
Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

Hardware Implementation of 3D-Bresenham's Algorithm Using FPGA

 Dr. Basma Mohammed Kamal Younis, Lecturer Ne'am Salim Mohammed Sheet

Department of Computer Technology Engineering-Technical College-Mosul

 Abstract

Traditional 3D-Bresenham's algorithm is efficient in generating lines on raster

systems using only integer calculations. This algorithm is needed as a solution of hidden

surface problem using depth-buffer method to calculate z value for each pixel, while

calculated values of x and y are used to address frame buffer memory, z value is used to

test hidden surface by saving the closest depth in depth buffer.

In this paper Bresenham's algorithm for plotting 3D-lines is examined then modified

to simplify hardware requirements during implementation phase. Basing on efficiency of

the algorithm on the space symmetry an enhanced version of this algorithm is

implemented using OpenGL. Experimental results confirm results calculated

theoretically for both traditional and modified algorithms.

The hardware implementation is accomplished for real time applications, and a

graphic sub-system is designed using FPGA. Finally, a comparison is accomplished for

Spartan3E utilization which is used to implement the hardware unit.

Keywords: Computer graphics, Bresenham, Pixel, Scan conversion, FPGA.

 باستخدام مصفوفة البوابات المبرمجة حقميا الأبعادتنفيذ الكيان المادي لخوارزمية برزنهام ثلاثية
 الخلاصة

يددا اعاةمددب ثلاثددا اعزعددل خوارزميددب وءددوست تمددتخ ت يددا توييدد ايخدد ايممددتييت خوارزميددب زرزامددلت ايتيةي يددبتعدد
حدددش مةدددوةب اعوخددد ايمخءيدددب ايتدددا تيدددوت ز رزميدددبخواه ايهددد ومدددل ييددد ييددديت ايحدددحيحبا حمدددلزل مدددتخ اتزل اياي يدددب

ايمددياا وايحددل تمددتخ ت دديت اثحدد اثا اي ددب ةلةددبتمددتخ ت رييددب اوددرت ايعمددق يحمددلع يمددب ايزعدد ايثليدد يوددش
يددا يةاددلةر و يمددب ايزعدد ايثليدد يءحددا اعوخدد ايمخءيددب زوامدد ب حءددة ايعمددق اع ددرع حمددلع ااددلوي اوددرت ايحددورتي

 ق اورت ايعم
زرزامددلت يرمددت ايخ ددو ثلاثيددب اعزعددل وت ويرهددل يتالمددع مت ةزددل مرحةددب خوارزميددب رامددبايزحدد تددت هدد ا يددا

 ااتمل اً اةى خلحيب ايتالةر تت تحمي ايخوارزميب زلمدتخ ات موتزدب ايرمدت ايمءتوحدب ايمعرويدب ايتاءي زليويل ايمل
 ورتايخوارزميتي ايتيةي يب وايم يوةتليب اياتلئج ايعمةيب واياةر حي تت م لزيب (OpenGLزد)

, ض تحييق اع اس يا ايزم ايحيييايخوارزميب زرزاملت ثلاثيب اعزعل زع ت ويرهل عغراتت تاءي ايويل ايمل
عمدلريتي ايم و خيراً تت إخدراس ميلرادب زدي حي تت تاءي ماةومب ايرمت ايءرايب زلمتخ ات ايزوازل اييلزةب يةزرمخب حيةيلُ

 ب يةتاءي ايمل ايممتخ م Spartan3E ر ل بم محل ر ايمحممتي م الحيب اثمتءل ت
 محءويب ايزوازل ايمزرمخب حيةيلً ممح, اياي ب ةلةب, تحويش رمومل ايحلموع,زرزاملت,الكممات الدالة:

Introduction

Computer graphics remains one of

the most existing and rapidly growing

computer fields. Computer graphics may

be defined as a pictorial representation

or graphical representation of objects in

a computer. In computer graphic a raster

display system is used to create and

37

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

show the pictures of objects, where in

raster display system The rasterization is

process of determining the appropriate

pixels for representing picture or

graphics object, a picture can be

completely specified set of intensities for

the pixel positions in display, Picture

definition is stored in a memory area

called frame buffer or refresh buffer
[1].

