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Abstract 

In this paper an analytical approximate solution for large flexural deformations, shear deformations 

and shear stresses of a bimodular uniformly loaded simply supported beam has been developed. 

Verification for the solution has been performed using FEM analysis with ANSYS. The results of 

the program were very close the results of the analytical solution presented in this paper. 
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وبس يطة  ملة ب ورة ة مظتةملةةوالمحنلعتبات مزدوجة معامل المرونه وانحرافات املص ملانحناء ملانحرافات امكبيرة تحليل تلريبي 

  الاس ناد
  ظافر خليفة جدعان 

  مد س مساعد في كسم امهندسة المدنية/ جامعة الانبا  

    

 الخلاصة
ومحمل  ورلة ة مظتةملةلة  المرونلةمعتبة مزدوجة معاملل جهادات املص افة لاضبالا واملصنحناء عن الا امناتجةفي هذا امبحث تم تطةير تحليل تلريبي ملانحرافات امكبيرة 

المس تحرل ب  امنتلائج نتائج كريبه جلدا ملن امبرنامجاعطى حيث  ANSYS 11باس تخدام برنامج امعناصر المحددة  طريلةبالملا نة مع وبس يطة الاس ناد. تم تدكيق الحل 

 .امبحث من الحل المطروح في هذا

 

1. Introduction 
Many researchers have studied the problem of large flexural and shear deformations, but up to the 

knowledge of the author no one has studied the analytical solution of large flexural and shear 

deformations of a uniformly loaded bimodular beam. The problems of large flexural and shear 

deformations of unimodular beams have been investigated by many researchers. The large 

deflection of beams has been investigated by Bisshopp and Drucker (1945) for a point load on a 

cantilever beam. Timoshenko and Gere (1961) developed the solution for axial load on a beam. 

Rohde (1953) developed the solution for uniform load on a cantilever beam. Law (1981) solved the 

problem for a point load at the tip of the beam and a uniform load combined. 

Most of materials exhibit different tensile and compressive strains for the same stress applied in 

tension or compression. Classical theory of elasticity assumes that materials have the same elastic 

properties in tension and compression, but this is only a simplified model, and does not account for 

material nonlinearities. Many studies have indicated that most materials, including concrete, 

ceramics, graphite, and some composites, exhibit different tensile and compressive strains given the 

same stress applied in tension or compression (Jun-yi Sun et al. (2010)). 
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Those materials exhibit different elastic moduli in tension and compression. Those materials are 

known as bimodular materials. 

The elastic theory of bimodular solids was first proposed by Ambartsumyan (1982), and Medri 

(1982). By conducting experiments, Medri (1982) reached the conclusion that the curve of stress-

strain ( – ) at the point of origin for materials with different moduli is nonlinear. Doong and Chen 

(1984) developed a method for the analysis of different modulus problems based on an approximate 

trigonometric series. Zhang and Wang (1989) proposed the finite element method for different 

moduli structure. Srinivansan and Ramachandra (1989) applied a bimodulus finite element method 

to the calculation of large deflection of plates. Yang et al. (1992) presented a method using the 

initial stress-finite element method for the analysis of bimodular structures. Tseng and Lee (1995) 

used a finite strip method for the analysis of bimodular laminates. Ye (1997) and Ye et al. (2001) 

developed a finite element method in which variations of elastic modulus are different from that of 

Poissiôn's ratio. Tseng and Jiang (1998) used the bimodulus theory to analyse the stress of 

laminated structure. Liu and Zhang (2000) adopted the method of accelerating the convergence 

factor to increase the rate of convergence. 

In this research, an approximate analytical approach has been adopted to solve the problem of 

large flexural and shear deformations of a uniformly loaded simply supported bimodular beam and 

the results obtained from this approximate analytical solution have been compared with numerical 

results obtained from FEM analysis using ANSYS, and the results found to be very close.  

 

2. Problem Formulation 

The shape of the deformed uniformly loaded simply supported beam inspires the following 

Equation for the deformed shape: 

 
l

x
axvb


sin)(   (1) 

where, a :a constant. 

            )(b xv : the deflection of the beam due to bending stresses only. 

  l : the length of the projection of the deformed beam on the x-axis, as shown in Figure 1. 

       

                                                                                 q 
 

 

 

 

 
Figure 1. A Simply supported uniformly loaded beam. 

