The Brauer trees of the symmetric groups S_{17} and S_{18} modulo p=11

Saeed Abdul-Ameer Taban and Ahmed Hussein Jassim Math.Dept. / College of Science /Basrah University

Abstract:

In this paper we find the Brauer trees of the symmetric groups S_{17} and S_{18} modulo p=11 which can give the irreducible modular spin characters of S_{17} and S_{18} modulo p=11, also we give the 11 –decomposition matrix of S_{17} , S_{18} .

Introduction:

Schur showed that the symmetric group S_n has a representation group $\overline{S_n}$ which is of order 2(n!), and it has a central subgroup $Z = \{1, -1\}$ such that $\overline{S_n}/Z \cong S_n$ [I.Schur 1911]. The representations of $\overline{S_n}$ fall into two classes [A.O.Morris 1962], [I.Schur 1911]:

- 1) Those which have Z in their kernel; these are called the ordinary representations of S_n , the irreducible representations and characters of S_n are indexed by the partition of n.
- 2) The representations which do not have Z in their kernel; these representation are called spin(projective) representations of S_n the irreducible spin representations are indexed by the partitions of n with distinct parts which are called bar partitions of n [A.O.Morris and A.K.Yassen 1988].

For p=11Yaseen [A.K.Yassen 1987] was found the modular irreducible spin character of S_n for $11 \le n \le 14$ and for n=15,16 also was found by Yaseen[A.K.Yassen1995],we use the techniques as given in [G.D.James and A.Kerber1981],[Lukas Maas 2010], to find the modular irreducible spin character modulo 11 for S_{17} and S_{18} .

The main aim of this paper is to calculate the decomposition matrix for the spin characters for S_{17} , S_{18} , p = 11.

Preliminaries: Any spin character of S_n can be written as a linear combination, with non-negative integer coefficients, of the irreducible spin character [L.Dornhoff 1972].

1. The degree of the spin characters $\langle \alpha \rangle = \langle \alpha_1, ..., \alpha_m \rangle$ is:

$$deg\langle\alpha\rangle=2^{\left[\frac{n-m}{2}\right]}\frac{n!}{\prod_{i=1}^{m}(\alpha_i!)}\prod_{1\leq i< j\leq m}\left(\alpha_i-\alpha_j\right)/\left(\alpha_i+\alpha_j\right)$$
 [A.O.Morris 1962], [A.O.Morris and A.K.Yassen 1988].

2. Let B be the block of defect one and let b the number of P—conjugate characters to the irreducible ordinary character χ of G.

Then[B.M.Puttaswamaiah and J.D.Dixon 1977]:

- a) There exists a positive integer number N such that the irreducible ordinary characters of G are lying in the block B divided into two disjoint classes $:B_1=\{\chi\in B\mid b\deg x\equiv N\bmod p^a\}$ $B_2=\{\chi\in B\mid b\deg x\equiv -N\bmod p^a\}$
- b) Each coefficient of the decomposition matrix of the block B is 1 or 0.
- c) If α_1 and α_2 are not p -conjugate characters and are belong to the same class (B_1, B_2) above, then they have no irreducible modular character in common.
- d) For every irreducible ordinary character χ in B_1 , there exists irreducible ordinary character φ in B_2 such that they have one irreducible modular character in common with one multiplicity.
- 3. If C is a principal character of G for an odd prime p and all the entries in C are divisible by a non-negative integer q, then $(1 \setminus q)C$ is a principal character of G[G.D.James] and A.Kerber 1981].
- 4. Let *p* be odd then[A.O.Morris and A.K.Yassen 1988]:
 - a) $\langle n \rangle$ and $\langle n \rangle$ are irreducible modular spin characters of degree $2^{[n-1/2]}$ which are denoted by $\varphi(n)$ and $\varphi(n)$ respectively, and $\varphi(n) \neq \varphi(n)$. If $p \nmid n$ and n is even, except when n is odd and p/n in which case $\langle n \rangle = \varphi(n) + \varphi(n)$, where $\varphi(n)$ and $\varphi(n)$ are distinct irreducible modular spin characters of degree $2^{[(n-3)/2]}$.
 - b) If n is even and $p \nmid n$ or $p \nmid (n-1)$, then (n-1,1) is an irreducible modular spin character of degree $2^{[(n-2)/2]} \times (n-2)$ which is denoted by $\varphi(n-1,1)^*$.
 - c) If n is odd and $p \nmid n$ or $p \nmid n-1$, then (n-1,1) and (n-1,1)' are distinct irreducible modular spin characters of degree $2^{[(n-3)/2]} \times (n-2)$ which are denoted by $\varphi(n-1,1)$ and $\varphi(n-1,1)'$ respectively.
 - 5. If C is a principal character of G for a prime p, then $\deg C \equiv 0 \mod p^A$, where $o(G) = p^A m$, (p, m) = 1[S.A.Taban 1989],[J.F.Humphreys 1977].
 - 6. Let β_1^* , β_2 , $\beta_2^{'}$, β_3 , $\beta_3^{'}$ be modular spin characters where β_1^* is a double character, $\beta_2 \neq \beta_2^{'}$ are associate modular spin characters (*real*), and $\beta_3 \neq \beta_3^{'}$ are associate modular spin characters (*complex*). Let φ_1^* , φ_2 , $\varphi_2^{'}$, φ_3 , $\varphi_3^{'}$ be irreducible modular spin characters, where

 φ_1^* is a double character $\varphi_2 \neq \varphi_2$ and $\varphi_3 \neq \varphi_3$ are associate irreducible modular spin characters (real), (complex) respectively then [A.K.Yassen 1987]:

- a) $\beta_1^*, \beta_2, \beta_2^{'}$ contains φ_3 and $\varphi_3^{'}$ with the same multiplicity, β_1^{*} which contains φ_2 and $\varphi_2^{'}$ with the same multiplicity.
- b) β_3 and β_3 contains φ_1^* , φ_2 , $\varphi_2^{'}$ with the same multiplicity.
- c) φ_3 is a constituent of β_3 with the same multiplicity as that of φ_3 in β_3 .
- 7. If the decomposition matrix $D_{n-1,p} = (d_{ij})$ for S_{n-1} is know, then we can induced columns $(\psi_j \uparrow^{(r,\bar{r})} S_n)$ for $S_n[4]$, these columns are a linear combination with non-negative coefficients from the columns of $D_{n,p}$ [G.D.James and A.Kerber 1981].