Line drawing is one of the most

fundamental activities in computer

graphics. There are many different line

drawing algorithms used in computer

graphics. Application of inefficient

algorithms may cause drawing to require

unacceptably large amount of time thus

making the graphics presentation boring.

This is why algorithms used in computer

graphics must be computationally very

efficient. As a result computer graphics

algorithms are quite often found to

avoid, for example, floating point

operations or more costly division and

multiplication operations as in

Bresenham's line algorithm. As a line is

drawn by lighting only a finite number

of pixels with integer coordinates, it is

not possible to produce a theoretical line

exactly in a raster device. In order that a

line drawn on a raster device simulates a

theoretical line as closely as possible, a

set of pixels, which represent the real

line as closely as possible, are only

switched on
[2]

.

However, the scan conversion of a

polygon (a graphic major building

primitive) is performed by a scan line

method. The rasterization of a straight

line segment can be accomplished using

any line drawing algorithm. In this work

the value of depth is determined for each

pixel produced by the 3D Bresenham

algorithm, for depth or z-buffer

application. Following review of some

related published works:

In 1991 Edward Angle and Don

Morrison present that a Bresenham's

algorithm is the standard for scan

converting a line segment. A version

based on the properties of linear

Diophantine equations can speed up scan

conversion by a factor of almost five
[3]

.

Also A. T. M. ShafiquI Khalid and

M. KaykobadZ in 1996 present a new

algorithm for drawing lines in a raster

device in which a suitable data structure

has been chosen to avoid comparisons

that are required, for example, in

Bresenham’s algorithm. Experimental

results as well as clock cycles calculated

theoretically suggest that this new

algorithm outperforms the ones currently

existing in the literature in terms of

computational time. Their experimental

results also suggest that quality of the

line does not deteriorate even when high

resolution raster devices are used
[2]

.

A group of researchers in 2004

designed a system effectively

implemented two different algorithms

for calculating the intermediate points in

a line given the two endpoints, and

representing the fundamental elements

of this system in VHDL and using the

available FPGAs, their first algorithm is

the Digital Differential Analyzer (DDA)

which requires floating-point

intermediate values and the second is the

Midpoint Line Algorithm, a special case

of Bresenham Line Algorithm, which is

famous for its speed and accuracy
[4]

.

Andre Redert propose in 2004 a

depth scaling method that enables

visualization of arbitrary-shaped 3D

scenes on 3D displays , his approach

uses spatially adaptive depth scaling that

maximizes the perceptual 3D effect,

from the original scene geometry , the

topology and local depth ordering

among objects are preserved , while

depth linearity is discarded
 [5]

.

In 2006 S. Fawad reviewed the basis

of Bresenham algorithm in graphic

interpolation processes. There are

doubtless other areas where

straightforward interpolations across

38

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

polynomials can be managed using this

technique. It seems to be a reasonable

approach to teaching interpolation

processes, even though there may be

faster algorithms for many of these

interpolations
[6]

.

In 2009 Niu Lianqiang and Feng

HaiWen presented A new fast line

drawing algorithm that is different from

the traditional Bresenham algorithm, A

line is treated as an aggregation of

several line segments and the y

coordinate differences of candidate pixel

points in every step of traditional

algorithm are replaced by the length

errors of each segments in this new

algorithm. Each operation and judgment

can generate a line segment by keeping

the advantages of integer arithmetic and

then the numbers of operating and output

are decreased. Besides these, the skew

symmetric character is considered in the

algorithm and the direct draw property

without operation of some special lines

is also pointed out
[7]

.

Also in 2011 Chikit Au and Tony

Woo uncover the reason for little prior

works. The concept of the mid-point in a

unit interval generalizes to that of

nearest neighbors involving a Voronoi

diagram. In their paper, the three-

dimensional extension is based on the

main idea of Bresenham Algorithm of

minimum distance between the line and

the grid points. The structure of the

Voronoi diagram is presented for grid

points to which the line may be

approximated. The deployment of

integer arithmetic and symmetry for the

three-dimensional extension of the

algorithm to raise the computation

efficiency are also investigated
[8]

.