 

Applying the B.Cs.: 

0)(&0)(
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b
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lxMlxv
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and these conditions are already satisfied since  0)0(vb x ,and 0)(b  lxv   

and from the symmetry of the deformed shape and the equation, one can conclude that: 

 
l

x
vxvvavlxv mbmmb


sin)()2/(   (2) 

where, mv : the maximum deflection of the beam due to bending stresses. 
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To simplify the calculations of the problem, an approximate formula for the radius of curvature 

instead of the exact radius of curvature would be used. The exact radius of curvature is 

  
2/32

2

2

2

2

])(1[

1

dx

vd
dx

vd

b

b






 (3) 

where, EI : flexure rigidity of the beam in which: 

E: modulus of elasticity and, 

I : moment of inertia of the cross section about the N.A.  

Using an approximate formula for the curvature by applying Maclaurin series, as follows 

Equation (3) can be written in the form 

 )(1
1 '

2

2

b
b v

dx

vd



  (4) 

where 
dx

dv
vand

dx

vd
v b

b
b

b 



 '

2/32

2

2

'

])(1[

1
)(1  

Now using Maclaurin series for approximating )(1 '

bvk  

 ...!2/)0(1)0(1)0(1)(1
2'''''''''  bbbbbb vvvvvv   (5) 

It is easy to get the first two derivatives of  )(1 '

bv  and then substitute them into Equation (5) 

which yields the following approximate expression for degree of curvature 

 







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2'''

2

3
1

1
bb vv


 (6) 

Only the first two terms of Maclaurin series have been taken in the approximation of the function 

)(1 '

bvk because the author found that the contribution of the third term was negligible in comparison 

to the tedious work added when the third term was included in the series. This will be made clear in 

the comparison with the FEM analysis of the same problem. The derivatives of )(b xv can be found 

using Equation (1) as follows: 

 
l

x
v

l
xvand

l

x
v

l
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
sin)()(cos)( m

2''

bm

'

b   (7) 

On the other side, the beam flexural formula is  

 
EI

xM )(1 



 (8) 

Substitute the two derivatives from Equation (7) into Equation (8) to get an expression for the 

bending moment M(x) in terms of (vm) 

 







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l
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v

l
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 2222 cos)(
2

3
1sin)()(  (9) 

At x=l/2, M(x) will equal to: 

 m

2)()
2

( v
l

EI
l

xM


  (10) 

But for a uniformly loaded simply supported beam the bending moment after a horizontal 

displacement occurs can be calculated as follows 
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Figure 2. The reaction R after the in the deformed beam and a section (x) from the left end. 

 

The reaction R will not be changed after the horizontal displacement occurs due to the 

assumption that the curved beam has the same length as that of the undeformed beam and to being 

the applied uniform load still vertical after deformation occurs. So this reaction will equal to 

 
2

oql
R  and the shear force :

 l

x
ql

ql
xV o

o 
2

)(  (11) 

where x=0, )(xV =
2

oql
and when x=l ,

 2
)( oql

xV   and since the shear force relation is a linear 

function along the beam, so Equation (11) above will be suitable to take the effect of the deformed 

shape on the shear and hence on the bending moment values. So the bending moment at distance (x) 

from the left end equals 

 
l

lqx
x

ql
dttVxM oo

x 2

0
22

)()(    (12) 

Hence the maximum bending moment will equal to 

 
8

)
2

(
lqll

xM o  (13) 

Now equating the bending moment at the mid-span in Equations (10 and 13) yields, 

 
EI

lql
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l
EI

lql oo
2

3
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2

8
)(

8 


  (14) 

Therefore the Equation of the deformed shape becomes 

 
l

x

EI

lql
xv o 


sin

8
)(

2

3

b   (15) 

This equation uses the length (l) which needs the horizontal displacement, vh, to be calculated first 

then 

   ho vll   (16) 

and, vh, can be calculated from the following relation : The difference between the length of the 

curve of the deformed  shape and the horizontal projection of the curve is equal to the horizontal 

displacement. Hence 

    

l l

h dxdsv
0 0

 (17) 

and one could imagine this ,as the roller end moves toward its original position before the 

deformations by the loading occur. In calculus, the first term in Equation (17) which is the length of 

the curve can be written in the form 

    









l
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dx
dx
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Then Equation (17) takes the form 

l 

x 

q 
R 
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00
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The integrand in the right hand side of Equation (19) can be approximated using Maclaurin series in 

the same way used to approximate Equation (6) and the result is 

    









l
b

h dx
dx

dv
v

0

2)(
2

1
 (20) 

Again the approximation used truncated Maclaurin series with the first two terms only.   