Notation:

p.s. principle spin character.

p.i.s. principle indecomposable spin character.

m.s. modular spin character.

i.m.s. irreducible modular spin character.

 $(<\lambda>)^{no}$ (no) mean the number of i.m.s. in $<\lambda>$

 \equiv Equivalence mod 11.

Section (1)

The decomposition matrix for S_{17} modulo p=11 of degree (57, 51) [A.O.Morris 1962],[A.O.Morris and A.K.Yassen 1988]. There are 25 blocks four of them B_1 , B_2 , B_3 , B_4 , are of defect one, the others B_5 ,..., B_{25} of defect zero.

Lemma (1.1) The Brauer tree for the block B_1 is:

$$\langle 17 \rangle^*$$
___ $\langle 11,6 \rangle = \langle 11,6 \rangle^{'}$ __ $\langle 10,6,1 \rangle^*$ ___ $\langle 9,6,2 \rangle^*$ ___ $\langle 8,6,3 \rangle^*$ ___ $\langle 7,6,4 \rangle^*$

Proof:

a)
$$\deg(9,6,2)^* \equiv \deg(7,6,4)^* \equiv \deg((11,6)^{\prime} + (11,6)) \equiv 8$$
.

$$\deg\langle 17\rangle^*\equiv \deg\langle 10,6,1\rangle^*\equiv \deg\langle 8,6,3\rangle^*\equiv -8$$

b) By using (6,6)-inducing of p.i.s for S_{16} (see appendix I) to S_{17} we get on:

$$D_1 \uparrow^{(6,6)} S_{17} = \langle 17 \rangle + \langle 11,6 \rangle + \langle 11,6 \rangle'$$

$$D_3 \uparrow^{(6,6)} S_{17} = \langle 11,6 \rangle + \langle 11,6 \rangle' + \langle 10,6,1 \rangle^*$$

$$D_5 \uparrow^{(6,6)} S_{17} = \langle 10,6,1 \rangle^* + \langle 9,6,2 \rangle^*$$

$$D_7 \uparrow^{(6,6)} S_{17} = \langle 9,6,2 \rangle^* + \langle 8,6,3 \rangle^*$$

$$D_9 \uparrow^{(6,6)} S_{17} = \langle 8,6,3 \rangle^* + \langle 7,6,4 \rangle^*$$

on11-regular classes we have

1.
$$\langle 11,6 \rangle = \langle 11,6 \rangle'$$

2. $\langle 11,6,1 \rangle = \langle 17 \rangle^* + \langle 10,6,1 \rangle^* + \langle 8,6,3 \rangle^* - \langle 9,6,2 \rangle^* - \langle 7,6,4 \rangle^*$. Hence, we have the Braure tree for this block B_1 .

Lemma(1.2)

The Brauer tree for the block B_2 is:

$$\langle 16,1 \rangle - \langle 12,5 \rangle \setminus \langle 11,5,1 \rangle^* / \langle 9,5,2,1 \rangle - \langle 8,5,3,1 \rangle - \langle 7,5,4,1 \rangle \setminus \langle 16,1 \rangle' - \langle 12,5 \rangle' / \langle 9,5,2,1 \rangle' - \langle 8,5,3,1 \rangle' - \langle 7,5,4,1 \rangle'$$

Proof:

- a) $\deg\{\langle 16,1\rangle,\langle 16,1\rangle',\langle 11,5,1\rangle^*,\langle 8,5,3,1\rangle,\langle 8,5,3,1\rangle'\} \equiv 6$ $\deg\{\langle 12,5\rangle,\langle 12,5\rangle',\langle 9,5,2,1\rangle,\langle 9,5,2,1\rangle',\langle 7,5,4,1\rangle,\langle 7,5,4,1\rangle'\} \equiv -6.$
- b) By using (1,0)-inducing of p.i.s for S_{16} (see appendix I) to S_{17} we get p.i.s. $D_5 \uparrow^{(1,0)} S_{17}, D_6 \uparrow^{(1,0)} S_{17}, D_7 \uparrow^{(1,0)} S_{17}, D_8 \uparrow^{(1,0)} S_{17}$, $D_9 \uparrow^{(1,0)} S_{17}$, $D_{10} \uparrow^{(1,0)} S_{17}$, and $D_{11} \uparrow^{(1,0)} S_{17} = k_1$, p.s $D_1 \uparrow^{(1,0)} S_{17} = k_2$, $D_2 \uparrow^{(1,0)} S_{17} = k_3$, $D_3 \uparrow^{(1,0)} S_{17} = k_4$.

