Synthesis and characterization of Some New Tetrazole and 1,3-Oxazepine Derivatives

Rahman Tama Haiwal
Chemistry Department, College of Science, University of Kerbala

\begin{abstract}
In this work new Schiff bases [3-4], tetrazole [7] and [10] and 1,3-oxazepine [5-6] and [8-9] derivatives were prepared starting from azoaldehyde derivative 5,5'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(diazene-2,1-diyl)bis(2-hydroxybenzaldehyde) [2] and the primary amines 5-Amino-1,3,4-thiadiazole-2-thiol and 2-Amino benzothiazole.

Azo aldehyde derivative [2] was prepared via coupling reaction between \boldsymbol{o}-Hydroxy benzaldehyde and diazonium salt which was formed via reaction of toluidine [1] with concentrated hydrochloric acid and sodium nitrite .The new Schiff bases [3] and [4] were prepared by reaction of azo aldehyde derivative [2] with each primary amines, 5-Amino-1,3,4-thiadiazole-2-thiol and 2-Amino benzothiazole, respectively , in presence of glacial acetic acid as catalyst .The new 1,3-oxazepine derivatives [5] , [6] and [8], [9] were obtained from treatment of each prepared Schiff bases derivatives [3] and [4] with each maleic anhydride and 3-nitro phthalic anhydride, respectively ,in dry benzene .Treatment of each Schiff bases [3] and [4] with sodium azide in dry dioxan resulted the formation of new tetrazole derivatives [7] and [10] ,respectively .These new synthesized derivatives might have some biological activity.

All new derivatives were characterized by (C.H.N.) elementary analysis and FT-IR spectra.

Introduction

Azo group is considered biological active group ${ }^{(1,2)}$. The most important method for preparing azo compounds is the coupling reaction between diazonium salts and phenols ${ }^{(3)}$.

Schiff bases or imines are prepared via acid-catalysed condensation reaction of aromatic aldehydes or ketones with primary amines ${ }^{(4,5)}$.Azo Schiff bases are prepared by reaction of azoaldehydes with primary amines ${ }^{(6)}$. Mechanism of Schiff base formation was well known ${ }^{(4,5)}$.Various azo Schiff bases derivatives were prepared and some of them showed biological activity such as anticancer ${ }^{(7)}$ antiviral ${ }^{(8)}$,antifungal ${ }^{(9)}$, antibacterial ${ }^{(10)}$ and anticonvulsant ${ }^{(11)}$.Thiadiazoles have a variety of potential biological activities ${ }^{(12,13)}$, therefore a large number of

Journal of Kerbala University, Vol. 9 No. 3 Scientific . 2011

thiadiazole derivatives have been prepared ${ }^{(14,15)}$.Many synthesis of 1,3,4-thiadiazoles proceed from thiosemicarbazide or substituted thiosemicarbazide ${ }^{(16,17)}$. '. For a long time, the synthesis of 1,3and 1,4 -oxazepine rings was based on two limited classical types of reactions, the first reaction is called Valence-bond isomerization which is carried out via irradiation of polyarylpyridine N -oxides. This irradiation results in ring expansion to 1,3-oxazepine in high yield and some deoxygenation to the parent amines ${ }^{(18)}$. The second reaction is called Enamines condensation which is carried out by reaction of Erythro 1,2-diphenyl-2-phenylaminoethanol with dimethylacetylene dicarboxylate in methanol at room temperature to give a mixture of the Michael adduct and tetrahydro- 1,4 -oxazepin7 -one ${ }^{(19)}$. Recently, a pericyclic reactions are used to synthesis of 1,3-oxazepine ring ${ }^{(20-23)}$. This type of reactions is not limited and gives various 1,3-oxazepine ring derivatives. The type of cycloaddition reaction that used to synthesis of 1,3 -oxazepine ring was classified as $(2+5) \rightarrow 7$ cycloaddition reaction in which two atoms of imine group as two-membered component was added to five-membered component such as maleic or phthalic anhydrides to give a seven-membered heterocycle ${ }^{(20-23)}$.Some oxazepine derivatives showed biological activities against various types of bacteria ${ }^{(24)}$ and some of them act as inhibitors of some enzymes action ${ }^{(25)}$.

Also, the 1,3-dipolar cycloaddition reaction, which was used to synthesis of tetrazole ring was classified as $(2+3)$ cycloaddition, in which two atoms of the first component (imine or nitrile groups as a 1,3-dipolarphiles) react with three atoms of the second component (azide group as a 1,3-dipolar molecule $)^{(26,27)}$.Tetrazole derivatives showed fungicidal and antiviral activities ${ }^{(28)}$.

The aim of this research is synthesis of some new oxazepine and tetrazole derivatives containing the biologically active azo group and thiadiazole ring all together,as attempt for increasing the biological activity and its variety.

Experimental:

General

1) TLC were performed on pre-coated sheets with 0.25 mm layer of Silica Gel GF254 of the Merck company, the detection was followed by coloring with iodine or $\mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol (60%) followed by
2) Melting points (M.P.) were determined by Stuart melting point apparatus.
3) Elemental analysis measured on E.A.300, Euro- Vector, Italy, 2003-AL-albayt University (Jordan).
4) FT-IR spectra were recorded on FT-IR 8400_{s}, Schimadzu-Spectrophotometer and using KBr discs- Kerbala university.

Preparation Methods:

Synthesis of hydroxybenzaldehyde)[2] ${ }^{(3)}$

Toluidine [1] ($2.12 \mathrm{~g}, 0.01 \mathrm{~mol}$) was dissolved concentrated hydrochloric acid $(16 \mathrm{~mL})$ and distilled water (16 mL) contained in a small beaker. The mixture was cold at $0^{\circ} \mathrm{C}$ in an ice bath,then a solution of sodium nitrite $(1.656 \mathrm{~g}, 0.024 \mathrm{~mol})$ dissolved in distilled water (20 mL) was added dropwise to the mixture with stirring. The temperature of the ice bath was controlled between 0 5° C.A solution of 2- hydroxybenzaldehyde ($2.44 \mathrm{~g}, 0.02 \mathrm{~mol}$) dissolved in (20 mL) of (10%) sodium hydroxyide solution in (150 mL) beaker was prepared and cold to $5^{\circ} \mathrm{C}$ by immersion in an ice bath. 2-Hydroxybezaldehyde solution was then stirred vigorously,then the diazonium salt solution was added very slowly to the 2- hydroxybezaldehyde solution, a red colour developed and red crystals soon separated. When all the diazonuim salt solution was added, the mixture was allwoed to stand in an ice bath for 30 min . with occasional stirring. The solution was filtered, washed well with distilled water, recrystallized from ethanol and dried upon filter paper, yield 57%, M.P. $95-97^{\circ} \mathrm{C}$.

