^{t_{j}} P_{t j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} P_{t_{i}} \Delta M_{\tau}^{t_{i}} \Delta M_{\tau}^{t_{j}} P_{t j} \quad\left[\text { since } M_{\tau}^{t_{i} \in \mathcal{O A}_{t_{i}},} P_{t_{i}} \in \mathcal{A}_{t_{i}}^{\prime}\right] .
\end{aligned}
$$

There are two cases:
The first one if $\mathrm{i} \neq \mathrm{j}$ this implies $\Delta M_{\tau}^{t_{i}} \Delta M_{\tau_{j}}^{t_{j}}=0$
The second case if $\mathrm{i}=\mathrm{j}$ this implies $\Delta M_{\tau^{i}}^{t_{i}} \Delta M_{\tau_{j}^{j}}^{t_{j}}=\Delta M_{\tau_{i}}^{t_{i}=\Delta} M_{\tau_{j}^{j}}^{t_{i}}$ and $P_{t_{i}} P_{t_{j}}=P_{t_{i}}$

$$
\mathbf{M}_{\tau(\theta)} . \mathbf{M}_{\tau(\theta)}=\sum_{i=1}^{n}\left(M_{\tau}^{t_{i}}-M_{\tau_{i-1}}^{t_{i-1}} p_{t_{i}}=\mathbf{M} \hat{\tau}(\theta)\right.
$$

Hence $\mathbf{M}_{\tau(\theta)}$ is projection.
Now to prove $M_{\tau_{(\theta)}}^{\wedge}$ is a self a djoint, we must prove $M^{*} \hat{\tau}_{(\theta)}=M_{\tau(\theta)}^{\wedge}$

$$
\begin{aligned}
& \mathrm{M}^{*} \tau_{(\theta)}=\left(\sum_{i=1}^{n}\left(M_{\tau}^{t_{i}}-M_{\tau}^{t_{i-1}}\right) p_{t_{i}}\right)^{*}=\sum_{i=1}^{n} P_{t_{i}}^{*}\left(M_{\tau}^{t_{i}}-M_{t_{t i-1}}^{t_{i-1}}{ }^{*}\right. \\
& =\sum_{i=1}^{n} p_{t_{i}}\left(M_{\tau}^{t_{i}}-M_{\tau_{i-1}}^{t_{i-1}}\right)=\sum_{i=1}^{n}\left(p_{t_{i}} M_{\tau}^{t_{i}-} p_{t_{i}} M_{\tau_{i-1}}^{t_{i-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(M_{\tau}^{t_{i}}-M_{\tau}^{t_{i-1}}\right) p_{t_{i}}=\mathrm{M}_{\tau(\theta)}^{\hat{\tau}} .
\end{aligned}
$$

Journal of Kerbala University , Vol. 8 No. 2 Scientific . 2010

Hence $\mathrm{M}^{\hat{\tau}}(\theta)$ is a self adjoint

Corollary 2.4.

Let $\hat{\tau}=\left(M_{\tau}^{t}\right)$ be M_{τ}-time. Then $\mathrm{M}_{\tau}^{\hat{\tau}}{ }_{(\theta)}=\mathrm{M}_{\tau}$ for all $\theta \in \theta$ and $M_{\hat{\tau}}=\mathrm{M}_{\tau}$.
Proof : let $\theta=\left\{0=\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots \ldots<\mathrm{t}_{\mathrm{n}}=+\infty\right\}$ be a partition for $[0,+\infty]$.
We know that $\mathrm{M}_{\tau} \hat{(\theta)}=\sum_{i=1}^{n}\left(M_{\tau_{i}}^{t_{i}}-M_{t_{i-1}}^{t_{i-1}}\right) p_{t_{i}}$
But $M_{\tau}^{t_{i}}=q_{t_{i}} M_{\tau}$ and $M_{\tau^{-1}}^{t_{i-1}}=q_{t_{i-1}} M_{\tau} \quad$ proposition (1.5)