So we have the approximation matrix(Table(1))

Table (1)

(16,1)	1	1								
(16,1) [']	1		1							
(12,5)	1	1	1	1						
(12,5) [']	1	1	1	1						
⟨11,5,1⟩*		1	1	2	1	1				
(9,5,2,1)					1		1			
(9,5,2,1) [']						1		1		
(8,5,3,1)							1		1	
(8,5,3,1) [']								1		1
(7,5,4,1)									1	
⟨7,5,4,1⟩ [′]										1
	k_1	k_2	k_3	k_4	c_5	c_6	<i>c</i> ₇	c_8	c ₉	c_{10}

 $\langle 16,1 \rangle \neq \langle 16,1 \rangle'$ so k_1 splits to c_1 and c_2 .

$$k_4 = k_2 + k_3 - c_1 - c_2$$
, this give p.i.s. $k_2 - c_1$, $k_3 - c_2$.

Hence we have the Braure tree for this block $B_2 \blacksquare$.

Lemma(1.3)

The Brauer tree for the block B_4 is:

$$\langle 14,2,1 \rangle^* _ \langle 13,3,1 \rangle^* _ \langle 12,3,2 \rangle^* _ \langle 11,3,2,1 \rangle = \langle 11,3,2,1 \rangle^' _ \langle 7,4,3,2,1 \rangle^* _ \langle 6,5,3,2,1 \rangle^*$$

Proof:

- a) $\deg(13,3,1)^* \equiv \deg(6,5,3,2,1)^* \equiv \deg(11,3,2,1) + \langle 11,3,2,1 \rangle') \equiv 8$ $\deg(14,2,1)^* \equiv \deg(12,3,2)^* \equiv \deg(7,4,3,2,1)^* \equiv -8$
- b) By using (r, \bar{r}) -inducing of p.i.s. D_{16} , D_{18} , D_{19} , D_{20} , $\langle 12,3,1 \rangle$, for S_{16} (se appendix I) to S_{17} we get on.
 - 1) $\langle 14,2,1 \rangle^* + \langle 13,3,1 \rangle^*$.
 - 2) $2(12,3,2)^* + 2(11,3,2,1) + 2(11,3,2,1)' = 2k$.so k is p.i.
 - 3) $\langle 11,3,2,1 \rangle + \langle 11,3,2,1 \rangle' + \langle 7,4,3,2,1 \rangle^*$.
 - 4) $\langle 7,4,3,2,1 \rangle^* + \langle 6,5,3,2,1 \rangle^*$.
 - 5) $\langle 13,3,1 \rangle^* + \langle 12,3,2 \rangle^*$. on11-regular classes we have
 - 1. $\langle 11,3,2,1 \rangle = \langle 11,3,2,1 \rangle'$

2.
$$\langle 11,3,2,1 \rangle = \langle 14,2,1 \rangle^* + \langle 12,3,2 \rangle^* + \langle 7,4,3,2,1 \rangle^* - \langle 13,3,1 \rangle^* - \langle 6,5,3,2,1 \rangle^*$$

Then, we get the Brauer tree for the block $B_4 \blacksquare$.

Lemma(1.4)

The Brauer tree for the block B₃is:

Proof:

- a) $\deg\{\langle 13,4\rangle, \langle 13,4\rangle', \langle 10,4,2,1\rangle, \langle 10,4,2,1\rangle', \langle 6,5,4,2\rangle, \langle 6,5,4,2\rangle'\} \equiv 9$ $\deg\{\langle 15,2\rangle, \langle 15,2\rangle', \langle 11,4,2\rangle^*, \langle 8,4,3,2\rangle, \langle 8,4,3,2\rangle'\} \equiv -9$.
- b) By using (r, \bar{r}) -inducing of p.i.s for S_{16} (see appendix I) to S_{17} we get on:

$$\begin{array}{l} D_{11} \uparrow^{(2,10)} S_{17} = k_1 \ , \ D_{12} \uparrow^{(2,10)} S_{17} = k_2 \ , \ D_{14} \uparrow^{(2,10)} S_{17} = k_3 \\ \\ D_{15} \uparrow^{(2,10)} S_{17} = k_4, \ \langle 10,4,2 \rangle \uparrow^{(0,1)} S_{17} = c_5, \ \langle 10,4,2 \rangle^{'} \uparrow^{(0,1)} S_{17} = c_6. \end{array}$$

Thus, we have the approximation matrix(Table (2))

Table(2)

	Ψ_1	Ψ ₂	φ_5	$arphi_6$	Ψ_3	Ψ_4	φ_1	φ_2
(15,2)	1						a	
〈15,2〉	1							a
(13,4)	1	1					b	
〈13,4〉 [′]	1	1						b
⟨11,4,2⟩*		2	1	1			с	c
(10,4,2,1)			1		1		d	

\langle 10,4,2,1 \rangle '				1	1			d
(8,4,3,2)					1	1	f	
(8,4,3,2) [']					1	1		f
(6,5,4,2)						1	h	
(6,5,4,2) [']						1		h
	k_1	k_2	<i>c</i> ₅	c_6	k_3	k_4	<i>Y</i> ₁	<i>Y</i> ₂

Since $\langle \overline{15,2} \rangle \neq \langle 15,2 \rangle'$ on $(11,\alpha)$ -regular classes then either k_1 is split or there are another two columns. Suppose there are two columns such as Y_1 and Y_2

