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Abstract:
In this paper we find the Brauer trees of the symmetric groups S;7andS;g modulo p=11 which can
give the irreducible modular spin characters of S;,and Si;g modulo p=11, also we give the

11 —decomposition matrix 0fS;7,5;g.

Introduction:

Schur showed that the symmetric group S,, has a representation group S,, which is of order2(n!) ,
and it has a central subgroup Z = {1, —1} such thatS,, /Z = S, [1.Schur 1911].The representations
of S,, fall into two classes [A.O.Morris1962], [1.Schur 1911]:

1) Those which have Zin their kernel; these are called the ordinary representations of S,,, the
irreducible representations and characters of S, are indexed by the partition of n.

2) The representations which do not have Zin their kernel; these representation are called
spin(projective) representations of S, the irreducible spin representations are indexed by the
partitions of n with distinct parts which are called bar partitions of n [A.O.Morris and
A.K.Yassen 1988].

For p = 11Yaseen [ A.K.Yassen 1987] was found the modular irreducible spin character of S,, for
11 < n < 14 and for n = 15,16 also was found by Yaseen[A.K.Yassen1995],we use the
techniques as given in [G.D.James and A.Kerber1981] ,[Lukas Maas 2010], to find the modular
irreducible spin character modulo 11 for S;;andS;g .

The main aim of this paper is to calculate the decomposition matrix for the spin characters for
S17,818,p = 11.

Preliminaries: Any spin character of S,, can be written as a linear combination , with non-negative
integer coefficients, of the irreducible spin character [L.Dornhoff 1972].

1. The degree of the spin characters (a) = (a4, ..., @, )IS:
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2.

a)

b)

d)

5.

deg{a) = 272 [T 0o on(a; — @) /(@ + a;)[A.O.Morris 1962], [A.O.Morris and

A.K.Yassen 1988].

Let B be the block of defect one and let b the number of P —conjugate characters to the
irreducible ordinary character yof G.

Then[B.M.Puttaswamaiah and J.D.Dixon 1977]:

There exists a positive integer number N such that the irreducible ordinary characters of G

are lying in the block B divided into two disjoint classes :B;={y € B |bdegx = N mod p®}

B,={xy € B |bdegx = —N mod p®}

Each coefficient of the decomposition matrix of the block B is 1 or 0.

If a;and @, are not p —conjugate characters and are belong to the same class(B;,B;) above ,

then they have no irreducible modular character in common .

For every irreducible ordinary character yin B;, there exists irreducible ordinary character

@ in B, such that they have one irreducible modular character in common with one

multiplicity .

If C is a principal character of G for an odd prime p and all the entries in C are divisible by a

non-negative integer q, then (1\q)C is a principal character of G[G.D.James and A.Kerber
1981].

Let p be odd then[A.O.Morris and A.K.Yassen 1988] :

a) (n)and(n) are irreducible modular spin characters of degree 2[*7%/2] which are denoted by
@{(n) and @(n) respectively, and @(n) = (n)". If p tn and n is even,except when n is
odd and p/n in which case (n) = @(n) + @(n), where @(n) and @(n) are distinct
irreducible modular spin characters of degree 2[(»=3)/21,

b) If nis even and ptnor pt(n—1), then (n—1,1) is an irreducible modular spin
character of degree 212721 x (n — 2) which is denoted by ¢(n — 1,1)*.

c) If nisodd and p tnor p + n—1, then (n —1,1) and (n — 1,1) are distinct irreducible
modular spin characters of degree 2[(*=3)/2] x (n — 2) which are denoted by ¢(n — 1,1)
and @(n — 1,1) respectively.

If C is a principal character of G for a prime p, then degC = 0 mod p*# , where 0(G) =

pAm, (p,m) = 1[S.A.Taban 1989],[J.F.Humphreys 1977].