Part of Equation (7) is restated, now, for convenience     

 
l

x
v

l
xv


cos)( m

'

b    

Substituting this derivative into Equation (20), then integrating, yields 

 
l

v
vh

4

)( 2

m  (21) 

Now substitute, vm , from Equation (14), and recall that (l=lo-vh),yields 

 0

5

2

16
lll

EI

qlo 









 (22) 

The above equation for a particular problem can be solved by trial and error to find the value of, l, 
and then the values of the vertical and horizontal displacements can be evaluated using the 

Equations (14) and (21) respectively. 

 

2.1 Bimodularity of the Beam 

In order to take the bimodularity of the beam into consideration, the following assumptions must be 

stated first 

1- The material of the beam is homogeneous anisotropic. 

2- The region of the cross sections subjected to compression stress has a modulus of elasticity 

called En and the region subjected to a tensile stress has a different modulus of elasticity 

called Ep as shown in Figure 3. 

3- Straight planes of the cross sections of the beam before application the loads, remain plane 

after that application. Hence no shear deformations are assumed till now, but will be treated 

separately in the next phase in this paper). 

4- The stress-strain relationship is bilinear as shown in Figure 3. 

 

 

 

 

 

 

 
Figure 3. The stress strain-curve for a bimodular material 

 

2.2 Locating the Neutral Axis 

From reviewing literature regarding bimodular beams, the issue of locating the neutral axis ( from 

now on written N.A.) was invariably determined by assuming that the summation of the axial forces 

on the cross sections of the beam equals zero. The author found it is convenient to review this issue 
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(also the section of calculating bending stresses) in here. And this is due to its importance in 

understanding its relation to the large deformations as well as the shear deformations of a bimodular 

beam. 

 

                                                        
                                                           

 

 

 
Figure 4. A cross section in a bimodular beam. 

 

For the section of the beam shown in Figure 4 

 00   
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Remembering to set (E=Ep when y=hp and E=En when y=hn) and combining this equation with 

the equation ( hhh np  ) and solving those two algebraic equations simultaneously give 

 h
EE

E
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EE

E
h
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p

n
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p





  (23) 

 

2.3 Calculating Bending Stresses 

Taking the sum of moments about N.A. equals zero yields: 

 )()(
2

.. xMbdy
y

EbydyEbydyxMM
n

p

n

p

n

p

h

h

h

h

h

h

xxAN   
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

  (24) 

Also here it's needed to set (E=Ep when y=hp and E=En when y=hn).Then rearranging this equation 

and making use of Equation (23) yield, 

 
IE

xM

r

)(1 



 (25) 

where: 

12

3bh
I  : moment of inertia of the cross section of the beam ,and 

Er: reduced modulus of elasticity for the bimodular beams and equals to 

 2)(

4
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r

EE

EE
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
  (26) 

 

 For a unimodular section (En=Ep=E) and by direct substitution in Equation (26) gives Er=E. 

The normal bending stress at any fibre within the cross section can be found using the flexural 

formula 
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(27) 

  

 

   

 

  

 

   

 

  

 

   

 
N.A. 
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Now for the problem of large deformations discussed in the previous section, the expression of the 

curvature,  
 

 
 , is simply replaced with the new value stated in Equations (6) and (8), so all that one 

needs is just to replace the modulus of elasticity of the unimodular beam with the reduced modulus 

of elasticity Er. Hence Equations (15) & (22) become, respectively  
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o 
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2.4 Shear Deformations and Shear Stresses 

Referring to Figure 5 below, F1 and F2 are forces due to bending stresses where F1 acts at a 

distance, x, from one end of the beam and F2 acts at a distance, x+dx, from the same end. The 

symbol, , stands for shear stresses at a distance, x, from that end of the beam. Horizontal 

equilibrium in Figure 5 implies 

 

 

 

 

                                                        N.A. 
 