To describe columns Y_1 and Y_2

- 1. $\langle 15,2 \rangle \downarrow S_{16} = (\langle 14,2 \rangle^*)^1 + (\langle 15,1 \rangle^*)^1 = 2$ of i.m.s(see appendix I) and form (Table(2))we have $a \in \{0,1\}$.
- 2. $\langle 13,4 \rangle \downarrow S_{16} = (\langle 12,4 \rangle^*)^2 + (\langle 13,3 \rangle^*)^2 = 4$ of i.m.s. we have $b \in \{0,1,2\}$.
- 3. $\langle 11,4,2 \rangle^* \downarrow S_{16} = (\langle 10,4,2 \rangle)^1 + (\langle 10,4,2 \rangle')^1 + (\langle 11,3,2 \rangle)^2 + (\langle 11,3,2 \rangle')^2 + (\langle 11,4,1 \rangle)^2 + (\langle 11,4,1 \rangle')^2 = 10 \text{ of i.m.s. we have}$ $c \in \{0,1,2,3,4,5,6\}.$
- 4. $\langle 10,4,2,1 \rangle \downarrow S_{16} = (\langle 9,4,2,1 \rangle^*)^2 + (\langle 10,3,2,1 \rangle^*)^2 + (\langle 10,4,2 \rangle)^1 = 5$ of i.m.s. we have $d \in \{0,1,2,3\}$.
- 5. $\langle 8,4,3,2 \rangle \downarrow S_{16} = (\langle 7,4,3,2 \rangle^*)^2 + (\langle 8,4,3,1 \rangle^*)^2 = 4 \text{ of i.m.s. we have } f \in \{0,1,2\}$
- 6. $(6,5,4,2) \downarrow S_{16} = ((6,5,3,2)^*)^1 + ((6,5,4,1)^*)^1 = 2 \text{ of i.m.s. we have } h \in \{0,1\}.$

If a = 0 then k_1 splits to give $\langle 15,2 \rangle + \langle 13,4 \rangle$ and $\langle 15,2 \rangle' + \langle 13,4 \rangle'$

If a = 1:

- 1) Since $\langle 15,2 \rangle \downarrow S_{16} \cap \langle 13,4 \rangle \downarrow S_{16} = 2$ of i.m.s for S_{16} $\langle 15,2 \rangle \cap \langle 13,4 \rangle = \Psi_1 + \varphi_1$ if $b \in \{1,2\}$ $= \varphi_1$ if b = 0;
- 2) There is no i.m.s. in $\langle 15,2 \rangle \downarrow S_{16} \cap \langle 11,4,2 \rangle^* \downarrow S_{16}$, then c=0;
- 3) There is no i.m.s. in $\langle 15,2 \rangle \downarrow S_{16} \cap \langle 10,4,2,1 \rangle \downarrow S_{16}$ then d=0;
- 4) There is no i.m.s. in $\langle 15,2 \rangle \downarrow S_{16} \cap \langle 8,4,3,2 \rangle \downarrow S_{16}$, then f=0;
- 5) There is no i.m.s. in $\langle 15,2 \rangle \downarrow S_{16} \cap \langle 6,5,4,2 \rangle \downarrow S_{16}$, then h=0.

We, now, get the possible columns

$$Y_1 = \langle 15,2 \rangle + b \langle 13,4 \rangle$$
,

$$Y_2 = \langle 15, 2 \rangle' + b \langle 13, 4 \rangle'$$
, $b \in \{0, 1, 2\}$

$$deg Y_1 \equiv 0$$
 and $deg Y_2 \equiv 0$ only when $b = 1$

then
$$k_1$$
 splits to $\langle 15,2 \rangle + \langle 13,4 \rangle$, and $\langle 15,2 \rangle' + \langle 13,4 \rangle'$

Since $\langle 13,4 \rangle \neq \langle 13,4 \rangle'$ on $(11,\alpha)$ then either k_2 is splits or there are two columns. If we suppose there are another two columns such as Y_1 and Y_2 (as in Table (2)with $\alpha = 0$)

To describe these two columns:

Since $\langle 15,2 \rangle \downarrow$ is two i.m.s. then $b \in \{0,1\}$, now if b=1 we have :

- 1) Since $\langle 13,4 \rangle \downarrow S_{16} \cap \langle 11,4,2 \rangle^* \downarrow S_{16} = 2$ of i.m.s for S_{16} $\langle 13,4 \rangle \cap \langle 11,4,2 \rangle^* = \Psi_2 + \varphi_3$ if $c \in \{1,2,3,4,5,6\}$ $= \Psi_2$ if c = 0;
- 2) There is no i.m.s. in $(13,4) \downarrow S_{16} \cap (10,4,2,1) \downarrow S_{16}$, then d = 0;
- 3) There is no i.m.s. in $(13,4) \downarrow S_{16} \cap (8,4,3,2) \downarrow S_{16}$, then f = 0;
- 4) There is no i.m.s. in $(13,4) \downarrow S_{16} \cap (6,5,4,2) \downarrow S_{16}$, then h = 0.

We, get the possible columns

$$Y_1 = \langle 13,4 \rangle + c \langle 11,4,2 \rangle^*$$

$$Y_2 = \langle 13,4 \rangle^{'} + c \langle 11,4,2 \rangle^*, c \in \{0,1,2,3,4,5,6\}$$

$$\deg Y_1 \equiv 0$$
 and $\deg Y_2 \equiv 0$ only when $c = 1$

So k_2 splits to give $\langle 13,4 \rangle + \langle 11,4,2 \rangle^*$ and $\langle 13,4 \rangle' + \langle 11,4,2 \rangle^*$ which is the same when b=0.

Since $(6,5,4,2) \neq (6,5,4,2)'$ on $(11,\alpha)$ then k_4 splits or there are two columns. If we suppose there are another two columns such as Y_1 and Y_2 (as in Table (2) with = 0, b = 0).