Journal of Kerbala University , Vol. 9 No. 3 Scientific . 2011

Synthesis of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(diazene-2,1-diyl)bis(2-((E)-(5-mercapto-

 1,3,4-thiadiazol-2-ylimino)methyl)phenol) [3]Azo aldehyde derivative [2] $(0.478 \mathrm{~g}, 0.001 \mathrm{~mol})$ was dissolved in absolute ethanol $(15 \mathrm{~mL})$ containing a drop of glacial acetic acid ,then 5-Amino-1,3,4-thiadiazol-2-thiol ($0.266 \mathrm{~g}, 0.002 \mathrm{~mol}$) was dissolved in absolute ethanol (15 mL) and added dropwise. The reaction mixture was refluxed with stirring on a water bath at $70{ }^{\circ} \mathrm{C}$ for 2hrs.T.L.C. (ethanol:pet.ether)(1:1) , $\mathrm{R}_{f}=$ 0.7.Then the mixture was allowed to cool down to room temperature, the coloured precipitate was filtered and recrystallized from ethanol ,yield 79%, M.P. $138-140^{\circ} \mathrm{C}$.

Synthesis of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(diazene-2,1-diyl)bis(2-((E)-(benzo[d]thiazol-2-ylimino)methyl)phenol) [4]

Azo aldehyde derivative [2] ($0.478 \mathrm{~g}, 0.001 \mathrm{~mol}$) was dissolved in absolute ethanol (15 mL)containing a drop of glacial acetic acid ,then 2-Amino benzothiazole ($0.3 \mathrm{~g}, 0.002 \mathrm{~mol}$) was dissolved in absolute ethanol (15 mL) and added dropwise . The reaction mixture was refluxed with stirring on a water bath at $70{ }^{\circ} \mathrm{C}$ for 2 hrs.T.L.C. (ethanol:pet.ether) (1:1) $\mathrm{R}_{f}=0.66$.Then the mixture was allowed to cool down to room temperature, the coloured precipitate was filtered and recrystallized from ethanol ,yield 81%, M.P. $118-120^{\circ} \mathrm{C}$.
Synthesis of (5Z,5'Z)-2,2'-(5,5'-(3,3'-dimethylbiphenyl-4,4'-
diyl)bis(diazene-2,1-diyl)bis(2-hydroxy-5,1-phenylene))bis(3-(5-mercapto-1,3,4-thiadiazol-2-yl)-2,3-dihydro-1,3-oxazepine-4,7-dione) [5]

A mixture of imine derivative [3] ($0.708 \mathrm{~g}, 0.001 \mathrm{~mol})$ and maleic anhydride (0.196 g , 0.002 mol) in dry benzene (20 mL) , was refluxed on a water bath at $75^{\circ} \mathrm{C}$ for 4 hrs. T.L.C. (benzene:methanol) (3:1) $\mathrm{R}_{f}=0.8$., then the mixture was allowed to cool down to room temperature . The resulting solid crystals were filtered and recrystallized from dioxan, yield 67%, M.P. $170-172^{\circ} \mathrm{C}$.

Synthesis of 3,3'-(5,5'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(diazene-2,1-diyl)bis(2-hydroxy-5,1-phenylene))bis(4-(5-mercapto-1,3,4-thiadiazol-2-yl)-6-nitro-3,4-
dihydrobenzo[e][1,3]oxazepine-1,5-dione) [6]
A mixture of imine derivative [3] ($0.708 \mathrm{~g}, 0.001 \mathrm{~mol}$) and 3-Nitro phthalic anhydride ($0.386 \mathrm{~g}, 0.002 \mathrm{~mol}$) in dry benzene (20 mL), was refluxed on a water bath at $75^{\circ} \mathrm{C}$ for 4 hrs. T.L.C. (benzene:methanol) (3:1) $\mathrm{R}_{f}=0.77$., then the mixture was allowed to cool down to room temperature . The resulting solid crystals were filtered and recrystallized from dioxan, yield 65%, M.P. 199-200 ${ }^{\circ} \mathrm{C}$.

Synthesis of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(diazene-2,1-diyl)bis(2-(1-(5-mercapto-1,3,4-thiadiazol-2-yl)-1H-tetrazol-5-yl)phenol) [7]

A mixture of imine derivative [3] ($0.708 \mathrm{~g}, 0.001 \mathrm{~mol}$) and sodium azide (0.13 g , 0.002 mol) in dry dioxan(20 mL) was refluxed on a water bath at $75^{\circ} \mathrm{C}$ for 5 hrs, T.L.C. (benzene:methanol) (1:1) $\mathrm{R}_{f}=0$.6.The reaction mixture was allowed to cool to room temperature, filtered and recrystallized from ethanol, yield 64%, M.P. $161-163{ }^{\circ} \mathrm{C}$.

Synthesis of (5Z,5'Z)-2,2'-(5,5'-(3,3'-dimethylbiphenyl-4,4'-

diyl)bis(diazene-2,1-diyl)bis(2-hydroxy-5,1-phenylene))bis(3-(benzo[d]thiazol-2-yl)-2,3-dihydro-1,3-oxazepine-4,7-dione) [8]

A mixture of imine derivative [4]($0.742 \mathrm{~g}, 0.001 \mathrm{~mol})$ and maleic anhydride $(0.196 \mathrm{~g}$, 0.002 mol) in dry benzene (20 mL) , was refluxed on a water bath at $75^{\circ} \mathrm{C}$ for 4 hrs. T.L.C. (benzene:methanol) (3:1) $\mathrm{R}_{f}=0.66$., then the mixture was allowed to cool down to room temperature . The resulting solid crystals were filtered and recrystallized from dioxan, yield 70% ,M.P. $155-157^{\circ} \mathrm{C}$.

Synthesis of 3,3'-(5,5'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(diazene-2,1-diyl)bis(2-hydroxy-5,1-phenylene))bis(4-(benzo[d]thiazol-2-yl)-6-nitro-3,4-dihydrobenzo[e][1,3]oxazepine-1,5-dione) [9]

A mixture of imine derivative $[4](0.742 \mathrm{~g} \quad \mathrm{~g}, 0.001 \mathrm{~mol})$ and 3-Nitro phthalic anhydride ($0.386 \mathrm{~g}, 0.002 \mathrm{~mol}$) in dry benzene (20 mL) , was refluxed on a water bath at $75^{\circ} \mathrm{C}$ for 4 hrs . T.L.C. (benzene:methanol) (3:1) $\mathrm{R}_{f}=0.61$., then the mixture was allowed to cool down to room temperature . The resulting solid crystals were filtered and recrystallized from dioxan, yield 72%, M.P. $162-164^{\circ} \mathrm{C}$.