 
Figure 5. A cross section in the beam showing shear and bending stresses. 
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knowing that

 

dx
dx

xdM
xMdxxM
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)()(    and  

dx
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)(    is the shear force and 

substituting these values in the integration above , integrating and simplifying gives 
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Now the quantity nn

h

y

Qyh
b

bdyy
n

 )(
2

. 22
is the first moment of the area above, y, to the top 

surface of the beam at (y=hn). Hence the final formula for the shear stress at a point, y, above 

N.A.(which will be denoted now by )(xn  is 
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It's clear that maximum shear stress occurs at, 0y , or at the N.A., denoting this maximum shear 

stress by maxn , using Equation(23) to substitute the value of   , recalling that 
2)(

4
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EE

EE
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
   

, maxn  is found to be 
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After some simplifications the above equation takes the form 

 avgn A

V
x 

2

3

2

3
)(max   (32) 

where,  A=bh : is the cross sectional area. It could be seen that this value is the same as in the 

unimodular beam. But one  has to be aware  that the general distribution of shear stresses is not the 

same as in unimodular beams, and this is due to the fact that the location of the neutral axis is 

different as well as the shear stress values other than that at the N.A. is different also, as it is 

apparent from Equation(30). 

Now it's possible in a similar fashion to derive a formula for the shear stress at any point under 

the N.A.. This formula is 
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V
x 

2

3

2

3
)(max   (34) 

Since Equations (30) and (33) are parabolas and their values at the ends of the cross section are 

zeros, Figure 6 below shows sketches representing the results in those equations.  

 

 

 

 

 

 
Figure 6. Shear stress distribution across the section of the beam. 

 

2.5 Shear Deformations of a Bimodular Beam   

According to Timoshenko's beam theory, the transverse deformations are not only bending 

deformations (those discussed in the preceding sections) but also shear deformations and the latter 

will be discussed in this section for bimodular beams. According to Timoshenko's beam theory, 

plane sections in beams will no longer remain plane sections when shear deformations are 

considered, but they will be curved as shown in Figure 7 which shows a deformed element in a 

beam due to shear stresses only. If the vertical sides of the elements at the neutral axis are assumed 

to remain vertical after deformations occur, then the slope of the deflection curve of the beam due to 

shear alone is approximately equal to the shear strain at the neutral axis   . This is depicted in 

Figure 7. Hence the following relation can be deducted 
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Figure 7. Shear stress deformations in the section of the beam. 

 

 
Gdx

dv c
c

s 
   (35) 

where, 

vs: transverse deflection due to shear stresses only. 

G  : shear modulus of elasticity. 

c: shear stress at the N.A. . In addition to that, the shear modulus of elasticity could be based on the 

modulus of elasticity    or based on    since the value of G is E-dependent according to Poisson's 

relation: 
)1(2 


E

G . 

The author suggests the following value for  :  

 
)1(2 

 r
r

E
G  (36) 

where: 

rG : the reduced shear modulus of elasticity (reduced because its value is always less than   for 

unimodular beam). 

The author adopted Equation (36) because the flexural analysis of the bimodular beam led to the 

use of the traditional flexural formula, Equation (25), but this time with the reduced modulus of 

elasticity rE a fact that inspired the use of Poisson's relation with rE . Later this will show 

reasonable results when compared with FEM analysis. In addition, when the section is unimodular 

section then rE  and the value of EEE np   in Equation (36) leads to the value   which is the 

value of shear modulus for a unimodular beam. Now substitute the maximum value of shear stress, 

Equation (32) or (34), into Equation (36), then 
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Using the expression for the shear force V(x) from Equation (12), the following expression can be 

written for the differential shear deflection 
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Substituting the expression of V(x) from Equation (12), then  
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The total transverse deflection  )(xvt  is obtained by adding the shear deformation using Equation 

(39) to the flexural deformation using Equation (15), then 

V V 

dx

dvs
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At       the value of    and    and hence the value of    will be maximum and equal to 
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Knowing that 
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r
r
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G   after taking (   ) or Poisson's ratio equals to zero, with some 

rearrangement in Equation (41), then 
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The second term inside the parentheses is the contribution of the shear deflection to the total 

deflection. 

 

3. Numerical Results 

A simply supported beam with a span of 5.0 meters was taken as an example. The beam is 

uniformly loaded by 100 kN/m. The cross section of the beam is a rectangular one with width and 

total depth of (b=150 mm and h=250 mm), respectively. To study the effect of the  variation of the 

modular ratio np EE  on the stresses and on the deflection of the beam, different values of this ratio 

have been taken as follows: 1/2.5, 1/2.0, 1/1.5, 1 , 1.5/1, 2.0/1 and 2.5/1. 

The results obtained using the formulas presented in this paper are listed in the following tables. 

 
Table 1. Bending and shear deflections along the beam with different modular ratios. 