To describe Y_1 and Y_2 :

If h = 1:

- 1) There is no i.m.s. in $(6,5,4,2) \downarrow S_{16} \cap (11,4,2)^* \downarrow S_{16}$, then c = 0;
- 2) There is no i.m.s. in $(6,5,4,2) \downarrow S_{16} \cap (10,4,2,1) \downarrow S_{16}$, then d = 0;
- 3) Since $(6,5,4,2) \downarrow S_{16} \cap (8,4,3,2) \downarrow S_{16} = 2$ of i.m.s for S_{16} $(6,5,4,2) \cap (8,4,3,2) = \Psi_4 + \varphi_9$ if $f \in \{1,2\}$ $= \Psi_4$ if f = 0.

We, get the possible columns

$$Y_1 = f (8,4,3,2) + (6,5,4,2),$$

$$Y_2 = f (8,4,3,2)' + (6,5,4,2)', f \in \{0,1,2\}$$

$$\deg Y_1 \equiv 0$$
 and $\deg Y_2 \equiv 0$ only when $f = 1$

So, k_4 splits to(8,4,3,2) + (6,5,4,2) and (8,4,3,2)' + (6,5,4,2)' which is the same when h = 0.

Now, since $\langle 8,4,3,2 \rangle \neq \langle 8,4,3,2 \rangle'$ on $(11,\alpha)$ -regular classes and we have 9 columns, then k_3 must be a split to $\langle 10,4,2,1 \rangle + \langle 8,4,3,2 \rangle$ and $\langle 10,4,2,1 \rangle' + \langle 8,4,3,2 \rangle'$.

So we get the Brauer tree for the block $B_3 \blacksquare$.

From lemmas above we can find the 11-decomposition matrix for the spin characters of S_{17} . We write this decomposition matrix in appendix II

Section(2)

The decomposition matrix for S_{18} modulo p=11 of degree (69, 61) [A.O.Morris 1962],[A.O.Morris and A.K.Yassen 1988].

There are 31 blocks B_1, \ldots, B_5 , of defect one and the others blocks of defect zero.

Lemma(2.1)

The Braure tree for the block B_2 is:

$$\langle 17,1\rangle^* _ \langle 12,6\rangle^* _ \langle 11,6,1\rangle = \langle 11,6,1\rangle^{'} _ \langle 9,6,2,1\rangle^* _ \langle 8,6,3,1\rangle^* _ \langle 7,6,4,1\rangle^*$$

Proof:

a)
$$\deg(17,1)^* \equiv \deg(8,6,3,1)^* \equiv \deg((11,6,1) + (11,6,1)') \equiv 4$$

 $\deg(12,6)^* \equiv \deg(9,6,2,1)^* \equiv \deg(7,6,4,1)^* \equiv -4$

b) The p.i.s. for S_{18} :

$$d_2 \uparrow^{(1,0)} S_{18}, \ d_3 \uparrow^{(1,0)} S_{18}, \ d_4 \uparrow^{(1,0)} S_{18}, d_5 \uparrow^{(1,0)} S_{18}, \ d_6 \uparrow^{(6,6)} S_{18}$$

With the relations on 11-regular classes

1.
$$\langle 11,6,1 \rangle = \langle 11,6,1 \rangle'$$

2.
$$\langle 11,6,1 \rangle = \langle 12,6 \rangle^* + \langle 9,6,2,1 \rangle^* + \langle 7,6,4,1 \rangle^* - \langle 17,1 \rangle^* - \langle 8,6,3,1 \rangle^*$$

We have the Braure tree for this block $B_2 \blacksquare$.

Lemma(2.2)

The Braure tree for the block B_3 is:

$$\langle 16,2\rangle^* _ \langle 13,5\rangle^* _ \langle 11,5,2\rangle = \langle 11,5,2\rangle^{'} _ \langle 10,5,2,1\rangle^* _ \langle 8,5,3,2\rangle^* _ \langle 7,5,4,2\rangle^*$$

Proof:

a)
$$\deg(13,5)^* \equiv \deg(10,5,2,1)^* \equiv \deg(7,5,4,2)^* \equiv 6$$

 $\deg(16,2)^* \equiv \deg(8,5,3,2)^* \equiv \deg((11,5,2) + (11,5,2)^{'}) \equiv -6$

b) The p.i.s. for S_{18} :

$$d_6\uparrow^{(2,10)}S_{18}$$
 , $d_8\uparrow^{(2,10)}S_{18}$, $d_{10}\uparrow^{(2,10)}S_{18}$,

$$d_{12} \uparrow^{(2,10)} S_{18}$$
 , $d_{14} \uparrow^{(2,10)} S_{18}$,

with the relations on 11-regular classes

1.
$$\langle 11,5,2 \rangle = \langle 11,5,2 \rangle'$$

2.
$$\langle 11,5,2 \rangle = \langle 13,5 \rangle^* + \langle 10,5,2,1 \rangle^* + \langle 7,5,4,2 \rangle^* - \langle 16,2 \rangle^* - \langle 8,5,3,2 \rangle^*$$

We have the Braure tree for this block $B_3 \blacksquare$.

Lemma(2.3)

The Braure tree for the block B_4 is:

$$\langle 15,3\rangle^* _ \langle 14,4\rangle^* _ \langle 11,4,3\rangle = \langle 11,4,3\rangle^{'} _ \langle 10,4,3,1\rangle^* _ \langle 9,4,3,2\rangle^* _ \langle 6,5,4,3\rangle^*$$

Proof:

a)
$$\deg(15,3)^* \equiv \deg((11,4,3) + (11,4,3)') \equiv \deg(9,4,3,2)^* \equiv 4$$

 $\deg(14,4)^* \equiv \deg(10,4,3,1)^* \equiv \deg(6,5,4,3)^* \equiv -4$

b) The p.i.s. for S_{18} :

$$d_{16} \uparrow^{(3,9)} S_{18}$$
 , $d_{18} \uparrow^{(3,9)} S_{18}$, $d_{20} \uparrow^{(3,9)} S_{18}$, $d_{22} \uparrow^{(3,9)} S_{18}$, $d_{24} \uparrow^{(3,9)} S_{18}$

With the relations on 11-regular classes

1.
$$\langle 11,4,3 \rangle = \langle 11,4,3 \rangle'$$

2.
$$\langle 11,4,3 \rangle = \langle 14,4 \rangle^* + \langle 10,4,3,1 \rangle^* + \langle 6,5,4,3 \rangle^* - \langle 15,3 \rangle^* - \langle 9,4,3,2 \rangle^*$$

We have the Braure tree for this block $B_4 \blacksquare$.