Synthesis of 2-(1-(benzo[d]thiazol-2-yl)-1H-tetrazol-5-yl)-4-((4'-((4-hydroxy-3-(1-(5-mercapto-1,3,4-thiadiazol-2-yl)-1H-tetrazol-5-yl)phenyl)diazenyl)-3,3'-dimethylbiphenyl-4yl)diazenyl)phenol [10]

A mixture of imine derivative [4] ($0.742 \mathrm{~g}, 0.001 \mathrm{~mol}$) and sodium azide $(0.13 \mathrm{~g}, 0.002$ mol) in (20 mL) of dry dioxan, was refluxed on a water bath at $75^{\circ} \mathrm{C}$ for 5 hrs , T.L.C. (benzene:methanol)(1:1) $\mathrm{R}_{f}=0.59$. The reaction mixture was allowed to cool down to room temperature, filtered and recrystallized from ethanol, yield 66%, M.P. $145-147^{\circ} \mathrm{C}$.

Table (1): Melting points, percent yields and (C.H.N.)analysis
of the prepared compounds (2-10)

$\begin{gathered} \text { Com } \\ \text { p. } \\ \text { No. } \end{gathered}$	$\begin{array}{\|c} \text { M.P } \\ { }^{\circ} \mathbf{C} \end{array}$	Yield \%	M.F	M.Wt g/mole	C.H.N analysis					
					Calculated\%			Found \%		
					C	H	N	C	H	N
[2]	95-97	57	$\begin{gathered} \mathbf{C}_{28} \mathbf{H}_{22} \mathbf{N}_{4} \\ \mathbf{O}_{4} \\ \hline \end{gathered}$	478	$\begin{array}{\|l\|} \hline 70.2 \\ 9 \\ \hline \end{array}$	4.60	$\begin{gathered} 11 . \\ 71 \end{gathered}$	$\begin{aligned} & \hline 70 . \\ & \mathbf{0 3} \\ & \hline \end{aligned}$	4.81	$\begin{gathered} 11.9 \\ 2 \\ \hline \end{gathered}$
[3]	$\begin{aligned} & 138- \\ & 140 \\ & \hline \end{aligned}$	79	$\begin{gathered} \mathbf{C}_{32} \mathbf{H}_{24} \mathbf{N}_{10} \\ \mathbf{O}_{2} \mathbf{S}_{4} \\ \hline \end{gathered}$	708	$\begin{array}{\|c} \hline 54.2 \\ 3 \\ \hline \end{array}$	3.38	$\begin{gathered} 19.7 \\ 7 \\ \hline \end{gathered}$	$\begin{array}{r} 53 . \\ 95 \\ \hline \end{array}$	3.11	$\begin{gathered} 19.9 \\ 9 \\ \hline \end{gathered}$
[4]	$\begin{aligned} & 118- \\ & 120 \end{aligned}$	81	$\begin{gathered} \mathrm{C}_{42} \mathbf{H}_{30} \mathbf{N}_{8} \\ \mathrm{O}_{2} \mathbf{S}_{2} \end{gathered}$	742	$\begin{gathered} 67.9 \\ 2 \end{gathered}$	4.04	$\begin{gathered} 15.0 \\ 9 \end{gathered}$	$\begin{aligned} & \hline 68 . \\ & 13 \\ & \hline \end{aligned}$	3.82	$\begin{gathered} 14.9 \\ 3 \end{gathered}$
[5]	$\begin{aligned} & 170- \\ & 172 \\ & \hline \end{aligned}$	67	$\begin{aligned} & \mathrm{C}_{40} \mathrm{H}_{28} \mathrm{~N}_{10} \\ & \mathrm{O}_{8} \mathrm{~S}_{4} \\ & \hline \end{aligned}$	904	$\begin{array}{\|c\|} \hline 53.0 \\ \hline \end{array}$	3.09	$\begin{gathered} 15.4 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & 53 . \\ & 30 \\ & \hline \end{aligned}$	2.94	$\begin{gathered} 15.6 \\ 6 \\ \hline \end{gathered}$
[6]	$\begin{aligned} & 199- \\ & 200 \\ & \hline \end{aligned}$	65	$\begin{aligned} & \mathbf{C}_{48} \mathbf{H}_{30} \mathbf{N}_{12} \\ & \mathbf{O}_{12} \mathbf{S}_{4} \\ & \hline \end{aligned}$	1094	$\begin{array}{\|c\|} \hline 52.6 \\ 5 \\ \hline \end{array}$	2.74	$\begin{gathered} 15.3 \\ 5 \\ \hline \end{gathered}$	$\begin{array}{r} 52 . \\ 89 \\ \hline \end{array}$	3.02	$\begin{gathered} 15.5 \\ 9 \\ \hline \end{gathered}$
[7]	$\begin{aligned} & \hline 161- \\ & 163 \\ & \hline \end{aligned}$	64	$\begin{aligned} & \mathrm{C}_{32} \mathbf{H}_{22} \mathbf{N}_{16} \\ & \mathrm{O}_{2} \mathbf{S}_{4} \end{aligned}$	790	$\begin{gathered} 48.6 \\ 0 \\ \hline \end{gathered}$	2.78	$\begin{gathered} 28.3 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & 48 . \\ & 39 \end{aligned}$	3.05	28.2 2
[8]	$\begin{aligned} & 155- \\ & 157 \\ & \hline \end{aligned}$	70	$\begin{aligned} & \mathbf{C}_{50} \mathbf{H}_{34} \mathbf{N}_{8} \\ & \mathbf{O}_{8} \mathbf{S}_{2} \end{aligned}$	938	$\begin{array}{\|c} \hline 63.9 \\ 6 \\ \hline \end{array}$	3.62	$\begin{gathered} 11.9 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & 46 . \\ & 10 \\ & \hline \end{aligned}$	3.44	12.1 3 12.
[9]	$\begin{aligned} & 162- \\ & 164 \end{aligned}$	72	$\begin{aligned} & \mathbf{C}_{58} \mathbf{H}_{36} \mathbf{N}_{10} \\ & \mathbf{O}_{12} \mathbf{S}_{\mathbf{2}} \end{aligned}$	1128	$\begin{gathered} 61.7 \\ 0 \end{gathered}$	3.19	$\begin{gathered} 12.4 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 61 . \\ & 88 \\ & \hline \end{aligned}$	3.42	12.7 0
[10]	$\begin{aligned} & 145- \\ & 147 \\ & \hline \end{aligned}$	66	$\begin{aligned} & \mathbf{C}_{42} \mathbf{H}_{28} \mathbf{N}_{14} \\ & \mathbf{O}_{2} \mathbf{S}_{2} \\ & \hline \end{aligned}$	824	$\begin{gathered} 61.1 \\ 6 \\ \hline \end{gathered}$	3.39	$\begin{gathered} 23.7 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{6 0 .} \\ & 85 \\ & \hline \end{aligned}$	3.67	$\begin{aligned} & 24.0 \\ & 1 \\ & \hline \end{aligned}$

Results and Discussion

Toluidine [1]was converted to the corresponding diazonium salt, via reaction with concentrated hydrochloric acid and sodium nitrite at $\left(0^{\circ} \mathrm{C}\right)$, which was directly introduced in a coupling reaction with 2 -hydroxy benzaldehyde dissolved in sodium hydroxide solution at ($0-5$) ${ }^{\circ} \mathrm{C}$ to give azo aldehyde derivative [2] ${ }^{(3)}$,then the two carbonyl groups in azo aldehyde derivative [2] were introduced in acid -catalysed condensation reaction with amino groups for each 5-Amino-1,3,4-thiadiazol-2-thiol and 2-Amino benzothiazole, respectively in absolute ethanol to give new azo Schiff bases derivatives [3] and [4] , respectively ${ }^{(6,23,27)}$.