In 2011 Fakhrulddin Hamid Ali

designed a new algorithm as a three

dimensional development of the

available two dimensional Digital

Differential Analyzer (DDA) and

implemented it using the configurable

Field Programmable Gate Array

(FPGA), In his paper he concluded that

the hardware unit can produces pixels at

a speed of 120M pixel per second

assuming a very small time is lost in

computing the increment values
[9]

.

Theory of 3D-Bresenham's Algorithm

The original approach of

Bresenham’s algorithm for plotting a

two-dimensional line between origin

point (xa, ya) to a end point (xb, yb) is

adopted to present the three-dimensional

,for plotting a three-dimensional line

between origin point (xa, ya, za) to a end

point (xb, yb, zb).

The traditional 2D-Bresenham line

generation algorithm is shown in

Figure1.

The three dimension version of

Bresenham's Algorithm is accomplished

by considering the line segment whose

pixels require to be generated in three

dimensional spaces. So for each pixel a

z-value is calculated in addition to the x

and y values so that the algorithm works

in the object space rather than in the

image space. The 3D-Bresenham

algorithm and the modified one are

shown in Figure2 and Figure3

respectively. As we can see from

Figure3 that the loop calculate the line

pixels is know one instead of three in the

flowchart of Figure2 which will effect

on the amount of hardware component in

the implementation part.

These algorithms are tested using

OpenGL for many possible line

orientation and the generated pixels

values are checked, the vision results are

shown in Figure4 where they are the

same for the two versions of algorithm.

Practical System Implementation

A block diagram of the designed

hardware unit of the 3D-Bresenham is

shown in Figure5, where the scan

conversion operation of a line segment

39

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

requires it's two input vertices start

vertex v1 (xa, ya, za) and end vertex v2 (xb,

yb, zb) as an input to the hardware unit,

then compute the greatest coordinate

difference (dx, dy and dz) with the error

value to calculate the increment value of

x, y, z. After that the intermediate pixels

are calculated each time the increment

value is added to the x, y, and z

coordinate.

The address value of the frame

buffer is calculated for each pixel from

its computed coordinate(x, y) to load the

intensity data (RGB) in the buffer.

The refresh controller access the

frame buffer periodically to obtain the

data necessary to refresh the monitor and

display the image stored in the frame

buffer
[10]

. The refresh controller unit

shown in Figure8 generates the timing

and synchronization signals. The HS and

VS signals are control the horizontal and

vertical scans of the monitor. It

generates the video-on signal to indicate

whether to enable or disable the display

to display the form which is only within

the dimensions of the screen.

The graphic controller accesses the

frame buffer to update the image. The

basic operation of the graphic controller

in this work is one of scan line method,

3D-Bresenham's algorithm, to set the

pixel intensity values for storage in the

frame buffer.

The arithmetic section of the

implemented graphic controller starts

from entering the vertices of start and

end point of the line and compute the

slope of each y, x and z. This section

computes the corresponding address

value of the frame buffer using x, and y

coordinates and also computes z value of

each pixel in the line with its intensity,

Figure6 and Figure7 show a block

diagram of the designed graphic

controller of the 3D-Bresenham's

algorithm and the modified one

respectively.

The calculated integer values of x

and y for each pixel are used to address

the memory (frame buffer) while the

color(RGB) or intensity of the line

segment presents the data to be storing

in the frame buffer with its associated

address. The pixels in the frame buffer

can then be read in a synchronized

manner, while scanning the screen, and

displayed on the computer monitor to

show the straight line.

The tradeoff between the access of

the refresh controller and the access of

the graphic controller is a key idea for

the architecture of many graphic

systems. The current design, as shown in

Figure5, overcomes this problem by

using dual port frame buffer memory
[10]

,

the frame buffer here is performed using

block RAM. Physically, the block RAM

has two completely independent access

ports, labeled Port A and Port B. The

structure is fully symmetrical, and both

ports are interchangeable and support

data read and write operations. Each

memory port is synchronous with its

own clock, clock enable, and write

enable. Read operations are also

synchronous and require a clock edge

and clock enable
[11]

.

This work drains all the capacity of

on-board block RAM (XC3S500E) of

Spartan3E, as used 640 by 480 VGA

screen. Where the address of each pixel

is equal to: y-pixel * 640 plus x-pixel. So

maximum pixel the address is (479*640

+ 639) which is equal to 300kb, so were

exhaust all the capacity of block RAMs

in Spartan3E FPGA kit used in this work

were it is 360kb.