Lemma(2.4)

The Brauer tree for the block B_5 is:

Proof:

a)
$$\deg\{\langle 13,4,1\rangle,\langle 13,4,1\rangle^{'},\langle 11,4,2,1\rangle^{*},\langle 6,5,4,2,1\rangle,\langle 6,5,4,2,1\rangle^{'}\}\equiv 6$$

 $\deg\{\langle 15,2,1\rangle,\langle 15,2,1\rangle^{'},\langle 12,4,2\rangle,\langle 12,4,2\rangle^{'},\langle 8,4,3,21\rangle,\langle 8,4,3,2,1\rangle^{'}\}\equiv -6$

b) By using (r, \bar{r}) -inducing of p.i.s for S_{17} to S_{18} we get on p.i.s:

$$\begin{array}{l} d_{16}\uparrow^{(1,0)}S_{18}\ ,\ d_{17}\uparrow^{(1,0)}S_{18}\ ,\ d_{22}\uparrow^{(1,0)}S_{18}\ ,\\ d_{23}\uparrow^{(1,0)}S_{18}\ ,\ d_{24}\uparrow^{(1,0)}S_{18}\ ,\ d_{25}\uparrow^{(1,0)}S_{18} \\ \text{and p.s.} \end{array}$$

$$d_{27} \uparrow^{(4,8)} S_{18} = k_1, d_{18} \uparrow^{(1,0)} S_{18} = k_2, d_{19} \uparrow^{(1,0)} S_{18} = k_3,$$

Since (12,4,2,1) and (12,4,2,1)' are p.i.s. of S_{19} (of defect 0 in S_{19} , p=11) and:

$$\langle 12,4,2,1 \rangle \downarrow_{(1,0)} S_{18} = \langle 12,4,2 \rangle + \langle 11,4,2,1 \rangle^* = m_1$$

$$\langle 12,4,2,1 \rangle' \downarrow_{(1,0)} S_{18} = \langle 12,4,2 \rangle' + \langle 11,4,2,1 \rangle^* = m_2$$

Then, k_4 must be a split to m_1 and m_2

Now since $k_1 = k_2 + k_3 - m_1 - m_2$, either $(k_2 - m_2 \text{ and } k_3 - m_1)$ or

$$(k_3 - m_2 \ and k_2 - m_1)$$
 are p.s.

Let
$$c_3 = k_2 - m_2$$
, $c_4 = k_3 - m_1$

Hence, we have the Braure tree for this block $B_5 \blacksquare$.

Lemma(2.5)

The Brauer tree for the block B_1 is:

Proof:

a)
$$\deg\{\langle 11,7\rangle^*, \langle 9,7,2\rangle, \langle 9,7,2\rangle', \langle 7,6,5\rangle, \langle 7,6,5\rangle'\} \equiv 8$$

$$deg\{\langle 18 \rangle, \langle 18 \rangle', \langle 10,7,1 \rangle, \langle 10,7,1 \rangle', \langle 8,7,3 \rangle, \langle 8,7,3 \rangle'\} \equiv -8.$$

b) By using (r, \bar{r}) -inducing of p.i.s for S_{17} (appendix II) to S_{18} :

$$d_1 \uparrow^{(7,5)} S_{18} = k_1$$
, $d_3 \uparrow^{(7,5)} S_{18} = k_2$, $d_4 \uparrow^{(7,5)} S_{18} = k_3 d_5 \uparrow^{(7,5)} S_{18} = k_4$,
 $\langle 10,7 \rangle \uparrow^{(1,0)} S_{18} = c_3$, $\langle 10,7 \rangle \uparrow^{(1,0)} S_{18} = c_4$

 k_1 must be split to c_1 and c_2 . Since $\langle 7,6,5 \rangle \neq \langle 7,6,5 \rangle'$ on $(11,\alpha)$ and $\langle 7,6,5 \rangle \downarrow S_{17} = (\langle 7,6,4 \rangle^*)^1$ is i.m.s in S_{17} then k_4 splits to c_9 and c_{10} .

we get the matrix (Table (3))

Table (3)

	φ_1	φ_2	φ_3	φ_4	Ψ ₁	Ψ ₂	φ_9	$arphi_{10}$	φ_7	$arphi_8$
⟨18⟩	1									
⟨18⟩ [′]		1								
⟨11,7⟩ *	1	1	1	1					b	b
(10,7,1)			1		1				c	
(10,7,1)				1	1					c
(9,7,2)					1	1			d	
(9,7,2) [']					1	1				d
(8,7,3)						1	1		f	
(8,7,3) [']						1		1		f
(7,6,5)							1			
(7,6,5) [']								1		
	c_1	c_2	c_3	c_4	k_2	k_3	<i>c</i> ₉	c_{10}	<i>Y</i> ₁	<i>Y</i> ₂

Since $(8,7,3) \neq (8,7,3)$ on $(11,\alpha)$ -regular classes ,then either k_3 is splits or there are two columns . If we suppose there are two columns Y_1 and Y_2 (as in Table (3)).