A pericyclic reactions, between imine groups of Schiff bases derivatives [3] and [4], as twomembered components, and cyclic anhydrides (maleic anhydride and 3-nitro phthalic anhydride) as five-membered components in dry benzene, were carried out to synthesis of 1,3-oxazepine derivatives [5] , [6] and [8], [9] ${ }^{(20-23)}$. A pericyclic reaction is a concerted process based on principle of conservation of molecular orbital symmetry between the reaction components during the reaction proceeding which is leading to a cyclic transition state corresponds with arrangement of participating orbitals ${ }^{(20,22)}$. Concerted reaction means that breaking and formation of bonds occur simultaneously via a single transition state and there is no intermediate in the process. Mechanism of the pericyclic reaction for the synthesis 1,3 -oxazepine ring shown in scheme $(1)^{(20,22)}$:

Scheme (1): Approximate transition state geometry for maleic anhydride addition
to imine group
Tetrazole derivatives [7] and [10] were prepared by reaction of Schiff bases derivatives [3] and [4] with sodium azide in dioxan,respectively. The mechanism of this reaction was systematically investigated as $[2+3]$ cycloaddition which christened as 1,3 -dipolar cycloaddition.It is involved the addition of unsaturated systems , dipolarphiles ,to 1,3-dipoles, a molecule possessing resonance contributors in which the positive and negative charges are located in 1,3-positions relative to each other.The addition results in a five-membered ring .Azides are a prominent class of 1,3-dipoles and azides 1,3-dipolar cycloadditions are of great synthetic value and have been studies mechanistically in great detail ${ }^{(5,29)}$.

The common features of this type of reactions is best accommodated by transition state geometry in which the dipolarphile and its ligands lies in one plane , and the azide lies in a parallel plane above or below,so that the orbitals perpendicular to the planes interact to form bonds,as it was shown in scheme (2) ${ }^{(5,29)}$:

Scheme (2): Approximate transition state geometry for azide addition to imine

The structures of all synthesised compounds[2-10] were shown in scheme (3) .The new synthesised compounds were characterized by their melting points ,(C.H.N.) Elementary analysis which showed nearness between the found and calculated values for all compounds as it was shown in Table (1) and FT-IR spectra as it was shown in Table (2).

FT-IR spectrum of azoaldehyde derivative [2] showed the following characteristic absorption bands: the sharp strong absorption bands at $1630 \mathrm{~cm}^{-1}$ attributed to $v(\mathrm{C}=\mathrm{O})$. The sharp absorption bands at $3477 \mathrm{~cm}^{-1}, 3423 \mathrm{~cm}^{-1}$ and $3280 \mathrm{~cm}^{-1}$ due to the $\mathrm{v}(\mathrm{OH})$ which were shifted to lower frequencies due to intramolecular hydrogen bonding with ortho aldehyde carbonyl group ${ }^{(30)}$.The two weak absorption bands at $3110 \mathrm{~cm}^{-1}$ and $3060 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aromatic. The three weak absorption bands at $2940 \mathrm{~cm}^{-1}, 2900 \mathrm{~cm}^{-1} 2856 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The two weak absorption bands $2720 \mathrm{~cm}^{-1}$ and $2654 \mathrm{~cm}^{-1}$ attributed to the $v(C-$ $\mathrm{H})$ aliphatic of aldehyde groups (-CHO). The sharp strong absorption band at $1658 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{O})$ of aldehyde groups which was shifted to lower frequency due to intramolecular hydrogen bonding with ortho hydrxy group ${ }^{(30)}$.The two medium and strong absorption bands at $1589 \mathrm{~cm}^{-1}$ and $1475 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{C})$ aromatic of benzene ring. The medium absorption band at $1373 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})^{(30)}$ in plane. The absorption band for azo group did not appear due to the high symmetry of the molecule. The weak absorption bands at $1150 \mathrm{~cm}^{-1}$ and 1043 cm^{-1} attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic in plane ${ }^{(30)}$. The two strong absorption bands at $1276 \mathrm{~cm}^{-1}$ and $1199 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ of phenol. The three strong absorption bands at $887 \mathrm{~cm}^{-1}, 829$ cm^{-1} and $759 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic out of plane. The weak absorption band at $694 \mathrm{~cm}^{-1}$ due to $\delta(\mathrm{O}-\mathrm{H})$ out of plane.

FT-IR spectrum of Schiff base derivative [3] showed disappearance of the strong absorption band at $1658 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{O})$ of aldehyde group and appearance of medium, absorption band at $1664 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{N})$ exocyclic of thiadiazole ring. Also ,disappearance of the absorption bands at $3392 \mathrm{~cm}^{-1}$ and $3279 \mathrm{~cm}^{-1}$ attributed to $v\left(-\mathrm{NH}_{2}\right)^{(31,32)}$. FT-IR spectrum of compound [3] also showed appearance of another important characteristic absorption bands as follow : the strong absorption band at $1600 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{N})$ endocyclic of thiadiazole ring. The weak and strong absorption bands at $1520 \mathrm{~cm}^{-1}$ and $1471 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{C}$) aromatic of benzene ring. The sharp absorption bands at $3624 \mathrm{~cm}^{-1}$ and $3550 \mathrm{~cm}^{-1}$ due to the v (free $\mathrm{O}-\mathrm{H})$. The five absorption band at $\left(3480-3240 \mathrm{~cm}^{-1}\right)$ due to the v (bonding $\left.\mathrm{O}-\mathrm{H}\right)$. The mediuim absorption band at $3198 \mathrm{~cm}^{-1}$ attributed to the $\mathrm{v}(\mathrm{N}-\mathrm{H})$ in the thione form ${ }^{(31,32)}$. The weak absorption bands at $\quad 3150 \mathrm{~cm}^{-1}, 3099 \mathrm{~cm}^{-1}$ and $3060 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring. The weak absorption bands at $2980 \mathrm{~cm}^{-1}, 2920 \mathrm{~cm}^{-1}$ and $2860 \mathrm{~cm}^{-1}$ attributed to the $\mathrm{v}(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The weak bands at $2800 \mathrm{~cm}^{-1}$ and $2665 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ of