Let 81", B2, B2 B3, Bz be modular spin characters where B;* is a double character , B, # B,
are associate modular spin characters (real),and B3 # /33' are associate modular spin

characters (complex). Let @1*, @4, @5, @3, @3 be irreducible modular spin characters ,where
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@, is a double character ,p, # ¢, and @3 # @ are associate irreducible modular spin

characters (real), (complex) respectively then[A.K.Yassen 1987]:

Q) Bi", B Bo containsgs and @5 with the same multiplicity ,5," which contains ¢, and ¢,’

with the same multiplicity .
b) B and B; containsg;*, @,, @,  with the same multiplicity.
) ¢sisa constituent of B with the same multiplicity as that of ¢'in B .
7. If the decomposition matrix D,,_; ,, = (dij) for S,,_4 is know , then we can induced columns
(lpj 167 Sn) for S,,[4], these columns are a linear combination with non-negative coefficients

from the columns of D, ,, [G.D.James and A.Kerber 1981].

Notation:

p.s. principle spin character.

p.i.s. principle indecomposable spin character.
m.s. modular spin character.

i.m.s. irreducible modular spin character.
(<A>) (no) mean the number of i.m.s.in< 1>
= Equivalence mod11.

Section (1)

The decomposition matrix for S;7 modulo p=11 of degree (57, 51) [A.O.Morris 1962],[A.O.Morris
and A.K.Yassen 1988].There are 25 blocks four of them B; ,B,,B3,B,, are of defect one, the
others Bs,... ,B,s0f defect zero.
Lemma (1.1)The Brauer tree for the block B; is:
(17)*___(11,6) =(11,6) __ (10,6,1) __ (9,6,2) _ (8,6,3) __ (7,6,4)*
Proof :

a) deg(9,6,2)* =deg (7,6,4)* = deg ({(11,6) + (11,6)) = 8.

deg(17)* =deg (10,6,1)" =deg (8,6,3)" = —

b) By using (6,6)-inducing of p.i.s for S;4(see appendix ) to S;; we get on:

Dy 160 50 = (17) +(11,6) + (11,6)

Dy 100 5. = (11,6) + (11,6) + (10,6,1)*

Ds 100 5. = (10,6,1)* + (9,6,2)"

D, 10 5., =(9,6,2)" + (8,6,3)"

Dy 160 5., = (8,6,3)" + (7,6,4)"

onl1-regular classes we have

1. (11,6) = (11,6)
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2. (11,6,1) = (17)* +(10,6,1)* + (8,6,3)* — (9,6,2)* — (7,6,4)*. Hence, we have the Braure
tree for this blockB;. m
Lemma(l.2)
The Brauer tree for the block B,is:

(16,1) — (12,5)\ /(9,5,2,1) - (8,5,3,1) — (7,5,4,1)

(11,5,1)* \
(9,5,2,1) — (8,5,3,1) — (7,5,4,1)

(16,1) —(12,5)' /
Proof:
a) deg{(16,1),(16,1),(11,5,1)*, (8,5,3,1), (8,5,3,1) }= 6
deg{(12,5),(12,5), (9,5,2,1), (9,5,2,1) , (7,5,4,1),(7,5,4,1) }= —6.
b) Byusing (1,0)-inducing of p.i.s for S;s(see appendix I)to S;; we get p.i.s.
Ds 1009 5. D, 100 5o D, 10 5 Dg 140 g, Dy 100 5 Do 13D S, and
Dy 140§ =k, p.s
Dy 109 8, =k, D, 100 Sy = k3 , D3 1AV 5, =k, .

So we have the approximation matrix(Table(1))

Table (1)

(16,1) 1 1

(16,1) 1 1

(12,5) 1 1 1 1

(12,5) 1 1 1 1
(11,5,1)* 1 1 2 1 1
(9,5,2,1) 1 1
(9,5,2,1) 1 1
(8,5,3,1) 1 1
(8,5,3,1) 1 1
(7,5,4,1) 1
(7,5,4,1) 1