We, now, describe the columns Y_1 and Y_2

- 1. $\langle 11,7 \rangle^* \downarrow S_{17} = (\langle 10,7 \rangle)^1 + (\langle 10,7 \rangle')^1 + (\langle 11,6 \rangle)^2 + (\langle 11,6 \rangle')^2 = 6 \text{ of i.m.s.}$ (see appendix II) and form (Table(3)) we have $b \in \{0,1,2\}$
- 2. $\langle 10,7,1 \rangle \downarrow S_{17} = (\langle 9,7,1 \rangle^*)^1 + (\langle 10,6,1 \rangle^*)^2 + (\langle 10,7 \rangle)^1 = 4 \text{ of i.m.s.} so \ c \in \{0,1,2\}.$
- 3. $\langle 9,7,2 \rangle \downarrow S_{17} = (\langle 8,7,2 \rangle^*)^1 + (\langle 9,6,2 \rangle^*)^2 + (\langle 9,7,1 \rangle^*)^1 = 4 \text{ of}$ i.m.s. so $d \in \{0,1,2\}$.
- 4. $\langle 8,7,3 \rangle \downarrow S_{17} = (\langle 8,6,3 \rangle^*)^2 + (\langle 8,7,2 \rangle^*)^1 = 3 \text{ of i.m.s.}$ so $f \in \{0,1\}$

If f = 1:

1) There is no i.m.s. in $(8,7,3) \downarrow S_{17} \cap (11,7)^* \downarrow S_{17}$, then b = 0.

- 2) There is no i.m.s. in $\langle 8,7,3 \rangle \downarrow S_{17} \cap \langle 10,7,1 \rangle \downarrow S_{17}$, then c=0
- 3) Since $\langle 8,7,3 \rangle \downarrow S_{17} \cap \langle 9,7,2 \rangle \downarrow S_{17} = 2$ of i.m.s. and $\langle 8,7,3 \rangle \cap \langle 9,7,2 \rangle = \Psi_2 + \varphi_7$ if $d \in \{1,2\}$ $= \varphi_7 \quad \text{if } d = 0$

So the possible columns

$$Y_1 = d (9,7,2) + (8,7,3),$$

$$Y_2 = d \langle 9,7,2 \rangle' + \langle 8,7,3 \rangle', d \in \{0,1,2\}$$

 $\deg Y_1 \equiv 0$ and $\deg Y_2 \equiv 0$ only when d=1, so k_3 splits to give $\langle 9,7,2 \rangle + \langle 8,7,3 \rangle$, and $\langle 9,7,2 \rangle' + \langle 8,7,3 \rangle'$, which is the same when f=0.

Now, since $\langle 9,7,2 \rangle \neq \langle 9,7,2 \rangle'$ on $(11,\alpha)$ -regular classes and we have 9 columns; then, k_2 must be a splits to $\langle 10,7,1 \rangle + \langle 9,7,2 \rangle$, and $\langle 10,7,1 \rangle' + \langle 9,7,2 \rangle'$. Hence, we have the Braure tree for this block $B_1 \blacksquare$.

From lemmas above, we can find the 11-decomposition matrix for the spin characters of S_{18} . We write this decomposition matrix in appendixIII

Appendix I The decomposition matrix for the spin characters of S_{16} , p=11

The spin characters		The	deco	mposi	tion m	atrix	for the	blocl	k B ₁	
(16)	1									
⟨16⟩ [′]		1								
⟨11,5⟩*	1	1	1	1						
(10,5,1)			1		1					
(10,5,1) [']				1		1				
(9,5,2)					1		1			
(9,5,2) [']						1		1		
(8,5,3)							1		1	
(8,5,3) [']								1		1
(7,5,4)									1	
⟨7,5,4⟩ [′]										1
	D_1	D ₂	D_3	D_4	D_5	D_6	D_7	D_8	D ₉	D ₁₀

The spin characters	The d	lecomposit	ion matrix	for the blo	ck B ₂
⟨15,1⟩*	1				
(12,4)*	1	1			
(11,4,1)		1	1		
⟨11,4,1⟩ [′]		1	1		
(9,4,2,1)*			1	1	
(8,4,3,1)*				1	1
(6,5,4,1)*					1
	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}

The spin characters	Т	he decomp	osition ma	trix for the	block B ₃
(14,2)*	1				
(13,3)*	1	1			
(11,3,2)		1	1		
〈11,3,2〉 [′]		1	1		
⟨10,3,2,1⟩*			1	1	
⟨7,4,3,2⟩*				1	1
(6,5,3,2)*					1
	D_{16}	D_{17}	D_{18}	D_{19}	D_{20}

Appendix II

The decomposition matrix for the spin characters of S_{17} , p=11

The spincharacters	The decom	position ma	trix for the b	olock B ₁	
	1				
	1	1			
	1	1			
		1	1		
			1	1	
				1	1
					1
	d_1	d_2	d_3	d_4	d_5

The spin characters		The	decor	nposit	tion m	atrix f	or the	block	B_2	
(16,1)	1									
〈16,1〉		1								
(12,5)	1		1							
〈12,5〉		1		1						
⟨11,5,1⟩*			1	1	1	1				
(9,5,2,1)					1		1			
(9,5,2,1) [']						1		1		
(8,5,3,1)							1		1	
(8,5,3,1) [']								1		1
(7,5,4,1)									1	
(7,5,4,1) [']										1
	d_6	d_7	d_8	d_9	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}