Test results and discussion

The 3D-Bresenham's algorithm is

synthesized using VHDL and

implemented using FPGA available on

the kit-board Spartan-3E. Many testing

examples are used for verification where

are the same as OpenGL results,

following example illustrates one of this

40

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

tests samples then Figure9 shows the

simulation waveforms that obtained by

the implemented hardware.

Example1:

To verify the performance of the

designed unit, the pixels are theoretically

computed and listed below the steps as

mentioned in 3D-Bresnham's algorithm

in Figure2:

Step1: enter the two end vertices of

the line segment.

xa,ya,za=(25,10,4),xb,yb,zb= (20,20,0).

x-addr =25 , y-addr =10 , z-addr =4 ,

as shown in the simulation in Figure9,

which represent the initial value of pixel

address, but in the algorithm in Figure2

it consider as (x, y, z).

Step2: the coordinate differences dx,

dy, and dz respectively, where

dx=(xb-xa),dy=(yb-ya),anddz=(zb-za).

Then dx = -5 , dy = 10 ,dz =-4 .

Step3: enter dx, dy and dz in a

comparison with zero.

If (dx < 0), yes dx = -5, so xinc = -1.

If (dy < 0), no dy = 10, so yinc = 1.

If (dz < 0), yes dz = -4, so zinc = -1.

Step4: enter one of the three

condition while dx=-5, dy=10, dz=-4.

Since |dy|>|dx| and |dy|>|dz|, so the

middle condition is verified as

mentioned in the algorithm in Figure 2.

Step5: compute err1 and err2:

err1=2*|dx|-|dy|=2*|-5|-|10|=2*5-10=0.

err2=2*|dz|-|dy|=2*|-4|-|10|=2*4-10 = -2.

Step6: compare err1 and err2 with

zero. If (err1>0),update err1 and x-addr,

but this condition is not true then pass it

and check if(err2>0),update err2 and z-

addr, this condition is not true then pass

it and jump to the next step.

Step7: update the following variable:

err1=err1+2*|dx|=0+(2*5)=10.

err2=err2+2*|dz|=-2+(2*4)=6.

y-addr=y-addr+yinc= 10+1=11.

Step8: use a temporary register m as

shown in Figure9 that indicate the

number of pixel, and update it

incrementally.

Step9: check the condition if m<dy

(maximum slope), then repeat the steps

from 6 to 9 until m=dy (stop condition).

Example2:

To verify the performance of the

designed unit, the pixels are theoretically

computed and listed below the steps as

mentioned in Modified 3D-Bresnham's

algorithm in Figure3:

Step1: enter the two end vertices of

the line segment.

xa,ya,za=(25,10,4), xb,yb,zb= (20,20,0)

Step2: the coordinate differences dx,

dy, and dz respectively, where

dx=|xb-xa|,dy=|yb-ya|,dz=|zb-za|.

dx=|20-25|=5,dy=|20-10|=10,dz=|0-4|=4.

Step3: enter one of the three

condition while dx=5, dy=10, dz=4.

Since dy>dx and dy>dz, so the

middle condition is verified as

mentioned in the algorithm in Figure3,

so flag=1, and an exchange will

happened (dy by dx, x1 by y1 , x2 by y2).

Step4: x=10, y=25, z=4, which

represent the initial value of pixel

address.

Step5: enter the new coordinate x1,

x2, y1, y2, and z1, z2 in a comparison.

If (x1>x2), no x1=10, x2=20, so xinc=1.

If (y1>y2), yes y1=25, y2=20, so yinc=-1.

If (z1>z2), yes z1= 4, z2=0, so zinc=-1.

Step5: compute err1 and err2:

 err1=2*dy-dx=2*5-10=2*5-10=0.

 err2=2*dz-dx=2*4-10=2*4-10=-2.

Step6: compare err1 and err2 with

zero. If (err1>0),update err1 and y-addr

then check err2. If (err2>0), update err2

and z-addr then jump to the next step.

But the two conditions are false then

jump to the next step.

Step7: update the following variable:

err1=err1+2*dy=0+(2*5) =10.

err2= err2+2*dz=-2+(2*4)=6.

x = x + xinc=10+1=11.