    

              
  

  
       and 

2.5/1 

  

  
       

and 2.0/1 

  

  
       

and 1.5/1 

  

  
   

  

  
       

and 2.5/1 

  

  
       

and 2.0/1 

  

  
       

and 1.5/1 

  

  
   

0 0 0 0 0 0 0 0 0 
1/4 187.1 137.6 117.4 95.0 1.23 0.90 0.77 0.62 
3/8 244.5 180.2 153.5 124.2 1.54 1.13 0.96 0.78 
1/2 265.7 194.6 166.1 134.4 1.65 1.22 1.04 0.83 
5/8 244.5 180.2 153.5 124.2 1.54 1.13 0.96 0.78 
3/4 187.1 137.6 117.4 95.02 1.23 0.90 0.77 0.62 
1 0 0 0 0 0 0 0 0 

 

Table 2. Total deflection and maximum shear stresses along the beam with different 

modular ratios. 

    

                 
  

  
       and 

2.5/1 

  

  
       

and 2.0/1 

  

  
       

and 1.5/1 

  

  
   

  

  
       

and 2.5/1 

  

  
       

and 2.0/1 

  

  
       

and 1.5/1 

  

  
   

0 0 0 0 0 9.93 9.96 9.97 9.98 
1/4 188.3 138.5 118.2 95.7 4.97 4.98 4.99 4.99 
3/8 246.1 181.4 154.5 125.0 2.48 2.49 2.49 2.50 
1/2 267.35 195.8 167.1 135.2 0 0 0 0 
5/8 246.1 181.4 154.5 125.0 2.48 2.49 2.49 2.50 
3/4 188.3 138.5 118.2 95.7 4.97 4.98 4.99 4.99 
1 0 0 0 0 9.93 9.96 9.97 9.98 
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Table 3. Tensile bending stresses along the beam with different modular ratios. 

    

           

  

  
       

  

  
       

  

  
       

  

  
   

  

  
       

  

  
       

  

  
       

0 0 0 0 0 0 0 0 
1/4 122.4 127.6 136.9 150.0 166.6 181.8 194.0 
3/8 153.0 159.5 171.1 187.5 208.3 227.2 242.5 
1/2 163.2 170.1 182.5 200.0 222.2 242.3 258.7 
5/8 153.0 159.5 171.1 187.5 208.3 227.2 242.5 
3/4 122.4 127.6 136.9 150.0 166.6 181.8 194.0 
1 0 0 0 0 0 0 0 

  

To verify the results obtained from the formulation presented in this paper, a finite element 

analysis using the program ANSYS has been performed for the same beam with the same values of 

   and    .After locating the N.A. using Equation (23) the upper part of the beam is modelled using 

modulus of elasticity equals    while the lower part of the beam is modelled using modulus of 

elasticity that equal   . 

The results are listed in the tables below.  

 

 

Table 4. Comparison between paper and FEM results. 

  

  
 

Paper Results FEM Results 

                                                              

1/2.5 267.35 9.93 163.2 279.2 9.878 160.82 
1/2 195.8 9.962 170.1 204.64 10.20 169.59 

1/1.5 167.13 9.93 182.48 172.04 10.01 180.79 
1 135.2 10.84 200.0 140.13 11.00 199.49 

1.5/1 167.13 10.46 222.15 172.36 10.30 220.82 
2/1 195.8 10.3 242.33 201.77 10.20 238.52 

2.5/1 267.35 9.93 258.67 272.86 10.17 251.77 

 

 

Table 5. Comparison between Bimodular and Unimodular (FEM) results. 

  

  
 

Bimodular Formulation 

 

Unimodular Formulation 

(with   
     

 
) using  FEM 

 

                                                              

1/2.5 267.35 9.93 163.2 237.86 9.878 160.82 
1/2 195.8 9.96 170.1 186.14 10.20 169.59 

1/1.5 167.13 9.93 182.48 167.81 10.01 180.79 
1 135.2 10.84 200.0 140.13 11.00 199.49 

1.5/1 167.13 10.46 222.15 167.81 10.01 180.79 
2/1 195.8 10.3 242.33 186.14 10.20 169.59 

2.5/1 267.35 9.93 258.67 237.86 9.878 160.82 
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Table 6. Error (%) of paper results in comparison with FEM results. 

  

  
 

Error (%) of paper results in comparison with FEM results. 