The spin characters		The	decor	nposit	ion m	atrix f	or the	block	<i>B</i> ₃	
(15,2)	1									
〈15,2〉 [′]		1								
(13,4)	1		1							
〈13,4〉 [′]		1		1						
⟨11,4,2⟩*			1	1	1	1				
(10,4,2,1)					1		1			
⟨10,4,2,1⟩ [′]						1		1		
(8,4,3,2)							1		1	
(8,4,3,2) [']								1		1
(6,5,4,2)									1	
(6,5,4,2) [']										1
	d_{16}	d_{17}	d_{18}	d_{19}	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}	d_{25}

The spin	The decompo	sition matrix f	For the block B	B_4	
characters					
⟨14,2,1⟩*	1				
⟨13,3,1⟩*	1	1			
⟨12,3,2⟩*		1	1		
(11,3,2,1)			1	1	
(11,3,2,1)			1	1	
(7,4,3,2,1)*				1	1
(6,5,3,2,1)*					1
	d ₂₆	d ₂₇	d ₂₈	d ₂₉	d ₃₀

Appendix III

The decomposition matrix for the spin characters of S_{18} , p=11

The spin characters		The	decor	nposi	tion n	natrix	for th	e bloc	ck <i>B</i> ₁	
(18)	1									
⟨18⟩ [′]		1								
⟨11,7⟩ *	1	1	1	1						
(10,7,1)			1		1					
⟨10,7,1⟩ [′]				1		1				
(9,7,2)					1		1			
(9,7,2) [']						1		1		
(8,7,3)							1		1	
⟨8,7,3⟩ [′]								1		1
(7,6,5)									1	
(7,6,5) [']										1
	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8	d_9	d_{10}

The spin characters	The decomposition matrix for the block B_2							
⟨17,1⟩*	1							
⟨12,6⟩*	1	1						
(11,6,1)		1	1					
〈11,6,1〉		1	1					
			1	1				
⟨8,6,3,1⟩*				1	1			
⟨7,6,4,1⟩*					1			
	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			

The spin characters	The decomposition matrix for the block B_3							
⟨16,2⟩*	1							
⟨13,5⟩*	1	1						
(11,5,2)		1	1					
(11,5,2) [']		1	1					
(10,5,2,1)*			1	1				
(8,5,3,2)*				1	1			
(7,5,4,2)*					1			
	d_{16}	d_{17}	d_{18}	d_{19}	d_{20}			

The spin characters	The decomposition matrix for the block B_4							
⟨15,3⟩*	1							
(14,4) *	1	1						
(11,4,3)		1	1					
⟨11,4,3⟩ [′]		1	1					
⟨10,4,3,1⟩*			1	1				
⟨9,4,3,2⟩*				1	1			
⟨6,5,4,3⟩*					1			
	d_{21}	d_{22}	d_{23}	d_{24}	d_{25}			

The spin characters	The decomposition matrix for the block B_5									
(15,2,1)	1									
⟨15,2,1⟩ [′]		1								
(13,4,1)	1		1							
⟨13,4,1⟩ [′]		1		1						
(12,4,2)			1		1					
⟨12,4,2⟩ [′]				1		1				
⟨11,4,2,1⟩*					1	1	1	1		
(8,4,3,21)							1		1	
(8,4,3,2,1) [']								1		1
(6,5,4,2,1)									1	
(6,5,4,2,1) [']										1
	d_{26}	a	a	a	a	a	a	a	a	а

References

C.Bessenrodt, A.O.Morris and J.B.Olsson:Decomposition matrices for spin characters of symmetric groups at characteristic 3, J. Algebra, Vol.164, no.1, (1994), 146 - 172.

L.Dornhoff: Group representation theory, parts A and B. Marcel Dekker Inc, (1971), (1972).

J.F.Humphreys: Projective modular representations of finite groups I,J.London Math. Society (2), 16 (1977) 51 - 66.

G.D.James and A.Kerber: The representation theory of the symmetric group, Reading, Mass, Aaddiso-Wesley, (1981).

Lukas Maas: Decomposition Matrices for Spin Characters of Symmetric and Alternating Groups, Nikolaus Conference 2010, Aachen.

A.O.Morris :The spin representation of the symmetric group, proc.London Math.Soc.(3) 12 (1962), 55 - 76.

A.O.Morris and A.K. Yassen: Decomposition matrices for spin characters of symmetric group, Proc. of Royal society of Edinburgh, 108A, (1988),145-164.

B.M.Puttaswamaiah and J.D.Dixon :Modular representation of finite groups,Academic Press,(1977).

I.Schur:Uber die Darstellung der symmetrischen und der alternierendengruppedurchgebrochenelinearesubtituttionen "j.Reineang.Math. "139(1911) 155-250 . S.A.Taban:On the decomposition matrices of the projetive characters of the symmetric groups "M.Sc.Thesis,Basrah University (1989).

A.K.Yassen :Modular spin representations of the symmetric groups , Ph.D thesis, Aberywyth,(1987) .

A.K.Yassen :Modular Spin Characters of the symmetric Groups S_n , $15 \le n \le 16$ at Characteristic 11, J.Basrah Researches (1995)

$\mathbf{p}=\mathbf{11}$ معيار \mathbf{S}_{18} و \mathbf{S}_{17} معيار التناظريتين

سعيد عبد الامير تعبان و أحمد حسين جاسم قسم الرياضيات / كلية العلوم / جامعة البصرة

الملخص

في هذا البحث تم ايجاد أشجار برور للزمرتين التناظريتين S_{17} و S_{18} معيار S_{17} و التي تعطي المشخصات الأسقاطية المعيارية غير القابلة للتحليل لـ S_{18} و S_{18} معيار S_{18} و S_{18}