ki | ky | ks | kg | 5 | 6 | €7 | €8 | € | C10

(16,1) # (16,1) sok;splits to c;and c,.
k4 = ky +k3- c1-c , this give p.i.s.k, —¢q , k3 — cy.
Hence we have the Braure tree for this blockB, m.
Lemma(1.3)
The Brauer tree for the block B, is:
(14,2,1)_ (13,3,1)*__(12,3,2)* (11,3,2,1)=(11,3,2,1) _ (7,4,3,2,1)* (6,5,3,2,1)*
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Proof:
a) deg(13,3,1)* =deg (6,5,3,2,1)* = deg (11,3,2,1) + (11,3,2,1)') = 8
deg(14,2,1)" =deg (12,3,2)" =deg (7,4,3,2,1)" = —
b) By using (r,7)-inducing of p.i.s. Dyg ,Dig D19 ,\Dog ,{12,3,1),for S;¢(se appendix 1) to S,
we get on.
1) (14,2,1)* + (13,3,1)"
2) 2(12,3,2)* +2(11,3,2,1) 4+ 2(11,3,2,1) = 2k .50 k is p.i.
3) (11,3,2,1) + (11,3,2,1)' +(7,4,3,2,1)".
4) (7,4,3,2,1)"+(6,5,3,2,1)".
5) (13,3,1)*+ (12,3,2)".
onl1-regular classes we have
1. (11,3,2,1) = (11,3,2,1)
2. (11,3,2,1) = (14,2,1)* +(12,3,2)" +(7,4,3,2,1)" —(13,3,1)" — (6,5,3,2,1)"
Then,we get the Brauer tree for the block B, m.
Lemma(1.4)
The Brauer tree for the block Bsis:

(15,2) — (13,4) \ /(10,4,2,1) — (8,4,3,2) — (6,5,4,2)

(11,4,2)* \
(10,4,2,1) — (8,4,3,2) —(6,5,4,2)’

(15,2) — (13,4)’/
Proof:
a) deg{(13,4),(13,4), (10,4,2,1),(10,4,2,1) (6,5,4,2),(6,5,4,2) }= 9
deg{(15,2),(15,2), (11,4,2)* (8,4,3,2),(8,4,3,2) }= —9..
b) By using (r,7)-inducing of p.i.s for S;,(see appendix 1) to S;; we get on:
D4 1(2,10) Si7=ky , Dip 1(2,10) Si7 =ky , Dy 1(2,10) S17 = ks
D15 1310 817 = ky, (10,4.2) 10V 817 = c5,(104,2) 10D 57 = ¢,

Thus, we have the approximation matrix(Table (2))

Table(2)

b 41 b @s (O V3 ¥y 1 ®2

(15,2) 1 a
(15,2) 1 a

(13,4) 1 1 b
(13,4) 1 1 b
(11,4,2)" 2 1 1 c c

(10,4,2,1) 1 1 d
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(10,4,2,1) 1 1 d
(8,4,3,2) 1 1 f
(8,4,3,2) 1 1 f
(6,5,4,2) 1 h
(6,5,4,2) 1 h