Step8: check the flag, as we

determined in Step3 flag=1, so x-addr=y,

x-addr=x, z-addr=z.

41

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

Step9: use a temporary register m as

shown in Figure9 that indicate the

number of pixel, and update it

incrementally.

Step10: check the condition if m<dx

(maximum slope), then repeat the steps

from 6 to 9 until m=dx (stop condition).

Table1 illustrates that OpenGL

results for this example is the same as

the VHDL simulator results.

Also in this paper we have applied

all the possibility of line segment in the

hardware unit successfully, as shown in

Figure10.

Table (2) and Table (3) shows the

utilization resources of Spartan3E Kit

that is used to implement the hardware

unit. The difference in the two hardware

units is that the Bresenham algorithm

unit can produces pixels at a speed of

76M pixels per second but the Modified

3D-Bresenham's algorithm can produces

pixels at a speed of 68 M pixels per

second , assuming a small time is lost in

computing the increment values(one

cycle as shown in the waveforms),

before the production of pixels, which

slightly reduces the maximum operating

frequency in the Table2 and Table 3.

Conclusions

From the above analysis it is clear

that performance of the Bresenham's

algorithm depends on the largest value

from dx, dy or dz, in the modified

algorithm we try to shrink the algorithm

to make hardware simpler. The code for

the modified algorithm is shorter in

length than that the old 3D-Bresenham’s

algorithm. So hardware requirements for

the modified one are also less. Hardware

implementation for the modified is much

cheaper than the other algorithm.

 Our proposed technique can

efficiently be used for the improvement

of other computer graphics primitive’s

algorithm which use Bresenham's

algorithm, and can be used in many

applications such as calculating z-buffer

values to improve the traditional hidden

surface removal method as shown in the

work.

The designed system effectively

implemented using FPGA two different

versions of scan line method

(Bresenham's algorithm) that generalized

to three-dimensional for using in scan

conversion of a polygon in 3D-scene.

 In designing this system, it was

illustrated how the drawing of a simple

3D-line is more complex than initially

thought. Simulation illustrated the issues

that arise upon calculating a line and

reinforced the fact that the three-

dimensional algorithm used to raise the

computation efficiency since it use

integers only. At the end we improved a

simple hardware and the designed unit

can also accept all the type of slope

(negative and positive) in efficient way.

References

1. Donald Hearn and M. Pauline Baker

,M.Pauline Baker, "Computer

Graphics, C version" , 2nd edition.

Prentice Hall, Inc. 1997.

2. T. M. ShafiquI Khalid and M.

Kaykobad,"an Efficient Line

Algorithm", Journal of Circuits and

Systems, IEEE 39th Midwest

symposium, Vol. 3, Pages: 1280-

1282 , 1996.

3. Edward Angle and Don Morrison

,"Speeding Up Bresenham's

Algorithim", university of new

mexico, November 1991 , IEEE

Computer Graphics & Application.

4. Jong Lorraine, Shirachi Lisa and

Wang Sherman, "Computer

Graphics: Where Straight Lines,

Aren’t", Computer Science

Department University of California,

Final Project, Winter Quarter 2004.

5. Andre Redert ,"Visualization of

Arbitrary-shaped 3D Scenes on

Depth-limited 3D Display" , Journal

42

http://www.cs.ucla.edu/
http://www.cs.ucla.edu/
http://www.ucla.edu/

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

of 3D Data Processing, Visualization

and Transmission, 2004 IEEE

Proceedings. 2nd International

Symposium, 938-942 , 2004.

6. S.Fawad, "Adapting Bresenham

Algorithm ", Journal of Theoretical

and Applied Information Technology

,Vol. 2 Issue: 2 , 27-30, 2006.

7. Niu Lianqiang and Feng HaiWen ,"A

Line Segments Approximation

Algorithm of Grating Lines", Journal

of 2009 International Forum on

Computer Science-Technology and

Applications, IEEE Computer

Society , Vol. 2 , 34-37, 2009.

8. Chikit Au and Tony Woo, "Three

Dimensional Extension of

Bresenham’s Algorithm with

Voronoi Diagram", Journal of

Computer-Aided Design, Vol. 43,

Issue: 4 , 417-426, 2011 .