Journal of Kerbala University, Vol. 9 No. 3 Scientific . 2011

imine group. The weak band at $2557 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{~S}-\mathrm{H})$ in thiol form.
The medium band at $1363 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ in plane ${ }^{(30)}$. The strong absorption bands at $1143 \mathrm{~cm}^{-1}$ and $1058 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic in plane. The strong absorption bands at $1271 \mathrm{~cm}^{-1}$ and $1197 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ of phenol. The three absorption bands at $905 \mathrm{~cm}^{-1}, 820 \mathrm{~cm}^{-1}$ and $760 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring out of plane. The weak absorption band at $690 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane. FT-IR spectrum of Schiff base derivative [4] showed disappearance of the strong absorption band at $1658 \mathrm{~cm}^{-1}$ attributed to the $v(C=O)$ of aldehyde group and appearance of medium absorption band at $1693 \mathrm{~cm}^{-1}$ attributed to the $\mathrm{v}(\mathrm{C}=\mathrm{N})$ groups exocyclic of benzothiazole ring. FT-IR spectrum of compound [4] also showed appearance of another important characteristic absorption bands as follow : the srong absorption band at $1606 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{N})$ inside benzothiazole ring.The weak and strong absorption bands at $1530 \mathrm{~cm}^{-1}$ and $1479 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{C})$ aromatic of benzene ring. The sharp absorption bands at $3650 \mathrm{~cm}^{-1}$ and $3600 \mathrm{~cm}^{-1}$ attributed to $v($ free $\mathrm{O}-\mathrm{H}$). The sharp absorption bands at ($3470-3200 \mathrm{~cm}^{-1}$) due to the v (bonding $\mathrm{O}-\mathrm{H}$). The weak absorption band at $3148 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring. The two weak absorption bands at $2920 \mathrm{~cm}^{-1}$ and $2830 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The two weak bands at $2790 \mathrm{~cm}^{-1}$ and 2720 cm^{-1} due to the $v(\mathrm{C}-\mathrm{H})$ of imine group. The weak absorption band at $1430 \mathrm{~cm}^{-1}$ attributed to the v $(\mathrm{N}=\mathrm{N})$. The weak absorption band at $1370 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{H}-\mathrm{O})$ in plane. The two medium absorption bands at $1278 \mathrm{~cm}^{-1}$ and $1190 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ of phenol. The absorption bands at $1138 \mathrm{~cm}^{-1}, 1065 \mathrm{~cm}^{-1}, 1045 \mathrm{~cm}^{-1}$ and $990 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring in plane. The absorption bands at $890 \mathrm{~cm}^{-1}, 829 \mathrm{~cm}^{-1}$ and $754 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-$ $\mathrm{H})$ aromatic out of plane. The weak absorption band at $670 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane. FT-IR spectrum of oxazepine derivative [5] showed disappearance of the strong band at $1664 \mathrm{~cm}^{-1}$ attributed to the $v($ exoC $=N)$ and appearance of strong absorption band at $1795 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{O})$ for lactone and lactam in oxazepine ring,(interacted). The strong absorption band at $1604 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{N})$ inside thiadiazole ring. The two weak and strong absorption bands at $1520 \mathrm{~cm}^{-1}$ and $1477 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{C})$ aromatic of benzene ring. The weak absorption band at $1369 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{O}-\mathrm{H})$ in plane. The two strong and weak absorption bands at $1282 \mathrm{~cm}^{-1}$ and $1210 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ in phenol. The medium absorption band at $1103 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ for lactone in Oxazepine ring. The absorption band at $990 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic in plane. The three absorption bands at $906 \mathrm{~cm}^{-1}, 840 \mathrm{~cm}^{-1}$ and $770 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring out of plane. The medium absorption band at $707 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane. FT-IR spectrum of compound [5] also showed appearance of the following absorption bands: The two medium and weak absorption bands at $3051 \mathrm{~cm}^{-1}$ and $2987 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring. The two weak absorption bands at $2922 \mathrm{~cm}^{-1}$ and $2850 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The two sharp absorption bands at $3630 \mathrm{~cm}^{-1}$ and $3572 \mathrm{~cm}^{-1}$ due to the $v($ free $\mathrm{O}-\mathrm{H}$) groups. The two sharp bands at $3416 \mathrm{~cm}^{-1}$ and $3336 \mathrm{~cm}^{-1}$ attributed to the v (bonding $\mathrm{O}-\mathrm{H}$). The weak band at $3200 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{~N}-\mathrm{H})$ in thione tautomer. The weak band at $2602 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{~S}-\mathrm{H})$ in thiol tautomer.

FT-IR spectrum of oxazepine derivative [6] showed disappearance of the strong band at $1664 \mathrm{~cm}^{-1}$ attributed to the $v(e x o C=N)$ and appearance of strong band at $1730 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{O})$ for lactone and lactam groups in oxazepine ring(interacted). The spectrum also showed appearance of two strong bands at $1540 \mathrm{~cm}^{-1}$ and $1320 \mathrm{~cm}^{-1}$ attributed to the asymmetric and symmetric stretching vibrations of (NO2)groups, respectively.
.The strong absorption band at $1606 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{N})$ inside thiadiazole ring. The strong absorption band at $1481 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{C})$ aromatic of benzene ring.The medium absorption band at $1373 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ in plane. The two absorption bands at $1280 \mathrm{~cm}^{-1}$ and $1220 \mathrm{~cm}^{-1}$ attributed to the $\mathrm{v}(\mathrm{C}-\mathrm{O})$ of phenol. The medium absorption band at $1099 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ inside oxazepine ring. The absorption bands at $1145 \mathrm{~cm}^{-1}$ and at $1000 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring in plane. The bands at

Journal of Kerbala University , Vol. 9 No. 3 Scientific . 2011

$910 \mathrm{~cm}^{-1}, 840 \mathrm{~cm}^{-1}$ and $760 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring out of plane. The weak absorption band at $700 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane.FT-IR spectrum of compound [6] also showed appearance of the following absorption bands: The absorption bands at $2950 \mathrm{~cm}^{-1}, 2922 \mathrm{~cm}^{-1}$ and $2862 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The three weak bands at $2800 \mathrm{~cm}^{-1}, 2740 \mathrm{~cm}^{-1}$ and $2660 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}-\mathrm{H})$ in oxazeine ring. The weak band at $2590 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{~S}-\mathrm{H})$. The three weak absorption bands at $3110 \mathrm{~cm}^{-1}, 3070 \mathrm{~cm}^{-1}$ and $3020 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring. The weak band at $3170 \mathrm{~cm}^{-1}$ attributed to the v $(\mathrm{N}-\mathrm{H})$ in thione tautomer ${ }^{(31,32)}$. The sharp absorption bands at $3640 \mathrm{~cm}^{-1}, 3620 \mathrm{~cm}^{-1}$ and $3556 \mathrm{~cm}^{-1}$ attributed to the $v\left(\right.$ free O-H). The sharp bands at $2464 \mathrm{~cm}^{-1}, 3410 \mathrm{~cm}^{-1}, 3383 \mathrm{~cm}^{-1}$ and $3252 \mathrm{~cm}^{-1}$ attributed to the $v($ bonding $\mathrm{O}-\mathrm{H})$.