kq ko Cs Ce ks ky Y Y,

Since (15,2) # (15,2) on (11, a)-regular classes then either k; is split or there are another two
columns. Suppose there are two columns such as Y; and Y,
To describe columnsY; and Y,
1. (15,2) L S1 = ((14,2)) + ((15,1))! = 2 of i.m.s(see appendix I) and form
(Table(2))we have a € {0,1}.
2. (13,4) 1 S, = ((12,4))? + ((13,3)*)%? = 4 of i.m.s. we have b € {0,1,2}.
3. (11,4,2)" L Sig = ((10,4,2)" + ((10,4,2) ) + ((11,3,2)% + ((11,3,2) )2 + ((11,4,1)) +
((11,4,1))% =10 of i.m.s. we have c €{0,1,2,3,4,5,6}.
4. (10,4,2,1) ! S16 = ((9,4,2,1)")? + ((10,3,2,1)*)?+({10,4,2))! =5
of i.m.s. we have d € {0,1,2,3}.
5. (8,4,3,2) | S15 = ((7,4,3,2))% + ((8,4,3,1)*)? = 4 of i.m.s. we have f € {0,1,2}
6. (6,54,2)! S, =(65,32)) + ((6,54,1))! = 2 of i.m.s. we have h € {0,1}.
If a = 0 then k; splits to give (15,2) + (13,4) and (15,2) + (13,4)
Ifa=1:
1) Since (15,2) | S;4 N (13,4) | S = 2 of i.m.s for Si¢
(15,2) N (13,4) =¥, + ¢, if b € {1,2}
=@, if b=0;
2) Thereisnoim.s.in(15,2) | S; N (11,4,2)* | Si4,thenc=0;
3) Thereisnoim.s.in (15,2) I S;4 N (10,4,2,1) | S;¢thend =0
4) Thereisnoim.s.in (15,2) | S;6 N (8,4,3,2) | S14,then f =0;
5) Thereisnoi.m.s.in(15,2) I S;4 N (6,5,4,2) | Sis,then h = 0.
We, now, get the possible columns
Y;=(15,2) + b(13,4),
Y, =(15,2) + b(13,4) , b €{0,1,2}
deg¥; =0 anddegY, =0 onlywhenb =1
then k;splits to(15,2) + (13,4), and(15,2) + (13,4)
Since (13,4) # (13,4) on (11, @) then either k, is splits or there are two columns . If we

suppose there are another two columns such as Y; and Y,(as in Table (2)with a =0)
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To describe these two columns:
Since (15,2) | istwo i.m.s. thenb € {0,1}, now if b = 1 we have:
1) Since (13,4) | S N (11,4,2)* 1 S;4 =2 of i.m.s for Si¢
(13,4) N (11,4,2)*= ¥, + o5 if ¢ € {1,2,3,4,5,6}
=¥, if ¢=0;
2) Thereisnoim.s.in (13,4) | S; N (10,4,2,1) | Sy4,thend =0 ;
3) Thereisnoi.m.s.in (13,4) ! S;c N (8,4,3,2) I Si6, then f = 0;
4) Thereisnoim.s.in (13,4) | S;c N (6,5,4,2) | S;¢, then h = 0.
We, get the possible columns
Y;=(13,4) +c (11,4,2)* ,
Y, = (13,4) +c(11,4,2)", ¢ € {0,1,2,3,4,5,6}
degY; = 0 and degY, =0 onlywhenc =1
So k,splits to give (13,4) +(11,4,2)*and(13,4) +(11,4,2)* which is the same when b = 0.
Since (6,5,4,2) # (6,5,4,2) on (11, a)then k,splits or there are two columns. If we suppose there
are another two columns such as ¥; and Y, (as in Table (2) with=0,b = 0).
To describe Y;and Y5:
If h=1:
1) Thereisnoi.m.s.in (6,54,2) I S;g N (11,4,2)* | S¢,thenc =0 ;
2) Thereisnoi.m.s.in (6,54,2) | S;o N (10,4,2,1) | Si4, thend = 0;
3) Since (6,5,4,2) | S;5 N (8,4,3,2) |l S;c =2 of i.m.s for ;4
(6,54,2) N (8,4,3,2)= W, + ¢4 if f € {1,2}
=y, if f=0.
We, get the possible columns
Y;=f (8,4,3,2) +(6,5,4,2),
Y, = f (8,4,3,2) +(6,54,2) ,f €{0,1,2}
degY¥; = 0and degY, =0 onlywhen f =1
So, kysplits t0(8,4,3,2) +(6,5,4,2)and (8,4,3,2) +(6,5,4,2) which is the same when h =0 .
Now, since (8,4,3,2) # (8,4,3,2) on (11, a)-regular classes and we have 9 columns, then k5 must
be a split t0(10,4,2,1) +(8,4,3,2) and(10,4,2,1)" +(8,4,3,2) .
So we get the Brauer tree for the block B; m.
From lemmas above we can find the 11-decomposition matrix for the spin characters of S;; .We
write this decomposition matrix in appendix Il
Section(2)
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The decomposition matrix for S;g modulo p=11 of degree (69, 61) [A.O.Morris 1962],[A.O.Morris
and A.K.Yassen 1988].
There are 31 blocks By, ... ,Bs,of defect one and the others blocks of defect zero.
Lemma(2.1)
The Braure tree for the block B, is:
(17,1)* (12,6)*_(11,6,1) = (11,6,1) (9,6,2,1)* _(8,6,3,1)* (7,6,4,1)*
Proof :
a) deg(17,1)* = deg(8,6,3,1)* = degif{11,6,1) + (11,6,1)) =4
deg(12,6)* =deg (9,6,2,1)" = deg(7,6,4,1)" = -
b) The p.i.s. forSg:
dy 100 S1g, d3 109 Syg, dy 109 §1,ds 109 Sy, dg 109 Sy
With the relations on 11-regular classes
1. (11,6,1) =(11,6,1)
2. (11,6,1) =(12,6)" +(9,6,2,1)" +(7,6,4,1)" — (17,1)" — (8,6,3,1)"
We havethe Braure tree for this block B, m .
Lemma(2.2)
The Braure tree for the block B; is:
(16,2)* (13,5)*_(11,5,2) = (11,5,2)’_(10,5,2,1)*_(8,5,3,2)*_(7,5,4,2)*
Proof:
a) deg(13,5)" = deg(10,5,2,1)* = deg(7,5,4,2)" =6
deg(16,2)* = deg(8,5,3,2)" = deg((11,5,2) + (11,5,2)) = —6
b) The p.i.s. forSg:
de 1210 S18 , dg 1210) S18+ dio 1(210) S18)
dip 1310 S, dyy 1319 555,
with the relations on 11-regular classes
1. (11,52) =(11,5,2)
2. (11,5,2) = (13,5)" +(10,5,2,1)" +(7,5,4,2)" — (16,2)* — (8,5,3,2)"
We have the Braure tree for this block B; m.
Lemma(2.3)
The Braure tree for the block B,is :
(15,3)* (14,4 )*_(11,4,3) = (11,4,3)’_(10,4,3,1)*_(9,4,3,2)*_(6,5,4,3)*
Proof:
a) deg(15,3)* = deg((11,4,3) + (11,4,3)) = deg (9,4,3,2)* = 4
deg(14,4 )" = deg(10,4,3,1) = deg(6,5,4,3)" = —
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b) The p.i.s. forSig:
dig 109 S, dig 139 S1g , dpg 109 Syg,dgy 109 Sig , dyy 10 S
With the relations on 11-regular classes
1. (11,4,3) = (11,4,3)
2. (11,4,3) = (14,4)" + (10,4,3,1)" + (6,5,4,3)" — (15,3)" — (9,4,3,2)"
We have the Braure tree for this block B, m .
Lemma(2.4)
The Brauer tree for the blockBsis :