$$
\begin{align*}
& \text { Thus } \mathbf{M}_{\tau(\theta)}=\sum_{i=1}^{n}\left(q_{t_{i}} M_{\tau}-q_{t_{i-1}} M_{\tau}\right) p_{t_{i}} \\
& =\sum_{i=1}^{n}\left(q_{t_{i}}-q_{t_{i-1}}\right) M_{\tau} p_{t_{i}} \\
& =\sum_{i=1}^{n} \Delta q_{t_{i}} p_{t_{i}} M_{\tau} \quad\left[\text { since } M_{\tau} p_{t_{i}}=p_{t_{i}} M_{\tau}\right] \\
& =\mathrm{M}_{\tau(\theta)} M_{\tau} \\
& \mathrm{M}_{\tau(\theta)}^{\wedge}=M_{\tau} \tag{1}
\end{align*}
$$

By taking limit to both sides to relation (1), we obtain that

$$
M_{\hat{\tau}}=\mathrm{M}_{\tau}
$$

Remark (2.5)

Let $\quad \sigma=\left(\mathrm{q}_{\mathrm{t}}\right)$ be q - time and let $\tau=\left(\mathrm{q}_{\mathrm{t}}\right)$ be random time. Then
$M_{\sigma_{(\theta)}}=M_{\tau_{(\theta)-}}\left(I_{-q}\right)$ and $M_{\sigma}=M_{\tau_{-}}\left(I_{-q}\right)$.
Proof: let $\theta=\left\{0=\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots \ldots<\mathrm{t}_{\mathrm{n}}=+\infty\right\}$ be a partition for $[0,+\infty]$ we define

$$
\begin{aligned}
\mathrm{M}_{\sigma_{(\theta)}} & =\sum_{i=1}^{n}\left(q_{t_{i}}-q_{t_{i-1}}\right) P_{t_{i}} \\
& =\sum_{i=1}^{n-1}\left(q_{t_{i}}-q_{t_{i-1}}\right) P_{t_{i}}+\left(q-q_{t_{n-1}}\right) P_{t_{n}} \\
& =\sum_{i=1}^{n-1}\left(q_{t_{i}}-q_{t_{i-1}}\right) P_{t_{i}}+\left(\mathrm{I}-q_{t_{n-1}}\right) P_{t_{n}}-(\mathrm{I}-\mathrm{q}) \\
\mathbf{M ~}_{\boldsymbol{\sigma}(\theta)} & \left.=\mathbf{M}_{\tau(\theta)-}-\mathrm{I}-\mathrm{q}\right)
\end{aligned}
$$

By taking limit to both sides for previous relation, we obtain that

$$
M_{\sigma}=M_{\tau}-(\mathrm{I}-\mathrm{q})
$$

Proposition (2.6)

Let $\tau=\left(M_{\tau}^{t}\right)$ be $M_{\tau^{-}}$time, where $\mathrm{t} \in[0,+\infty]$. Then $\sup M_{\tau}^{t}=\mathrm{M}_{\tau}$ where $\sup \mathrm{q}_{\mathrm{t}}=\mathrm{I}$, and $\sup M_{\tau}^{t}=\mathrm{M}_{\sigma}$, where $\sup \mathrm{q}_{\mathrm{t}}=\mathrm{q}$, and $\mathrm{q} \neq \mathrm{I}$.
Proof: (1) If sup $\mathrm{q}_{\mathrm{t}}=\mathrm{I}$, we have
$\sup M_{\tau}^{t}=\underset{t \geq 0}{\vee} M_{\tau}^{t}$

Journal of Kerbala University, Vol. 8 No. 2 Scientific . 2010

$$
\begin{aligned}
& =\mathrm{vq}_{\mathrm{t}} \mathrm{M}_{\tau} \quad\left[\text { since } M_{\tau}^{t}=\mathrm{q}_{\mathrm{t}} \mathrm{M}_{\tau}\right] \\
& =\left(\mathrm{q}_{\mathrm{t}}\right) \mathrm{M}_{\tau}=\mathrm{I} \mathrm{M}_{\tau} \quad\left[\text { since } \vee \mathrm{q}_{\mathrm{t}}=\mathrm{I}\right] \\
& =\mathrm{M}_{\tau} .
\end{aligned}
$$