                               

1/2.5 4 0.5 1 
1/2 4 2 0.3 

1/1.5 2 0.8 0.9 
1 3 1 0.2 

1.5/1 3 1 0.6 
2/1 2 0.9 1 

2.5/1 2 2 2 

 

Table 7. Error (%) of Unimodular results in comparison with Bimodular results. 

  

  
 

Error (%) of Unimodular results in comparison with Bimodular results.   

                               

1/2.5 12 0.5 1 
1/2 5 2 0.3 

1/1.5 0.4 0.7 0.9 
1 3 1 0.2 

1.5/1 0.4 4 22 
2/1 5 0.9 42 

2.5/1 12 0.5 60 
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Figure 8. Bending deflection along the beam. 
  

Figure 9. Shear deflection along the beam. 
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Figure 10. Total deflection along the beam. 
 

 

Figure 11. Max. Shear stress along the beam. 
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Figure 12. Tensile bending stress along the 

beam. 

 

 

Figure 13. Paper and FEM results for total 

deflection 
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Figure 14. Paper and FEM results for shear 

stresses. 

 

 

Figure 15. Bimodular and Unimodular 

formulation in total deflection. 
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Figure 16. Bimodular and Unimodular 

formulation in shear stresses. 

 

 

Figure 17. Bimodular and Unimodular 

formulation in bending stresses. 
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Figure 18. The depth of the N.A. from the bottom face.(Total depth of the beam=250mm) 

 
 

4. Concluding Remarks  

It's noticeable from Figures 8, 9 and 10 that the deflection of the beam is not influenced by the 

modular ratio (Ep/En) but with the reduced modulus of elasticity Er with a linear proportional 

relation as it appears from Equation (40). In addition, it's clear from Figure 9 that the contribution of 

the shear deformation to the total deflection is very small and depends upon the ratio of the depth of 

the section to the length of the beam. This contribution is about 2.5% from the total deflection if the 

ratio         . Hence the shear deflection increases with small values of the ratio    , but less 

than     10%,the shear deflection is negligable. Also one could see from Figure 11 that maximum 

shear stresses are not influenced by the modular ratio nor with the reduced modulus of elasticity     

and this is clear from Equations (32 and 34) which is the same case in the unimodular beam. But at 

locations other than N.A. the shear stresses are different from those in the unimodular beam, since 

they depend on the modular ratio as in Equations (30 and 33). Figure 12 shows that the tensile 

bending stress increases with the increase of the modular ratio. Hence if it's required to decrease the 

tensile bending stress (as it is the case in the concrete structures), it's only needed to decrease the 

modular ratio instead of decreasing the material modulus of elasticity E. Figures 13 and 14 show 

that the formulation presented in this paper is close to those gained from an FEM analysis using the 

commercial package ANSYS. As shown from Table 6 the maximum error between the results 

obtained from the paper formulation and the FEM analysis is (4%) in the total deflection and the 

shear stresses which are very small and accepted for an approximate analysis. The error in the 

deflection increases with the decrease in the modular ratio and due to the fact that the smaller the 

modular ratio the smaller     (compared to   ) and so the higher extension in the fibres below the 

N.A. and finally increases deflection even if  the fibres above the N.A. undergoes small 

deformations.  On the other hand, the error in the deflection decreases with the increase in the 

modular ratio and this is because the larger the modular ratio, the larger     (compared to   ) and 

hence the smaller the extension in the fibres below the N.A. and finally decreases deflection even if  

the fibres above the N.A. undergoes large deformations. Regarding the tensile bending stress, the  

error increases with the increase in the modular ratio, since the increase in the modular ratio means 
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an increase in    in comparison to   , while the analytical equation of the bimodular tensile stress 

deals with    which does not differ if the modular ratio was (1/2.5) or (2.5/1), for example. 

The error in the bending deflection in the approximate expression for deflection in Equation (1) 

is due to relating the deflection in all nodes in the beam with the maximum deflection with a sine 

curve. Another expression would be more accurate if the same expression had two degrees of 

freedom representing two deflections, but the solution would be more difficult then. 

On the other hand to show the importance of the bimodular analysis, the same example has been 

solved using a unimodular analysis with an average modulus of elasticity where the error was very 

large and sometimes reaches 60% as shown in Table 7 and Figures 15, 16 and 17. 

It's noticeable that the error in the shear stress values whether between the bimodular and FEM 

or between the bimodular and unimodular analysis was very small. The reason behind that is that 

the maximum shear stress was constant along the beam and has the same value derived in strength 

of material for a bimodular beam.  
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