FT-IR spectrum of tetrazole derivative [7] showed disappearance of the strong absorption band at $1664 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{N})$ exocyclic and appearance of strong absorption band at $1690 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{N})$ inside tetrazole ring ${ }^{(5,33)}$. Beside this FT-IR spectrum of tetrazole derivative [7] was devoid of a strong band at 2160-2120 cm^{-1} attributed to the stretching vibration of azide group $\left(-\mathrm{N}_{3}\right)$.FT-IR spectrum of compound [7] showed appearance of the following absorption bands: The strong absorption band at $1604 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{N})$ inside thiadiazole ring. The weak and medium absorption bands at $1529 \mathrm{~cm}^{-1}$ and $1479 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=-\mathrm{C})$ aromatic of benzene ring. The medium absorption band at $1369 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ in plane. The strong absorption bands at $1282 \mathrm{~cm}^{-1}$ and $1199 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-$ $\mathrm{O})$ of phenol. The bands at $1145 \mathrm{~cm}^{-1}, 1105 \mathrm{~cm}^{-1}$ and at $1060 \quad \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic of in plane.

The strong absorption bands at $970 \mathrm{~cm}^{-1}, 910 \mathrm{~cm}^{-1}, 829 \mathrm{~cm}^{-1}$ and $770 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{C}-$ $\mathrm{H})$ aromatic out of plane. The medium absorption band at $694 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane. The weak absorption band at $2610 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{~S}-\mathrm{H})$. The weak absorption bands at $2928 \mathrm{~cm}^{-1}, 2860 \mathrm{~cm}^{-1}$ and $2798 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The weak absorption band at $3120 \mathrm{~cm}^{-1}$ and $3022 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring. The sharp medium absorption band at $3176 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{~N}-\mathrm{H})$ in thione tautomer. The three sharp strong absorption bands at $3640 \mathrm{~cm}^{-1}, 3590 \mathrm{~cm}^{-1}$ and $3525 \mathrm{~cm}^{-1}$ attributed to the v (free O-H). The five sharp weak bands at $3460 \mathrm{~cm}^{-1}, 3419 \mathrm{~cm}^{-1}, 3342 \mathrm{~cm}^{-1}, 3300 \mathrm{~cm}^{-1}$ and $3240 \mathrm{~cm}^{-1}$ attributed to the v (bonding $\mathrm{O}-\mathrm{H})$.

FT-IR spectrum of oxazepine derivative [8] showed disappearance of the strong band at $1693 \mathrm{~cm}^{-1}$ attributed to the $v(e x o C=N)$ and appearance of two medium and strong absorption bands at $1790 \mathrm{~cm}^{-1}$ and $1662 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{O})$ of lactone and lactam groups in oxazepine ring, respectively. The strong absorption band at $1595 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{N})$ inside benzothiazole ring. The strong absorption band at $1479 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}-\mathrm{C})$ aromatic of benzene ring. The medium absorption band at $1371 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{O}-\mathrm{H})$ in plane. The strong absorption bands at $1280 \mathrm{~cm}^{-1}$ and $1205 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ of phenol. The strong absorption band at $1105 \mathrm{~cm}^{-1}$ attributed to the $\mathrm{v}(\mathrm{C}-\mathrm{O})$ of lactone in oxazepine ring. The weak absorption bands at 1041 cm^{-1} and $985 \mathrm{~cm}^{-1} \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic in plane of benzene ring. The three absorption bands at $893 \mathrm{~cm}^{-1}, 835 \mathrm{~cm}^{-1}$ and $754 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic out of plane. The weak absorption band at $698 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane.. The two sharp absorption bands at $3640 \mathrm{~cm}^{-1}$ and $3605 \mathrm{~cm}^{-1}$ attributed to the v (free O-H). The five weak bands at ($3500 \mathrm{~cm}^{-1}, 3220$ cm^{-1}) due to the $v($ bonding $\mathrm{O}-\mathrm{H})$.

The weak absorption bands at $3130 \mathrm{~cm}^{-1}, 3061 \mathrm{~cm}^{-1}$ and $3000 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}-\mathrm{H})$ aromatic of benzene ring. The weak absorption bands at $2970 \mathrm{~cm}^{-1}, 2910 \mathrm{~cm}^{-1}$ and $2850 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The two weak bands at $2790 \mathrm{~cm}^{-1}$ and $2720 \mathrm{~cm}^{-}$ ${ }^{1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ in oxazeine ring.

FT-IR spectrum of oxazepine derivative [9] showed disappearance of the strong band at $1693 \mathrm{~cm}^{-1}$ attributed to the $v(e x o C=N)$ and appearance of two strong absorption bands at $1728 \mathrm{~cm}^{-}$ ${ }^{1}$ and $1660 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{O})$ of lactone and lactam inside oxazepine ring, respectively .The strong absorption band at $1604 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{N})$ inside benzothiazole ring. The
strong absorption band at $1485 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{C})$ aromatic of benzene ring. The medium absorption band at $1354 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{O}-\mathrm{H})$ in plane. The two characteristic medium absorption bands at $1520 \mathrm{~cm}^{-1}$ and $1290 \mathrm{~cm}^{-1}$ attributed to the asymmetric and symmetric stretching vibrations of (NO2) groups. The medium absorption bands at $1275 \mathrm{~cm}^{-1}$ and $1224 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ of phenol. The strong absorption band at $1138 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}-\mathrm{O})$ for lactone in Oxazepine ring. The two weak absorption bands at $1030 \mathrm{~cm}^{-1}$ and $1000 \mathrm{~cm}^{-1}$ attributed to the δ (CH) aromatic in plane. The absorption bands at $902 \mathrm{~cm}^{-1}, 808 \mathrm{~cm}^{-1}$ and $755 \mathrm{~cm}^{-1}$ attributed to the v (C-H) aromatic out of plane.The absorption band at $670 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane. The sharp absorption bands at $3641 \mathrm{~cm}^{-1}$ and $3576 \mathrm{~cm}^{-1}$ attributed to the v (free $\mathrm{O}-\mathrm{H}$). The four sharp bands at $3510 \mathrm{~cm}^{-1}, 3414 \mathrm{~cm}^{-1}, 3270 \mathrm{~cm}^{-1}$ and $3213 \mathrm{~cm}^{-1}$ attributed to the v (bonding $\mathrm{O}-\mathrm{H}$).