(15,2,1) — (13,4,1) — /(8,4,3,21) — (6,5,4,2,1)

<12,4,2)\
, ’ y (11,4,2,1)* \ ’ ,
(15,2,1) —(13,4,1) —(12,4,2) (8,4,3,2,1) — (6,5,4,2,1)
Proof:
a) deg{(13,4,1),(13,4,1), (11,4,2,1)*, (6,5,4,2,1) , (6,5,4,2,1) }= 6
deg{(15,2,1), (15,2,1) ,(12,4,2),(12,4,2), (8,4,3,21), (8,4,3,2,1) }= —6
b) By using (r,7)-inducing of p.i.s for S;; to S;5 we getonp.i.s:
dig 10 Sig , di7 T30 S, dyy 100 S5,
da3 1.0 S18 » dag 110 S18 + das 1.0 S18
and p.s.
da7 T8 S18 = ki, dig 1.0 S18 = ka,d19 1.0 S1g = k3,
Since (12,4,2,1) and (12,4,2,1) are p.i.s. of S;o( of defect 0in Si9,p = 11) and:
(12,4,2,1) 11,0y S15 =(12,4,2) +(11,4,2,1)"=m,
(12,4,2,1) 10y S =(12,4,2) +(11,4,2,1)* =m,
Then,k, must be a split to m; and m,
Now sincek; = k, +k3 - my-m, , either (k, — m, andk; — my) or
(k3 — m, andk, —m,) are p.s.
Let c3 =k, —my,cy = ks —my

Hence,we have the Braure tree for this block B;m.