9. Fakhrulddin Hamid Ali, “Depth

Buffer Depth Buffer DDA Based on

FPGA“, Journal of Al-Rafidain

Engineering ,Vol.19 , No.5 , October

2011.

10. Fakhrulddin Hamid Ali and Amar I.

Dawod, “FPGA Design and

Implementation of a Scan

Conversion Graphical Sub-System“,

Journal of Al-Rafidain Engineering,

Vol.16 ,No.4, Oct. 2008.

11. Xilinx Company, "Spartan-3

Generation FPGA User Guide",

June 25, 2008.

12. J. E. Bresenham, "Algorithm for

Computer Control of a Digital

Plotter", IBM Systems Journal,

Vol.4 , no. 1 , 25-30 1965 .

13. Edward Angel, “Interactive

Computer Graphic: A Top- Down

Approach Using OpenGL“,Addition

Wesley, Third Edition 2003.

14. F.S. Hill , Jr ,"Computer Graphics

Using OpenGL", second edition,

Prentice Hall International, 2001.

15. Xilinx Company, “User Manual

Spartan-3 FPGA Family:Complete

data Sheet”, March 4, 2004.

16. Xilinx Company, "Spartan-3E

FPGA Starter Kit Board User

Guide" , June 20, 2008.

17. Xilinx Company,"Spartan-3E FPGA

Family: Data Sheet",August 26,

2009.

43

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

Figure 1: 2D-Bresenham algorithm

yes

star

t

Read (xa, ya),(xb, yb):
two line endpoints

Store the left endpoint in (xo, yo) then

 load it into the frame buffer;

that is, plot the first point.

next point to plot is (xk+1, yk)

Pk+1=Pk +2dy

next point to plot is (xk+1, yk+1)

Pk+1=Pk +2dy-2dx

Calculate constants dx, dy, 2dy,

 and 2dy – 2dx

Obtain the starting value for the decision

 parameter as Po = 2dy –dx , k=0

k=k+1

k<dx

End

Store

pixel (x,y)

Pk<0

yes

no

e1>0

e2>0

y=y+Yinc
e1=e1-2dz

x=x+Xinc

e2=e2-

2dz

e1 =
e1+2dy

e2 =

e2+2dx
 z = z+Zinc

step = step -
1

step =0

Yinc= -

1

Yinc=

1

e1>0

e2>0

x=x+Xinc
e1=e1-

2dy

z =z

+Zinc

e2=e2-2dy

e1=e1+ 2dx

e2 =e2+2dz

 y= y+Yinc

step = step -
1

step =0

y=y+Yinc
e1=e1-

2dx

 z=z+Zinc

 e2=e2-

2dx

e2>0

e1 = e1+2dy

e2 = e2+2dz

 x= x+Xinc

step = step -
1

end

 e1=2dy-dx
 e2=2dz-dx,

step=dx

dx ≥dy and dz dy>dx and dz dz>dy and dx

 e1=2dy-dz
 e2=2dx-dz, step=dz

 e1=2dx-dy
 e2=2dz-dy,

step=dy

star

t

Calculate dx=abs (xb-xa) ,dy=abs (yb-ya) and

dz=abs (zb-za), x=xa , y=ya , z=za

 Read start point (xa, ya, za) and

end point (xb, yb, zb).

Xinc= -
1

dx > 0

 Xinc= 1

no

dy > 0
no

Zinc= -

1

dz > 0

Zinc=

1

no

yes

yes

yes

Store pixel
(x,y,z)

Store pixel
(x,y,z)

Store pixel

(x,y,z)

e1>

0

step
=0

yes

yes

yes yes

yes yes

no no

no no no

no

no no
yes yes

Figure 2: 3D_Bresenham algorithm

44

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

 ya>yb

 xInc=-

1

ye

s
n

o

flag ?

= 1

= 0 = 2

Store

pixel

(x,y,z)

e1>0
yes y = y + yInc

e1=e1 - 2dx

step=0?