Thus $\sup M_{\tau}^{t}=\mathrm{M}_{\tau}$.
(2) If $\sup \mathrm{q}_{\mathrm{t}}=\mathrm{q}$, we have

$$
\begin{align*}
\sup M_{\tau}^{t} & =\vee{ }_{t \geq 0} M_{\tau}^{t} \\
& =\vee \mathrm{q}_{\mathrm{t}} \mathrm{M}_{\tau} \\
& =\left(\vee \mathrm{q}_{\mathrm{t}}\right) \mathrm{M}_{\tau} \text { but } \sup \mathrm{q}_{\mathrm{t}}=\mathrm{q}, \text { therefore } \sup M_{\tau}^{t}=\mathrm{q} \mathrm{M}_{\tau} \tag{1}
\end{align*}
$$

Now we compute $q \mathrm{M}_{\tau}$ as following:
Let $\theta=\left\{0=\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots \ldots<\mathrm{t}_{\mathrm{n}}=+\infty\right\}$ be partition for $[0,+\infty]$, then

$$
\mathrm{q} \mathrm{M}_{\tau}=\mathrm{q} \sum_{i=1}^{n}\left(q_{t_{i}}-q_{t_{i-1}}\right) P_{t_{i}}
$$

$$
\mathrm{q} \mathrm{M}_{\tau}=\mathrm{q} \sum_{i=1}^{n-1}\left(q_{t_{i}}-q_{t_{i-1}}\right) P_{t_{i}}+q\left(I-q_{t_{n-1}}\right) P_{\infty}
$$

$$
=\sum_{i=1}^{n-1}\left(q_{t_{i}}-q_{t_{i-1}}\right) P_{t_{i}}+\left(q-q_{t_{n-1}}\right) \quad\left[\text { since } \mathrm{P}_{\infty}=\mathrm{I}\right]
$$

$$
\begin{equation*}
=\sum_{i=1}^{n} \Delta q_{t_{i}} P_{t_{i}}=M_{\sigma(\theta)} \quad[\text { by remark }(2.5)] \tag{2}
\end{equation*}
$$

Thus $q \mathrm{M}_{\tau}=\mathrm{M}_{\sigma_{(\theta)}}$.
By the relations (1) and (2) we get that $\underset{t \geq 0}{\vee} M_{\tau}^{t}=M_{\sigma}$.
Therefore, from (1) and (2) we can say that

$$
\operatorname{Sup} M_{\tau}^{t}=\underset{t \geq 0}{\vee} M_{\tau}^{t}= \begin{cases}M_{\tau} & \text { if } \sup q_{t}=1 \\ M_{\sigma}=M_{\tau}-(I-q) & \text { if } \sup q_{t} \neq 1\end{cases}
$$

REFERENCES

[1] Barnet, C.Streater, R.F, Wilde, I.F., Quantum stochastic integrals under standing hypothesis, J. Math. Anal. Appl. 127(1987),181-192.
[2] Barnet, C. Thakrar, B., Time projection in Von Neumann algebra, J. Operator Theory. 18(1987),19-31.
[3] Barnet, C. Thakrar, B., Anon - commutative random stopping theorem, J.Funct.Anal.88(1990),(250-342).
[4] Barnet, C.and Voliotis,S., Stopping and integration in aproduct structure, J. Operator Theory. 34(1995)145-175.
[5] Barnet, C. Wilde, I. F., Random time and time projection, Proc.Amer. Math.Soc.110(1990),425-440.
[6] Barnet, C. Wilde, I.F., quantum stopping times and Doob - Meyer Decompositions, J. Operator Theory. 35(1996)85-106
[7] Naji, S.,P- Time and time projections in Von Neumann algebras, Ph.M. Baghdad University, (2008).
[8] Sloomi, M, H., Time algebras and time projections, Ph.M. Baghdad University, (2008).