The weak absorption bands at $3175 \mathrm{~cm}^{-1}, 3130 \mathrm{~cm}^{-1}, 3070 \mathrm{~cm}^{-1}$ and $3036 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aromatic. The weak absorption bands at $2960 \mathrm{~cm}^{-1}, 2920 \mathrm{~cm}^{-1}$ and $2862 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups. The weak band at $2733 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ in Oxazepine ring.FT-IR spectrum of terazole derivative [10] showed disappearance of the strong absorption band at $1693 \mathrm{~cm}^{-1}$ due to the $v($ exo $\mathrm{C}=\mathrm{N})$ and appearance of strong absorption band at $1707 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C}=\mathrm{N})$ inside tetrazole ring ${ }^{(5,33)}$. Beside this FT-IR spectrum of tetrazole derivative [10] was devoid of a strong band at $2160-2120 \mathrm{~cm}^{-1}$ due to the $v\left(-\mathrm{N}_{3}\right)$. The strong absorption band at $1602 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}=\mathrm{N})$ inside benzothiazole ring. The weak and medium absorption bands at $1510 \mathrm{~cm}^{-1}$ and $1477 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C} \cdots \mathrm{C})$ aromatic .The weak absorption band at $1431 \mathrm{~cm}^{-1}$ attributed to the $v(N=N)$. The weak band at $1385 \mathrm{~cm}^{-1}$ due to the $\delta(\mathrm{O}-\mathrm{H})$ in plane.The medium absorption bands at $1282 \mathrm{~cm}^{-1}, 1195 \mathrm{~cm}^{-1}$ attributed to the $v(\mathrm{C}-\mathrm{O})$ of phenol. The medium absorption bands at $1141 \mathrm{~cm}^{-1}$ and $1101 \mathrm{~cm}^{-1}$ attributed to the $\delta(\mathrm{C}-\mathrm{H})$ aromatic in plane. The strong and weak absorption bands at $835 \mathrm{~cm}^{-1}$ and $754 \mathrm{~cm}^{-1}$ attributed to the v (C-H) aromatic out of plane.The weak absorption band at $675 \mathrm{~cm}^{-1}$ attributd to the $\delta(\mathrm{O}-\mathrm{H})$ out of plane. The sharp absorption bands at $3660 \mathrm{~cm}^{-1}, 3640 \mathrm{~cm}^{-1}$ and $3585 \mathrm{~cm}^{-1}$ attributed to the v (free OH). The eight sharp absorption bands at $\left(3535 \mathrm{~cm}^{-1}-3227 \mathrm{~cm}^{-1}\right)$ attributed to the v (bonding O-H). The four weak absorption bands at $3173 \mathrm{~cm}^{-1}, 3140 \mathrm{~cm}^{-1}, 3091 \mathrm{~cm}^{-1}$ and $3030 \mathrm{~cm}^{-1}$ attributed to the v (C-H) aromatic of benzene ring.The weak absorption bands at $2960 \mathrm{~cm}^{-1}, 2920 \mathrm{~cm}^{-1}$ and $2850 \mathrm{~cm}^{-}$ ${ }^{1}$ attributed to the $v(\mathrm{C}-\mathrm{H})$ aliphatic of methyl groups.

Scheme(3):Reactionspathway

FT-IR spectrum of compound [2]

FT-IR spectrum of compound [3]

FT-IR spectrum of compound [4]

FT-IR spectrum of compound [5]

FT-IR spectrum of compound [6]

FT-IR spectrum of compound [7]

FT-IR spectrum of compound [8]

FT-IR spectrum of compound [9]

FT-IR spectrum of compound [10]

Journal of Kerbala University , Vol. 9 No. 3 Scientific . 2011

Comp. no.	$v(-\mathrm{OH})$	$\mathrm{v}\left(-\mathrm{NH}_{2}\right)$	\mathbf{v} (N-H)	$v(\mathbf{C}-\mathrm{H})$ arom.	v (C-H) aliph.	$\mathbf{v (S - H)}$	$v(C=O)$	$v(C=N)$	$(\mathrm{C} \cdots \mathrm{C}$) arom.	$\delta(\mathbf{O}-\mathrm{H})$ in plane	$\mathrm{v}\left(\mathrm{NO}_{2}\right)$	v(C-O)	$\delta(\mathbf{C}-\mathrm{H})$ in plane	v(C-H) arom. o.o.p.	$\begin{gathered} \delta(\mathrm{O}-\mathrm{H}) \\ \text { o.o.p } \end{gathered}$
[2]	$3630(\mathrm{sp}) \text { free }(\mathrm{OH})$ 3477-3280- (sp)bonding (OH)	-	-	$\begin{aligned} & 3110(w) \\ & 3060(w) \end{aligned}$	$\begin{aligned} & 2940(w) \\ & 2900(w) \\ & 2856(w) \end{aligned}$	-	1658(s)	-	$\begin{aligned} & 1589(\mathrm{~m}) \\ & 1475(\mathrm{~s}) \end{aligned}$	1373(m)	-	$\begin{aligned} & 1276(\mathrm{~s}) \\ & 1199(\mathrm{~s}) \\ & \text { phenol } \end{aligned}$	$\begin{aligned} & 1150(w) \\ & 1043(w) \end{aligned}$	887(s) 829(s) 759(s)	694(w)
[3]	$\begin{gathered} 3624 \text { (sp),3550(sp)free }(\mathrm{OH}) \\ 3480-3240-\text { (sp)bonding }(\mathrm{OH}) \end{gathered}$	-	3198(m)	$\begin{aligned} & 3150(w) \\ & 3099(w) \\ & 3060(w) \\ & \hline \end{aligned}$	$\begin{aligned} & 2980(\mathrm{w}) \\ & 2920(\mathrm{w}) \\ & 2860(\mathrm{w}) \end{aligned}$	2557(w)	-	$\begin{gathered} \text { 1664(s) exo } \\ 1600(\mathrm{~s}) \\ \text { endo } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 1520(w) } \\ & \text { 1471(s) } \end{aligned}$	1363(m)	-	1271(s) 1197(s) phenol	$\begin{aligned} & \text { 1143(s) } \\ & 1058(s) \end{aligned}$	905(w) 820(w) 760(w)	700(w)
[4]	3650(sp),3600(sp)free($\mathbf{O H}$) 3470-3200- (sp)bonding (OH)	-	-	3148(w)	$\begin{aligned} & 2920(w) \\ & 2830(w) \end{aligned}$	--	-	$\begin{gathered} \text { 1693(m) exo } \\ 1606(\mathrm{~s}) \\ \text { endo } \end{gathered}$	$\begin{aligned} & 1530(w) \\ & 1479(\mathrm{~s}) \end{aligned}$	1370(w)	-	1278(m) 1190(m) phenol	1138(m) 1065(w) 1045(w) 990(w)	$\begin{gathered} 890(\mathrm{w}) \\ 829(\mathrm{~m}) \\ 754(\mathrm{~s}) \end{gathered}$	670(w)
[5]	3630(sp),3572(sp)free($\mathbf{O H}$) 3416,3336- (sp)bonding (OH)	-	3200(w)	3051(m) 2987(w)	$\begin{aligned} & 2922(w) \\ & 2850(w) \end{aligned}$	2602(w)	1795(s)	1604(s)endo	$\begin{aligned} & 1520(\mathrm{w}) \\ & 1477(\mathrm{~s}) \end{aligned}$	1369(w)	-	$\begin{aligned} & 1282(\mathrm{~s}) \\ & 1210(\mathrm{w}) \\ & \text { Phenol } \\ & 1103(\mathrm{~m}) \\ & \text { lactone } \\ & \hline \end{aligned}$	990(w)	$\begin{aligned} & 906(\mathrm{w}) \\ & \mathbf{8 4 0 (m)} \\ & 770(\mathrm{w}) \end{aligned}$	707(m)
[6]	3640(sp),3620(sp),3556 (sp)free $(\mathbf{O H})$ 3464-3252- (sp)bonding (OH)	-	3170(w)	$\begin{aligned} & 3100(w) \\ & 3070(w) \\ & 3020(w) \end{aligned}$	$\begin{aligned} & 2950(w) \\ & 2922(w) \\ & 2862(w) \end{aligned}$	2590(w)	1730(s)	1606(s)endo	1481(s)	1373(m)	$\begin{aligned} & 1540(\mathrm{~s}) \\ & 1320(\mathrm{~s}) \end{aligned}$	1280(s) 1220(m) Phenol 1099(s) lactone	$\begin{aligned} & 1145(\mathrm{w}) \\ & 1000(\mathrm{w}) \end{aligned}$	$\begin{aligned} & 910(\mathrm{w}) \\ & \mathbf{9 4 0 (w)} \\ & \mathbf{7 6 0 (w)} \end{aligned}$	700(w)