Lemma(2.5)
The Brauer tree for the blockB; is:
y (11,7)" \ , , , ,
(18) (10,7,1) —(9,7,2) —(8,7,3) —(7,6,5)
Proof:

a) deg{(11,7)*,(9,7,2), (9,7,2),(7,6,5),(7,6,5) }= 8
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deg{(18), (18 ,(10,7,1), (10,7,1) , (8,7,3),(8,7,3) }= —8.
b) By using (r,7)-inducing of p.i.s for S;,(appendix II) to S;g:
di 179 Sig =ky , d3 173 Sig =ky , dy 175 Sig = k3ds 17 Sig = ky,
(10,7) 149 g0 = ¢ (10,7) 10 g0 =,
k,must be split toc; andc,.Since(7,6,5) # (7,6,5) on (11,a) and (7,6,5) ! S;, = ({7,6,4))! is
i.m.s in S;;then ky4splits to cqand cyq.
we get the matrix (Table (3))

Table (3)
@1 | 92 | @3 | o | Y1 | W2 | @9 | @10 | ¥7 | @8
(18) 1
(18) 1
a17y 1 [ 1 [ 1|1 b | b
(10,7,1) 1 1 c
(10,7,1y 1 1 c
(9,7,2) 1 1 d
(9,7,2y 1 1 d
(8,7,3) 1 1 f
(87,3) 1 1 f
(7,6,5) 1
(7,6,5) 1
C1 C2 C3 Cq k ks | cg | c10 | 11 Y

Since (8,7,3) # (8,7,3) on (11, @)-regular classes ,then either kj is splits or there are two columns
. If we suppose there are two columns Y; and ¥, (as in Table (3)) .
We, now, describe the columns Y; and Y,
1. (11,7)* L 7 = ((10,7)! + ({10,7))! + ((11,6))% + ((11,6) )% = 6 of i.m.s.
(see appendix II) and form (Table(3)) we haveb € {0,1,2}
2. (10,7,1) L S;7 = ({9,7,1))' + ({10,6,1)*)? + ({10,7))* = 4of i.m.s.so c € {0,1,2}.

3. (9,7,2) 1 517 = ((8,7,2))' + ({9,6,2)")% + ({9,7,1)*)! = 4of i.m.s. sod €
{0,1,2}.
4. (8,7,3) 1 S17 = ({8,6,3))% + ({8,7,2)")! = 30f i.m.s.
sof € {0,1}
Iff =1:

1) Thereisnoi.m.s.in (8,7,3) I S;; n(11,7)* | S;7, then b = 0.
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2) Thereisnoi.m.s.in (8,7,3) I S;7 Nn(10,7,1) I S;7,thenc =0
3) Since (8,7,3) 1 S;7 N (9,7,2) | S;; =2 of i.m.s. and
(8,7,3)N(9,7,2)=W, + ¢, ifd € {1,2}
=@, Ifd=0

So the possible columns
Y1=d (9,7,2) + (8,7,3),
Y, =d (9,7,2) + (8,7,3),d € {0,1,2}
deg¥; = 0 and deg¥, = 0 only when d = 1, s0 k5 splits to give (9,7,2) + (8,7,3), and (9,7,2) +
(8,7,3), which is the same when f = 0.
Now, since(9,7,2) # (9,7,2) on (11, a)-regular classes and we have 9 columns; then,k, must be a
splits to (10,7,1) + (9,7,2) , and (10,7,1) + (9,7,2) .Hence, we havethe Braure tree for this block
Bim.
From lemmas above, we can find the 11-decomposition matrix for the spin characters of S;5.We