 Step --

n
o

ye

s

ye

s

xInc=
1

 yInc=-

1

 yInc=

1

zInc=

1

 yInc=-

1

e1 = 2dy – dx , e2 = 2dz – dx
x = xa , y = ya ,z =za , step= dx

step=dx

Store

pixel

(y,x,z)

Store

pixel

(z,y,x)

e2>0
z = z + zInc

e2=e2 - 2dx

yes

x = x + xInc

 e1 = e1 +

2dy

e2 = e2 +2dz

En

d

flag = 2

exchange dz by dx

exchange xa by za
exchange xb by

zb

 xa>xb za>zb
n

o

 Start

 Read start point (xa, ya, za)

and end point (xb, yb, zb)

Calculate dx=|xb-xa|,dy=|yb-ya| and

dz=|zb-za|

 dx≥dy&dx≥dz

ye

s

no

no

flag

=0

flag = 1
 exchange dy by

dx

 exchange xa by
ya

 exchange xb by

yb

 dz>dy&dz>dx

 dy>dx&dy≥dz

yes

no

no

yes

Figure 3: the Modified 3D_Bresenham algorithm

Figure 4: OpenGL results that Displays

a Series of 3D_Lines Fanned in a spherical

shape

Figure 5: Hardware graphic sub-system

 in FPGA

45

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

x2 x1 y2 y1 z2 z1 clk reset

 subtracter

 subtracter

er

 subtracter

er

 comparator comparator

 comparator

Adder

Adder

Adder

comparator

 multiplexer

Arithmetic

 operation

 multiplexer

error1

e

r

r

error2

en1

en2

en3

dz

dy

dx

Zinc

Yinc

Xinc

Perspective

projection

Perspective

projection

Z X Y

Shifter

Adder

Ynew Xnew

Address

R G B

Exchange

dx dy

dz

Multiplexer

Flag2

Flag1

Flag0

Xinc

Yinc

Zinc

Perspective projection

shifter

addrer

Xnew Ynew

R G B

Z Y X

Enable2

Arithmetic

Operation

Error1

Error2

Comparator

x1 x2 y1 y2 z1 z2

Multiplexer

adder adder

adder

Enable1

subtructer

subtructer

comparator

dz dy dx

subtructer

x2 x1 y2 y1 z2 z1 clk reset

 Figure 6: The designed hardware of graphic

 controller for 3D_Bresenham algorithm

 Figure 7: The designed hardware of graphic

 controller for Modified 3D_Bresenham algorithm

46

Tikrit Journal of Engineering Sciences/Vol.20/No.2/March 2013, (37-47)

Figure 8: Designed Hardware Refresh

 Controller

Figure 9: Simulation sample results of

 example 1 and example 2 using VHDL

 Figure 10: Hardware unit results using FPGA that

 displays a Series of 3D_ Lines using the 3D _

 Bresenham’s algorithm and the modified algorithm.

Counter x y z err1 err2

10 25 10 4 0 -2

9 25 11 4 10 6

8 24 12 3 0 -6

7 24 13 3 10 2

6 23 14 2 0 -10

5 23 15 2 10 -2

4 22 16 2 0 6

3 22 17 1 10 -6

2 21 18 1 0 2

1 21 19 0 10 -10

0 20 20 0 0 -2

Type Resources Used

Resources

Total

Resources

Ratio

Number of Slices 397 4656 8%

Number of Slices

Flip Flops

548 9312 5%

Number of 4

input LUTs

313 9312 3%

Number of

Bounded IOBs

7 232 3%

Number of Block

RAMS

19 20 95%

Number of

MULT18X18SIOs

2 20 10%

Number of

GCLKs

2 24 8%

Maximum

Operating

Frequency

76.196 MHz

Minimum period 13.124 ns

Table 2: Resources utilization for the

3D- Bresenham algorithm unit

Table 1: Results of Example 1 and Example 2

Using OpenGL.

Type Resources Used

Resources

Total

Resources

Ratio

Number of Slices 369 4656 7%

Number of Slices

Flip Flops

541 9312 5%

Number of 4 input

LUTs

266 9312 2%

Number of

Bounded IOBs

7 232 3%

Number of Block

RAMS

19 20 95%

Number of

MULT18X18SIOs

2 20 10%

Number of

GCLKs

2 24 8%

Maximum

Operating

Frequency

68.334MHz

Minimum period 14.634ns

Table 3: Resources utilization for the

3D- modified Bresenham algorithm unit

47