Journal of Kerbala University , Vol. 9 No. 3 Scientific . 2011

Table (2): FT-IR Data of the prepared Compounds [2-10] in cm^{-1}

References

1.Wilson and Givolds, " Text Book of Organic Medical andPharmaceutical Chemistry ", Eight Ed.,1982.
2. L.Pod Dick , M.Roscinand Gh.and C.A.Olariu,Synthesis of nitro azo and azoSulfosalicyclic acids andtheir bacteriostaticeffectivity, Vol. 55 ,P. 13357.
3.A.I.Vogel , " A text book of Practical organic chemistry " , $\mathbf{3}^{\text {rd }}$, Longman group limited , London, 1973 , p. 622.
4. A .A. Al-Juboori, M.Sc.Thesis, Al-Mustansiriya Universty ,2005.
5. N. A. Salih , Ph.D. Thesis, Al-Nahrain University (2005) .
6. A.A.Jarrahpour , M.Motamedifar, K.Pakshir,N.Hadi and M.Zarei ,Molecules,2004,9,815 .
7. S.B.Desai, B.Desai and K.R.Desai , Heterocycl. Commun.,2001,7,83.
8..P.H.Wang ,J. G. Keck ,E.J.Lien and M.M.C .Lai ,J .Med.Chem.,1990 ,33,608.
9. W.M.Singh and B.C.Dash,Pesticides , 1988,22,33.
10. P.G.More,R.B.Bhalvankar and S.C.Pattar,J.Indian Chem.Soc.,2001,78,474.
11.M.Verma,S.N.Pandeya,K.N.Singh and J.P.Stables , Acta Pharm., 2004,54,49.
12. R.Noto , P.Meo , M.Geto and G.Weber, J.Heterocyclic Chem., 1996,933,863 .
13. A. S. Al-Ani , M.Sc.Thesis, Al-Mustansiriya University 2004.
14. R.Noto , P.Meo , M.Geto and G.Weber, J.Heterocyclic Chem., 1996, 93, 3863.
15. F.Al-Omran , R.M.Mohareb and A.Abou El-Khair, J. Heterocyclic Chem., 2002, 39, 877.
16. C.Ainsworth , J.Am. Chem. Soc., 1956, 78, 1937.
17. J.A.Mohan, G.S.Anjaneyulu and R.Kiran, Indian J.Chem., 1988, 27B, 128.
18. O. Buchardt, C.L. Pedersen and N. Harrit, J.Org. Chem., 1972, 37, 23, 3592.
19. O. Tsuge , K. Oe and T. Ohnishi , Heterocycles, 1982, 19, 9, 1609.
20. K.F. Ali, Ph. D. Thesis, Baghdad University, 2005.
21. N. M. Al-Jamali, Ph. D. Thesis, Baghdad University, 2008.
22. R. T. Haiwal, J. Kerbala University, 2008, 6, 4, 216.
23. Z. H. Abood, J. Kerbala University, 2009, 7, 1, 297.
24. M.H. Serrano-Wu , D.R.St.Laurent, Y.Chen, S.Huang , K.R.Lam , J.A.Matson , C.E.Mazzucco , T.M.Stickle, ,T.P. Tully, H.S.Wong, D.M.V yas and B.N. Balasubramanian, Bioorganic and Medicinal Chemistry Letters, 2002,12,19, 2757.
25. L.Smith,W.C.Wong,A.S.Kiselyov,S.Burdzovic-Wizemann ,Y.Mao , Y.Xu, M.A.J.Duncton , K.Kim , E.L.Piatnitski , J.F.Doody , Y.Wang , R.L.Rosler , D.Milligan , J.Columbus , C.Balagtas, S.P.Lee, A.Konovalov and Y.R.Hadari, Accepted for Publication 11 July 2006 ,Bioorganic and Medicinal Chemistry Letters, 2006 , Available Online ,2006.
26. B.miller,"Advanced Organic Chemistry" $1^{\text {st }}$ ed.,Viacom Company (1998).
27. Z. H. Abood, R. T. Haiwal and I. L. Kadum, J. Kerbala University, 2008, 6, 4, 140.
28. B.Modzelewska , J.Banachiewicz, A.Chodkowska and L.Mazure ,Eur .J.Med .Chem.,2004,39,873.
29. A.Padwa,"1,3-Dipolar cycloaddition chemistry",General Heterocyclic chemistry series,Vol.1and 2,John wiely and Sons,New York(1984).
30.D.H.Williams,I.Fleming,"Spectroscopic method in Organic Chemistry", $2^{\text {nd }}$.,McGraw-Hill Book Co.Limited,London(1973).
31. A.K.Gupta and H.K.Mishra, J. Indian Chem. Soc., 1981, 8, 508.
32. N.S. Cho and G.N.Kim, J. Heterocycl. Chem., 1993, 30, 397.
33.F.Firrozi,K.Javidnia,M.Kamali,A.Foroumadi and
A.Shafiee, J. Heterocyclic Chem.,1995,32,1235.