write this decomposition matrix in appendixIi|

Appendix |
The decomposition matrix for the spin characters of S14,p = 11
The spin characters The decomposition matrix for the block B4
(16) 1
(16) 1
(11,5) 11111
(10,5,1) 1 1
(10,5,1) 1 1
(9,5,2) 1 1
(9,52 1 1
(8,5,3) 1 1
(853) 1 1
(7,5,4) 1
(7,5,4) 1
D; | D | D3 | Dy | Ds | Dg | D7 | Dg | Dg | Dyg
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The spin characters The decomposition matrix for the block B,
(15,1)" 1
(12,4)* 1 1
(11,4,1) 1 1
(11,4,1) 1 1
(9/4,2,1)" 1 1
(8,4,3,1) 1 1
(6,5,4,1) 1
Dy Dy, Dy3 D14 Dys
The spin characters The decomposition matrix for the block Bs
(14,2)* 1
(13,3)* 1 1
(11,3,2) 1 1
(11,3,2) 1 1
(10,3,2,1)* 1 1
(7,4,3,2) 1 1
(6,5,3,2)" 1
D16 D17 Dyg D19 Dy
Appendix Il
The decomposition matrix for the spin characters of $17 ., p = 11
The spincharacters The decomposition matrix for the block B;
1
1 1
1 1
1 1
1 1
1 1
1
dy d, ds d, ds
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The spin characters The decomposition matrix for the block B,
(16,1) 1
(16,1) 1
(12,5) 1 1
(12,5) 1 1

(11,5,1)" 1 1 1 1
(9,5,2,1) 1 1
(9,5,2,1) 1 1
(8,5,3,1) 1 1
(8,5,3,1) 1 1
(7,5,4,1) 1
(7,5,4,1) 1

The spin characters The decomposition matrix for the block Bj
(15,2) 1
(15,2) 1
(13,4) 1 1
(13,4) 1 1

(11,4,2)" 1 1 1 1
(10,4,2,1) 1 1
(10,4,2,1) 1 1
(8,4,3,2) 1 1
(8,4,3,2) 1 1
(6,5,4,2) 1
(6,5,4,2) 1
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The spin The decomposition matrix for the block B,
characters
(14,2,1)* 1
(13,3,1)* 1 1
(12,3,2)* 1
(11,3,2,1) 1
(11,3,2,1) 1
(7,4,3,2,1) 1 1
(6,5,3,2,1) 1
das da7 dag dag d3o
Appendix 111
The decomposition matrix for the spin characters of $,2,.p = 11
The spin characters The decomposition matrix for the block B;
(18) 1
(18) 1
(11,7)* 1111
(10,7,1) 1 1
(10,7,1y 1 1
(9,7,2) 1 1
(9,7,2) 1 1
(8,7,3) 1 1
(87,3) 1 1
(7,6,5) 1
(7,6,5) 1
di | dy | d3 | dy | ds|ds|d;|dg|dy | dg
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The spin characters

The decomposition matrix for the block B,

(17,1)* 1
(12,6)* 1 1
(11,6,1) 1 1
(11,6,1) 1 1
1 1
(8,6,3,1)" 1 1
(7,6,4,1)* 1
dll d12 d13 d14 d15

The spin characters

The decomposition matrix for the block Bs

(16,2)* 1
(13,5)" 1 1
(11,5,2) 1 1
(11,5,2) 1 1
(10,5,2,1)* 1 1
(8,5,3,2)" 1 1
(7,5,4,2)" 1
d16 d17 d18 d19 dZO

The spin characters

The decomposition matrix for the block B,

(15,3)* 1
(14,4 )* 1 1
(11,4,3) 1 1
(11,4,3) 1 1
(10,4,3,1)* 1 1
(9,4,3,2)" 1 1
(6,5,4,3)" 1
da1 dzz da3 daa das
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The spin characters The decomposition matrix for the block Bs
(15,2,1) 1
(15,2,1) 1
(13,4,1) 1 1
(13,4,1) 1 1
(12,4,2) 1 1
(12,4,2) 1 1

(11,4,2,1)* 11111
(8,4,3,21) 1 1
(8,4,3,2,1) 1 1
(6,5,4,2,1) 1
(6,5,4,2,1) 1
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